Полезные советы по оптимизации ASP-приложений. Кэшируйте часто используемые данные в объектах Application или Session

Inside the ASP.NET Worker Process, there are two thread pools. The worker thread pool handles all incoming requests and the I/O Thread pool handles the I/O (accessing the file system, web services and databases, etc.). Each App Domain has its own thread pool and the number of operations that can be queued to the thread pool is limited only by available memory; however, the thread pool limits the number of threads that can be active in the process simultaneously.

Source

So how many threads are there in these thread pools? I had always assumed that the number of threads varies from machine to machine – that ASP.NET and IIS were carefully and cleverly balancing the number of available threads against available hardware, but that is simply not the case. The fact is that ASP.NET installs with a fixed, default number of threads to play with: the 1.x Framework defaults to just 20 worker threads (per CPU) and 20 I/O threads (per CPU). The 2.0 Framework defaults to 100 threads in each pool, per CPU. Now this can be increased by adding some new settings to the machine.config file. The default worker thread limit was raised to 250 per CPU and 1000 I/O threads per CPU with the .NET 2.0 SP1 and later Frameworks. 32 bit windows can handle about 1400 concurrent threads, 64 bit windows can handle more, though I don’t have the figures.

In a normal (synchronous) Page Request, a single worker thread handles the entire request from the moment it is received until the completed page is returned to the browser. When the I/O operation begins, a thread is pulled from the I/O thread pool, but the worker thread is idle until that I/O thread returns. So, if your page load event fires off one or more I/O operations, then that main worker thread could be idle for 1 or more seconds and in that time, it could have serviced hundreds of additional incoming page requests.

Source : Microsoft Tech Ed 2007 DVD: Web 405 "Building Highly Scalable ASP.NET Web Sites by Exploiting Asynchronous Programming Models" by Jeff Prosise.

So long as the number of concurrent requests does not exceed the number of threads available in the pool, all is well. But when you are building enterprise level applications, the thread pool can become depleted under heavy load, and remember by default, heavy load is more than just 200 simultaneous requests assuming a dual CPU Server.

When this happens, new requests are entered into the request queue (and the users making the requests watch that little hour glass spin and consider trying another site). ASP.NET will allow the request queue to grow only so big before it starts to reject requests at which point it starts returning Error 503, Service Unavailable.

If you are not aware of this “Glass Ceiling of Scalability”, this is a perplexing error – one that never happened in testing and may not be reproducible in your test environment, as it only happens under extreme load.

Asynchronous Programming models in ASP.NET

To solve this problem, ASP.NET provides four asynchronous programming models. Asyncronous Pages, Asyncronous HttpHandlers, Asyncronous HttpModules and Asynchronous Web Services. The only one that is well documented and reasonably well known is the asynchronous Web Services model. Since there is quite a lot of documentation on that, and since in future web services should be implemented using the Windows Communication Foundation, we shall concentrate only on the other three.

Let’s begin with the first asynchronous programming model, Asynchronous Pages.

Asynchronous Pages

Source : Microsoft Tech Ed 2007 DVD: Web 405 "Building Highly Scalable ASP.NET Web Sites by Exploiting Asynchronous Programming Models" by Jeff Prosise.

To make a page Asynchronous, we insert what we refer to as an “Async Point” into that page’s lifecycle, which you can see in green on the right. We need to write and register with ASP.NET a pair of Begin and End Events. At the appropriate point in the page’s lifecycle, ASP.NET will call our begin method. In the begin method, we will launch an asynchronous I/O operation, for example an asynchronous database query, and we will immediately return from the begin method. As soon as we return, ASP.NET will drop the thread that was assigned to that request back into the thread pool where it may service hundreds or even thousands of additional page requests while we wait for our I/O operation to complete.

As you’ll see, when we get to the sample code, we return from our begin method an IAsyncResult Interface , through which we can signal ASP.NET when the async operation that we launched has completed. It is when we do that, that ASP.NET reaches back into the thread pool, pulls out a second worker thread and calls our end method, and then allows the processing of that request to resume as normal.

So, from ASP.NET’s standpoint, it is just a normal request, but it is processed by 2 different threads; and that will bring up a few issues that we’ll need to discuss in a few moments.

Now, none of this was impossible with the 1.1 framework, but it was a lot of extra work, and you lost some of the features of ASP.NET in the process. The beauty of the 2.0 and later frameworks is that this functionality is built right into the Http pipeline, and so for the most part, everything works in the asynchronous page just as it did in the synchronous one.

In order to create an Asynchronous page, you need to include the Async=”True” attribute in the page directive of your .aspx file. That directive tells the ASP.NET engine to implement an additional Interface on the derived page class which lets ASP.NET know at runtime that this is an asynchronous page.

What happens if you forget to set that attribute? Well, the good news is that the code will still run just fine, but it will run synchronously, meaning that you did all that extra coding for nothing. I should also point out that to make an Asynchronous data call, you also need to add “ async=true; ” or “ Asynchronous Processing=true; ” to your connection string – If you forget that and make your data call asynchronously, you will get a SQL Exception.

The second thing we need to do in order to create an asynchronous page is to register Begin and End Events. There are 2 ways to register these events. The first way is to use a new method introduced in ASP.NET 2.0 called AddOnPreRenderCompleteAsync:

using System; using System.Net; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; public partial class temp: System.Web.UI.Page { private static readonly Uri c_UrlImage1 = new Uri(@" ); private HttpWebRequest request; void Page_Load(object sender, EventArgs e) { request = (HttpWebRequest)WebRequest.Create(c_UrlImage1); AddOnPreRenderCompleteAsync(BeginAsyncOperation, EndAsyncOperation); } IAsyncResult BeginAsyncOperation(object sender, EventArgs e, AsyncCallback cb, object state) { // , response.ResponseUri, response.ContentLength); } }

The second way is to use RegisterAsyncTask:

using System; using System.Net; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; public partial class temp: System.Web.UI.Page { private static readonly Uri c_UrlImage1 = new Uri (@" http://www.asyncassassin.com/asyncassassin/image.axd?picture=2008%2f12%2fSlide3.JPG" ); private HttpWebRequest request; void Page_Load(object sender, EventArgs e) { request = (HttpWebRequest)WebRequest.Create(c_UrlImage1); PageAsyncTask task = new PageAsyncTask(BeginAsyncOperation, EndAsyncOperation, TimeoutAsyncOperation, null ); RegisterAsyncTask(task); } IAsyncResult BeginAsyncOperation(object sender, EventArgs e, AsyncCallback cb, object state) { // Begin async operation and return IAsyncResult return request.BeginGetResponse(cb, state); } void EndAsyncOperation(IAsyncResult ar) { // Get results of async operation HttpWebResponse response = (HttpWebResponse)request.EndGetResponse(ar); Label1.Text = String .Format(" Image at {0} is {1:N0} bytes" , response.ResponseUri, response.ContentLength); } void TimeoutAsyncOperation(IAsyncResult ar) { // Called if async operation times out (@ Page AsyncTimeout) Label1.Text = " Data temporarily unavailable" ; } }

These methods can be called anywhere in the page’s lifecycle before the PreRender event, and are typically called from the Page_Load event or from the click event of a button during a postback. By the way, you can register these methods from within a UserControl , as long as that control is running on a page that has set the async = true attribute. Again, if it runs on a page without that attribute, the code will still run just fine, but it will run synchronously.

As you can see from just these simple examples, building asynchronous pages is more difficult than building synchronous ones. I’m not going to lie to you. And real world use of these techniques is even more complicated – there is no Business Logic or data layer in the examples above. I don’t want you to leave here believing that you need to make every page asynchronous. You don’t. What I recommend, is doing surgical strikes. Identify that handful of pages in your application that perform the lengthiest I/O and consider converting those into asynchronous pages. The cool thing about this, is that it can improve not only scalability, but also performance, because when you are not holding onto the threads, new requests get into the pipeline faster, they spend less time waiting in that application request queue out there. So, users are happier because pages that they would have had to wait on before – even the ones you have not converted to asynchronous pages, but which might have been delayed while threads were idle, will now load faster. What’s more, as you’ll see in a moment, using RegisterAsyncTask will allow you to perform I/O operations in parallel, which may also improve performance. Having said that, making pages asynchronous is not really about improving performance, it is about improving scalability – making sure that we use the threads in the thread pool as efficiently as we possibly can.

Now I’m sure you are wondering why there are two ways, what the differences are between them, and when you should choose one over the other. Well, there are 3 important differences between AddOnPreRenderCompleteAsync and RegisterAsyncTask .

  1. As we have seen, RegisterAsyncTask allows you to specify a timeout method. It is important to note that the timeout value you specify in the Page Directive of your .aspx page <%@ Page Async="true" AsyncTimeout="5" ... %> is the timeout for ALL asynchronous tasks the page is performing, not 5 secs per async task - all async tasks must be competed within 5 seconds, so be sure to allow enough time here.
  2. If you use AddOnPreRenderCompleteAsync , you may find that some things that worked before, no longer work. For example, if you are using User.Identity.Name in your code to get the authenticated username in order to personalize a page. If this method is called by the first thread, it will work fine. But if you call it on the second thread – in your End method or any of the events that fire after the end method, User.Identity.Name will be null . This is because as a Request travels through the ASP.NET Http Pipeline, it is accompanied by an object of type HttpContext that basically encapsulates all of the information that ASP.NET knows about that request. When you use AddOnPreRenderCompleteAsync , ASP.NET does not take the extra time to map everything in that context object from thread one to thread two. That’s why User.Identity.Name does not work in thread two. In fact, you will often find that HttpContext.Current is null in thread two. However, if you use RegisterAsyncTask , ASP.Net DOES map everything in that context from thread one to thread two. It does take a few microseconds longer to do this, but it will make your life considerably easier.
  3. The third difference is probably the most important of all. AddOnPreRenderCompleteAsync is a quick and easy way of making a page asynchronous and works well if you have a simple page that needs to perform only 1 asynchronous I/O operation. In real life, a page often needs to perform multiple database queries, or grab data from a webservice and pass it to a database, or something like that. The cool thing about RegisterAsyncTask is that it allows you to quickly and easily queue up multiple Async I/O operations. The last argument is a Boolean value that allows you to specify whether each task can run in parallel. Sometimes, you need to wait for one data call to complete in order to send that data somewhere else, but other times you may need to get data from multiple, unrelated sources and this allows you to fetch them all at the same time, instead of one after the other.

Source : Microsoft Tech Ed 2007 DVD: Web 405 "Building Highly Scalable ASP.NET Web Sites by Exploiting Asynchronous Programming Models" by Jeff Prosise.

N-Tier Applications

OK. So I expect some of you are thinking “But what if I have a data access layer in my application? My pages can’t go directly to the database, they have to go through that data access layer, or they have to go through my BLL, which calls the Data Access Layer.”

Well, ideally, you should simply add the asynchronous methods to your DAL. If you wrote the DAL yourself or have access to its source code, you should add the Begin and End methods to it. Adding the asynchronous methods to your DAL is the best, most scalable solution and doesn’t change the example code much at all: Instead of calling begin and end methods defined inside the page class, you simply call MyDAL.Begin … or MyBll.Begin … when you call RegisterAsyncTask or AddOnPreRenderAsync .

Unfortunately, neither Llblgen nor the Enterprise library (nor LINQ for that matter) supports asynchronous data calls natively. However, I believe that you can modify the generated code in llblgen to enable asynchronous data calls. You could also crack open the source code of the Enterprise library and add the asynchronous methods yourself, but before you try, check to see if it has already been done .

Asynchronous HTTP Handlers

The 2 nd Asynchronous Programming model in ASP.NET is for HttpHandler s and has been around since .Net 1.x, but was not documented any better in version 2 than it was in version 1. Http Handlers are one of the two fundamental building blocks of ASP.NET, an http handler is an object that is built to handle http requests and convert them into http responses. For the most part, each handler corresponds to a file type. For example, there is a built in handler in ASP.NET that handles .aspx files. It is that handler that knows how to instantiate a control tree and send that tree to a rendering engine. The ASMX Handler knows how to decode SOAP and allows us to build web services.

Basically an HTTP Handler is just a class that implements the IHttpHandler interface , which consists of an IsResuable Boolean function and a ProcessRequest method which is the heart of an httphandler as its job is to turn a request into a response. The ProcessRequest method is passed an HttpContext Object containing all the data ASP.NET has collected about the request, as well as exposing the Session , Server , Request and Response objects that you are used to working with in page requests.

using System.Web; public class HelloHandler: IHttpHandler { public void ProcessRequest(HttpContext context) { string name = context.Request[" Name" ]; context.Response.Write(" Hello, " + name); } public bool IsReusable { get { return true ; } } }

There are 2 ways to build them. One way is to add the class to your project and register it in the web.config . If you want to register it for any file extension not currently handled by ASP.NET, you would need to add that extension to IIS. The easier way is to deploy them as .ASHX files. The ASHX extension has already been registered in IIS, it is auto compiled, no changes are required in the web.config and performance is the same. Ok. So you know what they are and how to build one, when is an appropriate time to use one?

Handlers are commonly used to generate custom XML and RSS feeds, to unzip and render files stored as BLOB fields in the database including image files or logos, HTTP Handlers can also be used as the target of AJAX calls.

A common mistake that programmers new to .NET, especially those like myself who came from classic ASP or PHP, is to use the Page_Load event of a page to create a new http response. For example, before I learned about httphandlers , I would use the page load event to create an XML document or a dynamic PDF file and output it to the response stream with a response.End() to prevent the page continuing after I output my file. The problem with that approach is that you are executing a ton of code in ASP.NET that doesn’t need to execute. When ASP.NET sees that request come in, it thinks it is going to need to build and render a control tree. By pointing the link at the handler instead, you will gain a 10-20% performance increase every time that request is fetched, just because of the overhead you have reduced. Put simply, Http Handlers minimize the amount of code that executes in ASP.NET.

To implement an Asynchronous handler, you use the interface IHttpAsyncHandler , which adds BeginProcessRequest and EndProcessRequest methods. The threading works the same way as with an async page. After the begin method is called, the thread returns to the thread pool and handles other incoming requests until the I/O thread completes its work, at which point it grabs a new thread from the thread pool and completes the request.

Page.RegisterAsyncTask cannot be used here, so if you need to run multiple async tasks, you will need to implement your own IAsyncResult Interface and pass in your own callbacks to prevent the EndProcessRequest method being called before you have completed all your async operations.

Asynchronous HTTP Modules

HTTP Modules are another fundamental building block of ASP.NET. They don’t handle requests, instead they sit in the HTTP Pipeline where they have the power to review every request coming in and every response going out. Not only can they view them, but they can modify them as well. Many of the features of ASP.NET are implemented using httpmodules: authentication, Session State and Caching for example, and by creating your own HTTP Modules, you can extend ASP.NET in a lot of interesting ways. You could use an HTTP Module for example to add Google analytics code to all pages, or a custom footer. Logging is another common use of HTTP Modules.

E-Commerce web sites can take advantage of HTTP Modules by overriding the default behavior of the Session Cookie. By default, ASP.NET Session Cookies are only temporary, so if you use them to store shopping cart information, after 20 minutes of inactivity, or a browser shut down they are gone. You may have noticed that Amazon.com retains shopping cart information much longer: You could shut down your laptop, fly to Japan and when you restart and return to Amazon your items will still be there. If you wanted to do this in ASP.NET, you could waste a lot of time writing your own Session State Cookie Class, or you could write about 10 lines of code in the form of an HTTP Module that would intercept the cookie created by the Session Object before it gets to the browser, and modify it to make it a persistent cookie. So, there are lots and lots of practical uses for HTTP Modules.

An Http Module is nothing more than a class that implements the IHttpModule Interface , which involves an Init method for registering any and all events that you are interested in intercepting, and a dispose method for cleaning up any resources you may have used.

using System; using System.Web; public class BigBrotherModule: IHttpModule { public void Init(HttpApplication application) { application.EndRequest += new EventHandler(OnEndRequest); } void OnEndRequest(Object sender, EventArgs e) { HttpApplication application = (HttpApplication)sender; application.Context.Response.Write (" Bill Gates is watching you" ); } public void Dispose() { } }

The events you can intercept in an HTTP Module are as shown below:

Source : Microsoft Tech Ed 2007 DVD: Web 405 "Building Highly Scalable ASP.NET Web Sites by Exploiting Asynchronous Programming Models" by Jeff Prosise.

Notice the HTTP Handler at the end there that converts the request into a response. These events will always fire in this order, in every request. The Authenticate Request event is the one fired by ASP.NET when a requested page requires authentication. It checks to see if you have an authentication cookie and if you do not, redirects the request to the login page. In the simple example, I was using that End Request event, which is the last one before the response is sent to the browser.

So, that is what HTTP Modules are for, and how they work. Why do we need an Asynchronous version? Well if you really want to see how scalable your application is, add an HTTP Module that makes a synchronous call to a webservice or a database. Since the event you register will be fired on every request, you will tie up an additional thread from the ASP.NET thread pool on every single request that is just waiting for these I/O processes to complete. So, if you write a synchronous HTTP Module that inserts a record into a database for every single request, and that insert takes 1 second, EVERY single request handled by your application will be delayed by 1 second. So if you need to do any type of I/O from within an HTTP Module, I recommend you make the calls asynchronously and if you are retrieving data, cache it!

To Register Async Event Handlers in an http module - In the Init method, simply register your begin and end methods using AddOnPreRequestHandlerExecuteAsync:

using System.Web; public void Init (HttpApplication application) { AddOnPreRequestHandlerExecuteAsync (new BeginEventHandler (BeginPreRequestHandlerExecute), new EndEventHandler (EndPreRequestHandlerExecute)); } IAsyncResult BeginPreRequestHandlerExecute (Object source, EventArgs e, AsyncCallback cb, Object state) { // TODO: Begin async operation and return IAsyncResult } void EndPreRequestHandlerExecute (IAsyncResult ar) { // TODO: Get results of async operation }

Error Handling while Multithreading

Errors can happen at any point during the execution of a command. When ASP.NET can detect errors before initiating the actual async operation, it will throw an exception from the begin method; this is very similar to the synchronous case in which you get the exceptions from a call to ExecuteReader or similar methods directly. This includes invalid parameters, bad state of related objects (no connection set for a SqlCommand , for example), or some connectivity issues (the server or the network is down, for example).

Now, once we send the operation to the server and return, ASP.NET doesn’t have any way to let you know if something goes wrong at the exact moment it happens. It cannot just throw an exception as there is no user code above it in the stack when doing intermediate processing, so you wouldn"t be able to catch an exception if it threw one. What happens instead is that ASP.NET stores the error information, and signals that the operation is complete. Later on, when your code calls the end method, ASP.NET detects that there was an error during processing and the exception is thrown.

The bottom line is that you need to be prepared to handle errors in both the begin and the end methods, so it is wise to wrap both events in a try – Catch block.

Conclusion

Now you have seen three of the asynchronous programming models ASP.NET has to offer, hopefully I have impressed upon you how important it is to at least consider using them when creating pages that do I/O if you expect those pages to be heavily trafficked. Remember you can also create asynchronous web services. I didn’t cover those here because there is pretty good documentation for that already.

The good thing about Asynchronous Programming models is that it enables us to build scalable and responsive applications that use minimal resources (threads/context switches).

What is the down side? Well it forces you to split the code into many callback methods, making it hard to read, confusing to debug and difficult for programmers unfamiliar with asynchronous programming to maintain.

With this in mind, whenever I add an asynchronous method to an object in the my projects, I also add a traditional Synchronous version. For example, if I had created a BeginUpdatexxx() method in the BLL, there would also be a traditional Updatexxx() method, so that if anyone else finds themselves having to use that object, they won’t be left scratching their heads, wondering “how on earth do I use that?”

Asynchronous command execution is a powerful extension to.NET. It enables new high-scalability scenarios at the cost of some extra complexity.

Последнее обновление: 10.03.2016

Одним из ключевых нововведений последних версий фреймворка.NET стала асинхронность. Хотя фреймворк и раньше позволял использовать асинхронные методы, но с появлением библиотеки Task Parallel Library работа с асинхронным кодом была предельно упрощена, а сам формат работы изменился. Были добавлены новые возможности по созданию асинхронных методов с использованием новых ключевых слов, таких как async и await.

При создании нового контроллера мы в настройках уже можем указать, как нам нужен контроллер - синхронный или асинхронный. По умолчанию Visual Studio добавляет в проект стандартные контроллеры, методы которых, как правило, возвращают объект ActionResult. Но если мы при добавлении контроллера в папку Controllers выберем тип MVC 5 Controller with views, using Entity Framework , то в окне настройки нового контроллера специальное поле позволит нам указать, что новый контроллер будет содержать асинхронные методы:

Для чего нужны вообще асинхронные методы в контроллерах? Асинхронные методы позволяют оптимизировать производительность приложения и предназначены прежде всего для обработки таких запросов, которые занимают или могут занять довольно продолжительное время, например, обращение к базе данных или обращение к внешнему сетевому ресурсу для получения большой порции данных. Применение асинхронных методов позволяет приложению параллельно с выполнением асинхронного кода выполнять также другие запросы.

Чтобы понять различие между синхронными и асинхронными методами, рассмотрим, как IIS обрабатывает входящие запросы. Веб-сервер поддерживает пул потоков, которые обслуживают запросы. При обращении пользователя к веб-ресурсу IIS выделяет поток из пула для обслуживания данного запроса. И пока данный поток не обработает предназначенный для него запрос, другие запросы он обрабатывать не может.

Однако предположим, что метод контроллера в процессе обработки запроса должен выполнить запрос к другому ресурсу или к базе данных. Запрос к сетевому ресурсу или БД сам по себе может занять некоторое время. При синхронной обработке поток, обрабатывающий запрос, временно блокируется, пока сетевой ресурс или БД не возвратят нужные нам данные.

И если обработка запроса блокируется очень долго, то IIS начинает задействовать для обслуживания других входящих запросов новые потоки. Однако есть ограничения на общее количество потоков. Когда количество потоков достигает предела, то вновь входящие запросы помещаются в очередь ожидания. Однако и тут есть ограничение на количество запросов в очереди. И когда это количество превышает предел, то IIS просто отклоняет все остальные запросы с помощью статусного кода 503 (Service Unavailable).

При асинхронной обработке поток не ждет, пока БД вернет ему данные, а начинает обрабатывать запрос от другого пользователя. Но когда, наконец, с сетевого ресурса или БД придут нужные данные, поток возвращается к обработке ранее обрабатываемого запроса в обычном режиме.

Перейдем непосредственно к коду. Для создания асинхронных методов используются модификаторы async и await , которые позволяют выполнять продолжительные операции без блокирования основного потока.

Сравним на примере вызов синхронного и асинхронного метода:

Using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc; using AsyncContollers.Models; using System.Threading.Tasks; using System.Data.Entity; namespace AsyncContollers.Controllers { public class HomeController: Controller { BookContext db = new BookContext(); public ActionResult Index() { IEnumerable books = db.Books; ViewBag.Books = books; return View(); } // асинхронный метод public async Task BookList() { IEnumerable books = await db.Books.ToListAsync(); ViewBag.Books = books; return View("Index"); } } }

Оба метода выполняют одну и ту же операцию - извлечение данных из БД и получают идентичные результаты. Но если первый синхронный метод Index представляет привычную для нас запись, то асинхронный метод BookList уже выглядит необычно.

Этот метод возвращает не объект ActionResult, а объект Task . Task представляет асинхронную операцию, выполняющуюся продолжительное время.

Кроме того, чтобы обозначить метод как асинхронный, перед возвращаемым типом ставится ключевое слово async .

Третьим ключевым моментом является использование ключевого слова await . Оно применяется в асинхронных методах, чтобы приостановить выполнение этого метода до тех пор, пока ожидаемая задача не завершится. В нашем случае такой задачей является получение данных из БД.

Но также следует учитывать, что await используется с методами, возвращающими объект Task . Поэтому для получения данных из БД используется метод await db.Books.ToListAsync() , который также извлекает данные из БД, но уже в асинхронном режиме.

Когда следует использовать асинхронные методы? В первую очередь их предпочтительно использовать при запросах к БД, к внешнем сетевым ресурсам, однако в конечном счете, что лучше синхронность или асинхронность решает уже сам разработчик исходя из конкретной задачи.

This tutorial attempts to shed some light on the subject of Threading using ASP.NET. Threading is a technique used to give the user the impression that multiple tasks are executing at the same time. The .NET Framework provides us with many types that allow us to easily and quickly add multi-threading to our .NET Web application. I’ll assume that you have some familiarity with ASP.NET and at least some experience with writing code in Visual Basic.

Through the tutorial we’ll build a pretty simple Web application that should be a good example of some basic threading concepts. Basically we’ll have 2 textboxes in which to enter a phrase, and to enter a time period in which you want the phrase to be rebuilt. Our Web threading application consists of 2 pages, one of which is the page that will start the thread, while the other is a results page that shows us the progress of our thread. The code provided should be very portable and allow you to implement your own threading application very quickly.

Before we get started…

Before we dive into the Web application, let me first give you a quick look at some of the code that you’ll be seeing.

First, we need to import the System.Threading Namespace so we can access the Thread class provided in the .NET Framework. Add this line to the top of your .aspx/.ascx file:

<%@ Import NameSpace="System.Threading" %>

Imports System.Threading

Now for demonstration purposes, here is a sample long running method. In a real life situation this method would most likely perform a task like processing a Web form, or completing a time-consuming database query.

Public Sub SomeLongMethod()

"your code that takes a while to execute

Now to execute this method and not leave our Web form hanging, we’ll start a new thread and let SomeLongMethod execute on this new thread. To do this, we have a few options. The technique I’ll use is to set up a new method that will start our new thread running. Here’s a sample thread starter function:

Public Sub SomeLongMethod_Thread()

"first, declare a new Thread, passing the constructor the address
"of SomeLongMethod. NOTE: SomeLongMethod can be replaced with your
"own method

Dim NewThread As Thread = New _
Thread(AddressOf SomeLongMethod)

"next we set the priority of our thread to lowest, setting
"the priority to a higher level can cause unexpected results.
NewThread.Priority = ThreadPriority.Lowest

"finally we start the thread executing
NewThread.Start()

And that’s it! All we have to do now is replace our call to SomeLongMethod with a call to SomeLongMethod_Thread , and the long method will execute on its own thread. Normally, we would redirect the user to the results page at the end of the SomeLongMethod_Thread method. However in this example I left that out to prevent confusion — I’ll demonstrate it in the following example, which illustrates the use of Threading in an ASP.NET Web application.

Using Threading to Rebuild a String

The first file we’ll look at is default.aspx. This will be the page where we’ll get 2 values from the user, and start a new thread. The second file we’ll look at is the results page, where we’ll poll the Session variables created in the thread, and display current thread stats to our user. I’ll go through default.aspx method-by-method, and then do the same for the results.aspx page. The source code for this file is available at the end of this tutorial.

NOTE: I’ve assumed that your Web server has Session variables enabled. If you have Session variables Disabled, or you have cookies disabled on your browser, the results of the following example will not display correctly.

A Simple Example (default.aspx)

Let’s begin by looking at the Page_Load function for default.aspx

Sub Page_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs)

SyncLock Session.SyncRoot
"here, we initialize 3 session variables to hold our results
Session("Complete") = False
Session("Status") = ""
Session("Phrase") = ""
End SyncLock
d Sub

In this method we simply initialize 3 session variables that we’ll use in our next few methods. Session("Complete") will be the sentinel for our results page. When the thread is complete we will set Session("Complete") to True . The Session("Phrase") variable will be what we use to hold our partial phrase as we slowly build it. Session("Status") is just a variable to hold the start time and the end time. Now let’s look at our phrase re-building method:

Sub PhraseBuilder()

Dim str As String = ""
Dim i As Integer = 0

Dim startTimeTicks As Long = 0
Dim strStartTime As String = ""

Dim totalSleepTime As Double = 0.0

"log our start time, in ticks, and in Long Date format
startTimeTicks = DateTime.Now.Ticks
strStartTime = "Thread Started: " & DateTime.Now

" get phrase
str = txtPhrase.Text

"convert users time from seconds to milliseconds
totalSleepTime = 1000.0
totalSleepTime = totalSleepTime * CInt(txtTotalThreadLife.Text)
totalSleepTime = (totalSleepTime / str.Length)

For i = 0 To str.Length - 1

"this method will put our thread to sleep for the specified
"number of milliseconds. without the sleep, this method would
"execute too fast to see the thread working.
Thread.Sleep(totalSleepTime)

"we use synclock to block any other thread from accessing
"session variables while we are changing their values.
SyncLock Session.SyncRoot

Session("Status") = "Thread is " & _
Format((i / (str.Length - 1)) * 100, "#0.00") & _
"% complete." & " - Time Elapsed: " & _
Format((DateTime.Now.Ticks - startTimeTicks) / 10000000 _
, "#0.00") & " sec. Target: " & txtTotalThreadLife.Text & _
".00 sec."

SyncLock Session.SyncRoot
"rebuild phrase 1 letter at a time
Session("Phrase") &= str.Chars(i).ToString
End SyncLock

"our method is complete, so set the Session variables
"accordingly
SyncLock Session.SyncRoot
Session("Status") = strStartTime & _
"
Thread Complete. End Time: " & DateTime.Now & "
"

Session("Complete") = True
End SyncLock

Ok, now let’s dissect this method a little. Basically what we’re doing here is forcing a method that would otherwise run quickly to run on a schedule based on user input. This is done using the Thread.Sleep(ByVal millisecond as Integer) method. This method allows us to put the thread to sleep for the specified number of milliseconds. This Sleep method can be used in any method, not just one that’s executing on a new thread.

The other interesting technique we utilize is the use of the Synclock method. Synclock is used to block other threads from trying to obtain the same Synclock . To protect the variables from simultaneous access, we need to obtain the same Synclock before we access the variables everywhere else in the code. This is a necessity in a multi-threaded Web application to ensure that two methods aren’t reading/writing to the same variable at the same time. The Synclock method is identical to using the Monitor.Enter(Me) method that’s also provided in the System.Threading Namespace .

There are only two methods left to go! The next method we’ll look at is the PhraseBuilder_Thread function. This function is almost identical to the example at the beginning of the article:

Sub PhraseBuilder_Thread()

"method to start our phrase builder method executing
"on a new thread.

Dim myThread As Thread = New Thread(AddressOf PhraseBuilder)

MyThread.Priority = ThreadPriority.Lowest

"//start the new thread
myThread.Start()

"now redirect to the results page
Response.Redirect("results.aspx")

Now all that’s left is to call our PhraseBuilder_Thread method when the user clicks the submit button. Here’s the short code:

Sub btnSubmit_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs)

"start PhraseBuilder thread...
PhraseBuilder_Thread()
End Sub

A Simple Example(results.aspx)

Now we’ll take a look at the results page. Basically our results page will check the status of the Session("completed") variable on the Page_Load , and react accordingly. Here’s the Page_load function for results.aspx:

Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
"Put user code to initialize the page here
"check the value of Session("Completed"), if it is True, stop writing

If Session("Complete") <> True Then

"make sure session variables are enabled, if not warn user

If Session("Complete") <> False Then
"error with session variable, Session("Complete") is not
"True or False
lblComplete.Text = "Error with Session("Complete")"

"set page to auto refresh page every 2 seconds, until thread is done

Response.Write("")

SyncLock Session.SyncRoot
lblStatus.Text = Session("Status") & "
Processing. . ."

End SyncLock

Else
"thread is complete, stop writing refresh tag, and display
"results
SyncLock Session.SyncRoot
lblStatus.Text = Session("Status")
lblPhrase.Text = Session("Phrase")
lblComplete.Text = Session("Complete")
End SyncLock

This Page_Load function checks the status of the Session("Complete") variable and reacts accordingly. Feel free to customize you results page to suit you needs, but I recommend checking for the case when the Session("Completed") variable is not set to True, or False. This usually happens when Session variables are disabled, or you have cookies disabled. Also, you can remove the Response.Write statement if you don’t want the page to automatically refresh.

In Conclusion

Well that’s all there is to it! Hopefully you have just written your first ASP.NET application using threading.

A thread is defined as the execution path of a program. Each thread defines a unique flow of control. If your application involves complicated and time consuming operations such as database access or some intense I/O operations, then it is often helpful to set different execution paths or threads, with each thread performing a particular job.

Threads are lightweight processes. One common example of use of thread is implementation of concurrent programming by modern operating systems. Use of threads saves wastage of CPU cycle and increases efficiency of an application.

So far we compiled programs where a single thread runs as a single process which is the running instance of the application. However, this way the application can perform one job at a time. To make it execute multiple tasks at a time, it could be divided into smaller threads.

In .Net, the threading is handled through the "System.Threading" namespace. Creating a variable of the System.Threading.Thread type allows you to create a new thread to start working with. It allows you to create and access individual threads in a program.

Creating Thread

A thread is created by creating a Thread object, giving its constructor a ThreadStart reference.

ThreadStart childthreat = new ThreadStart(childthreadcall);

Thread Life Cycle

The life cycle of a thread starts when an object of the System.Threading.Thread class is created and ends when the thread is terminated or completes execution.

Following are the various states in the life cycle of a thread:

    The Unstarted State : It is the situation when the instance of the thread is created but the Start method is not called.

    The Ready State : It is the situation when the thread is ready to execute and waiting CPU cycle.

    The Not Runnable State : a thread is not runnable, when:

    • Sleep method has been called
    • Wait method has been called
    • Blocked by I/O operations
  • The Dead State : It is the situation when the thread has completed execution or has been aborted.

Thread Priority

The Priority property of the Thread class specifies the priority of one thread with respect to other. The .Net runtime selects the ready thread with the highest priority.

The priorities could be categorized as:

  • Above normal
  • Below normal
  • Highest
  • Lowest
  • Normal

Once a thread is created, its priority is set using the Priority property of the thread class.

NewThread.Priority = ThreadPriority.Highest;

Thread Properties & Methods

The Thread class has the following important properties:

Property Description
CurrentContext Gets the current context in which the thread is executing.
CurrentCulture Gets or sets the culture for the current thread.
CurrentPrinciple Gets or sets the thread"s current principal for role-based security.
CurrentThread Gets the currently running thread.
CurrentUICulture Gets or sets the current culture used by the Resource Manager to look up culture-specific resources at run time.
ExecutionContext Gets an ExecutionContext object that contains information about the various contexts of the current thread.
IsAlive Gets a value indicating the execution status of the current thread.
IsBackground Gets or sets a value indicating whether or not a thread is a background thread.
IsThreadPoolThread Gets a value indicating whether or not a thread belongs to the managed thread pool.
ManagedThreadId Gets a unique identifier for the current managed thread.
Name Gets or sets the name of the thread.
Priority Gets or sets a value indicating the scheduling priority of a thread.
ThreadState Gets a value containing the states of the current thread.

The Thread class has the following important methods:

Methods Description
Abort Raises a ThreadAbortException in the thread on which it is invoked, to begin the process of terminating the thread. Calling this method usually terminates the thread.
AllocateDataSlot Allocates an unnamed data slot on all the threads. For better performance, use fields that are marked with the ThreadStaticAttribute attribute instead.
AllocateNamedDataSlot Allocates a named data slot on all threads. For better performance, use fields that are marked with the ThreadStaticAttribute attribute instead.
BeginCriticalRegion Notifies a host that execution is about to enter a region of code in which the effects of a thread abort or unhandled exception might endanger other tasks in the application domain.
BeginThreadAffinity Notifies a host that managed code is about to execute instructions that depend on the identity of the current physical operating system thread.
EndCriticalRegion Notifies a host that execution is about to enter a region of code in which the effects of a thread abort or unhandled exception are limited to the current task.
EndThreadAffinity Notifies a host that managed code has finished executing instructions that depend on the identity of the current physical operating system thread.
FreeNamedDataSlot Eliminates the association between a name and a slot, for all threads in the process. For better performance, use fields that are marked with the ThreadStaticAttribute attribute instead.
GetData Retrieves the value from the specified slot on the current thread, within the current thread"s current domain. For better performance, use fields that are marked with the ThreadStaticAttribute attribute instead.
GetDomain Returns the current domain in which the current thread is running.
GetDomainID Returns a unique application domain identifier.
GetNamedDataSlot Looks up a named data slot. For better performance, use fields that are marked with the ThreadStaticAttribute attribute instead.
Interrupt Interrupts a thread that is in the WaitSleepJoin thread state.
Join Blocks the calling thread until a thread terminates, while continuing to perform standard COM and SendMessage pumping. This method has different overloaded forms.
MemoryBarrier Synchronizes memory access as follows: The processor executing the current thread cannot reorder instructions in such a way that memory accesses prior to the call to MemoryBarrier execute after memory accesses that follow the call to MemoryBarrier.
ResetAbort Cancels an Abort requested for the current thread.
SetData Sets the data in the specified slot on the currently running thread, for that thread"s current domain. For better performance, use fields marked with the ThreadStaticAttribute attribute instead.
Start Starts a thread.
Sleep Makes the thread pause for a period of time.
SpinWait Causes a thread to wait the number of times defined by the iterations parameter.
VolatileRead() Reads the value of a field. The value is the latest written by any processor in a computer, regardless of the number of processors or the state of processor cache. This method has different overloaded forms.
VolatileWrite() Writes a value to a field immediately, so that the value is visible to all processors in the computer. This method has different overloaded forms.
Yield Causes the calling thread to yield execution to another thread that is ready to run on the current processor. The operating system selects the thread to yield to.

Example

The following example illustrates the uses of the Thread class. The page has a label control for displaying messages from the child thread. The messages from the main program are directly displayed using the Response.Write() method. Hence they appear on the top of the page.

The source file is as follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="threaddemo._Default" %> Untitled Page

Thread Example

The code behind file is as follows:

Using System; using System.Collections; using System.Configuration; using System.Data; using System.Linq; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.HtmlControls; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Xml.Linq; using System.Threading; namespace threaddemo { public partial class _Default: System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { ThreadStart childthreat = new ThreadStart(childthreadcall); Response.Write("Child Thread Started
"); Thread child = new Thread(childthreat); child.Start(); Response.Write("Main sleeping for 2 seconds.......
"); Thread.Sleep(2000); Response.Write("
Main aborting child thread
"); child.Abort(); } public void childthreadcall() { try{ lblmessage.Text = "
Child thread started
"; lblmessage.Text += "Child Thread: Coiunting to 10"; for(int i =0; i<10; i++) { Thread.Sleep(500); lblmessage.Text += "
in Child thread
"; } lblmessage.Text += "
child thread finished"; }catch(ThreadAbortException e){ lblmessage.Text += "
child thread - exception"; }finally{ lblmessage.Text += "
child thread - unable to catch the exception"; } } } }

Observe the following

    When the page is loaded, a new thread is started with the reference of the method childthreadcall(). The main thread activities are displayed directly on the web page.

    The second thread runs and sends messages to the label control.

    The main thread sleeps for 2000 ms, during which the child thread executes.

    The child thread runs till it is aborted by the main thread. It raises the ThreadAbortException and is terminated.

    Control returns to the main thread.

When executed the program sends the following messages.

Об опасностях выполнения фоновых задач в ASP.NET. Он выделил три основных риска, связанных с запуском фонового процесса:

  1. Необработанное исключение в потоке, несвязанном с запросом, может снять процесс.
  2. Если запустить сайт в веб-ферме, то есть вероятность случайно завершить несколько экземпляров приложения, которое могло запустить несколько экземпляров одной и той же задачи одновременно.
  3. Домен приложения, в котором запущен сайт, по разным причинам может выгрузиться и снять фоновую задачу, запущенную в нем.
Конечно, можно написать собственный менеджер для управления фоновыми задачами. Но, вероятнее всего, Вы сделаете это неправильно. Никто не собирается оспаривать Ваши навыки разработчика. Просто создание подобного менеджера - это достаточно тонкая вещь. Да и зачем Вам это надо?

Есть множество отличных вариантов запуска задач в фоновом режиме. И не просто абстрактных методик, а готовых библиотек.

Какие-то ASP.NET приложения могут работать на Ваших собственных серверах под IIS, какие-то размещаться в Azure.

Для запуска фоновых задач можно выделить несколько вариантов:

HANGFIRE

И последний в обзоре, но, безусловно, непоследний по функциональности, наиболее продвинутый из всех Hangfire. Это действительно очень продвинутый фреймворк для фоновых задач в ASP.NET. Опционально он может использовать Redis, SQL Server, SQL Azure, MSMQ или RabbitMQ для повышения надежности выполнения задач.

Документация Hangfire действительно превосходна. Хотелось бы, чтобы каждый проект с открытым исходным кодом имел такую документацию.

Одной из самых эффектных функций Hangfire является встроенная аналитическая панель, которая позволяет просматривать расписания, выполняющиеся задания, успешные и неуспешно завершенные задания.

Hangfire позволяет легко определить задачи типа «запустить и забыть», информация о которых будет храниться в базе данных:

BackgroundJob.Enqueue(() => Console.WriteLine("Fire-and-forget"));
Можно отсрочить выполнение задачи:

BackgroundJob.Schedule(() => Console.WriteLine("Delayed"), TimeSpan.FromDays(1));
Или запустить задачу в CRON стиле

RecurringJob.AddOrUpdate(() => Console.Write("Recurring"), Cron.Daily);
Работать с Hangfire очень удобно. Hangfire имеет хорошую документацию и обучающие руководства , основанные на реальных примерах.

Hangfire - это целая экосистема для работы с фоновыми задачами в ASP.NET приложениях.

Библиотеки доступны в виде открытых исходных кодов или Nuget пакетов.

Итоги (лично от себя)

Выбирая библиотеку для себя, я, с одной стороны, хочу иметь приличную функциональность, а с другой, пока не хочу использовать, например, базу данных для хранения информации о запущенных задачах. Поэтому простые решения типа WebBackgrounder или QueueBackgroundWorkItem я даже не стал рассматривать.

Я уже знаю, что мне нужно запускать больше одного процесса, и работать процессы могут долго (ограничение в 90 секунд на завершение в QueueBackgroundWorkItem). FluentScheduler выглядит неплохо, но хотелось большего. Hangfire – отличное решение, но, вроде, сразу требует использования базы данных для хранения очереди задач. Да и не совсем там все бесплатно – есть и платная версия.

В итоге я пока выбрал Quartz.NET: вполне приличная документация, достаточное количество примеров, чтобы быстро начать использовать, а также расширяемый функционал, который можно добавлять по мере возрастания потребностей.

Если вы знаете другие библиотеки для запуска фоновых задач или имеете опыт решения подобных задач – делитесь в комментариях.