Последовательности способы их задания. Способы задания числовых последовательностей. Практические задания для аудиторной работы

Урок № 32 АЛГЕБРА

Учитель математики, первой категории Гаун Ольга Викторовна. Восточно-Казахстанская область Глубоковский район КГУ «Черемшанская средняя школа»

Тема: Числовая последовательность и способы ее задания

Основные цели и задачи урока

Образовательная: разъяснить учащимся смысл понятий «последовательность», «n-ый член последовательности»; познакомить со способами задания последовательности.

Развивающа я: развитие навыков логического мышления; развитие вычислительных навыков; развитие культуры устной речи, развитие коммуникативности и сотрудничества. Воспитательная : воспитание наблюдательности, привитие любви и интереса к предмету.

Ожидаемые результаты освоения темы

В ходе урока приобретут новые знания о числовых последовательностях и способах ее задания. Научатся находить верное решение, составлять алгоритм решения и пользоваться им при решении заданий. Путем исследования обнаружат их некоторые свойства. Вся работа сопровождается слайдами. Применение ИКТ даст возможность провести урок оживленно, выполнить большой объем работы, со стороны ребят будет искренний интерес и эмоциональное восприятие. Одарённые ученики выступят с сообщением о числах Фибоначчи и о золотом сечении. Универсальные учебные действия, на формирование которых направлен образовательный процесс: умение работать в паре, развивать логическое мышление, умение анализировать, исследовать, делать выводы, отстаивать свою точку зрения. Обучить навыкам общения и сотрудничества. Использование данных технологий способствует развитию у обучающихся универсальных способов деятельности, опыта творческой деятельности, компетентности, коммуникабельности.

Ключевые идеи урока

Новые подходы в преподавании и обучении

Диалоговое обучение

Обучение тому, как обучаться

Обучение критическому мышлению

Обучение талантливых и одарённых детей

Тип урока

Изучение новой темы

Методы обучения

Наглядный (презентация), словесный (беседа, объяснение, диалог), практический.

Формы организации учебной деятельности уч-ся

фронтальная; парная; индивидуальная.

ХОД УРОКА

    Организационный момент

(Приветствие учащихся, определение отсутствующих, проверка готовности учащихся к уроку, организация внимания).

    Мотивация урока.

«Числа управляют миром»,- говорили древнегреческие ученые. «Все есть число». Согласно их философскому мировоззрению, числа управляют не только мерой и весом, но также явлениями, происходящими в природе, и являются сущностью гармонии, царствующей в мире. Сегодня на уроке мы продолжим работать с числами.

    Введение в тему, изучение нового материала.

Давайте проверим ваши логические способности. Я называю несколько слов, а вы должны продолжить:

понедельник, вторник,…..

январь, февраль, март…;

Алиев, Гордеева, Грибачева… (список класса);

10,11,12,…99;

Вывод: Это последовательности, то есть некоторый упорядоченный ряд чисел или понятий, когда каждое число или понятие стоит строго на своем месте. Итак, тема урока – последовательность.

Сегодня мы будем говорить о видах и составляющих числовых последовательностей, а также о способах их задания. Последовательности будем обозначать так: (аn), (bn), (сn) и т.д.

А сейчас я предлагаю вам первое задание: перед вами некоторые числовые последовательности и словестное описание этих последовательностей. Вам необходимо найти закономерность каждого ряда и соотнести с описанием. (показать с помощью стрелки) (Взаимопроверка)

Рассмотренные нами ряды и есть примеры числовых последовательностей .

Элементы, образующие последовательность, называются членами последовательности и называются соответственно первым, вторым, третьим,… n - ным членами последовательности. Обозначают члены последовательности так а 1 ; а 2 ; а 3 ; а 4 ; … а n ; где n – номер , под которым данное число находится в последовательности.
На экране записаны последовательности:
(
На перечисленных последовательностях отрабатываются форма записи члена последовательности a n , и понятия предыдущего и последующего членов ) .
3; 6; 9; 12; 15; 18;…
5, 3, 1, -1.
1, 4, 9, 16 ,…
–1; 2; –3; 4; –5; 6; …
3; 3; 3; 3; …; 3; … .

Назовите а 1 для каждой последовательности, а 3 и т.д. А смогли бы вы продолжить каждый из этих рядов? Что для этого необходимо знать?

Давайте разберем с вами еще такие понятия как последующий и предыдущий .

(например, для а 5…, а для а n ?) - запись на слайде a n +1, a n -1

Виды последовательностей
(
на перечисленных выше последовательностях отрабатывается навык определять виды последовательностей )
1) Возрастающая – если каждый член меньше следующего за ним, т.е.
a n < a n +1.
2) Убывающая – если каждый член больше следующего за ним, т.е.
a n > a n +1 .
3) Бесконечная
4) Конечная
5) Знакочередующаяся
6) Постоянная (стационарная)

Попробуйте дать определение каждому виду и охарактеризуйте каждую из предложенных последовательностей.

Задания для устной работы

    Назовите в последовательности 1; 1/2; 1/3; 1/4; 1/5; … 1/n; 1/(n+1) члены а 1 ; а 4 ; а 10 ; а n ;

    Является ли последовательность четырёхзначных чисел конечной? (да)

    Назовите её первый и последний члены. (Ответ: 1000; 9999)

    Является ли последовательностью запись чисел 2; 4; 7; 1; -21; -15; …? (нет, так как нельзя по первым шести членам обнаружить какую-нибудь закономерность)

Физпауза (тоже связана с темой сегодняшнего урока: звездное небо, планеты солнечной системы…в чем связь?)

Способы задания последовательностей
1) словесный – задание последовательности описанием;
2) аналитический – формулой
n -го члена;
3) графический – с помощью графика;
4) рекуррентный – любой член последовательности, начиная с некоторого, выражается через предыдущие
Сегодня на уроке мы разберем первых два способа. Итак,
словестный способ. Может быть кто-нибудь из вас попробует задать какую-либо последовательность?

(Например: Составьте последовательность нечетных натуральных чисел . Охарактеризуйте эту последовательность: возрастающая, бесконечная)
Аналитический способ: с помощью формулы n-ого члена последовательности.

Формула общего члена позволяет вычислить член последовательности с любым заданным номером. Например, если х n =3n+2, то

х 1 =3*1+2=5;

х 2 =3*2+2=8

х 5 =3 . 5+2=17;

х 45 =3 . 45+2=137 и т.д. Так каково преимущество аналитического способа перед словестным ?

А я вам предлагаю следующее задание: даны формулы задания некоторых последовательностей и сами последовательности, образованных по этим формулам. В этих последовательностях пропущены некоторые члены. Ваша задача, работая в парах , заполнить пропуски.

Самопроверка (на слайде появляется правильный ответ)

Представление творческого проекта «Числа Фибоначчи» (опережающее задание )

Сегодня мы познакомимся со знаменитой последовательностью:

1, 1, 2, 3, 5, 8, 13, 21, …, (Слайд) Каждое число, начиная с третьего, равно сумме двух предшествующих. Этому ряду натуральных чисел, имеющему своё историческое название – ряд Фибоначчи, присуща своя логика и красота. Леонардо Фибоначчи (1180-1240). Крупный итальянский математик, автор «Книги абака». Эта книга несколько веков оставалась основным хранилищем сведений по арифметике и алгебре. Именно по трудам Л. Фибоначчи вся Европа осваивала арабские цифры, систему счета, а также практическую геометрию. Они оставались настольными учебниками, чуть ли не до эпохи Декарта (а это уже 17 век!).

Просмотр видеофильма.

Наверное, вы не совсем поняли какова связь между спиралью и рядом Фибоначчи. Поэтому я покажу, как она получается .

Если мы построим рядом два квадрата со стороной 1,затем набольшей стороне равной 2 другой, затем на большей стороне, равной 3 еще квадрат так до бесконечности…Потом в каждом квадрате, начиная с меньшего, построим четверть дуги, то получим спираль, о которой идет речь в фильме.

На самом деле практическое применение знаний, полученных на этом уроке в реальной жизни достаточно велико. Перед вами несколько задач из разных научных областей.

(Индивидуальная работа)

Задача 1.

16, 15, 18, … (17, 20, 19)

1, 2, 2, 4, 8, … (32, 256, 8192)

33, 31, 32, … (30, 31, 29)

Задача 2.

(Ответы учащихся записываются на доске: 500, 530, 560, 590, 620).

Задача 3.

Задача 4. Ежедневно каждый болеющий гриппом человек может заразить 4 окружающих. Через сколько дней заболеют все ученики нашей школы (300 человек)? (Через 4 дня).

Задача 5 . Сколько появится бактерий куриной холеры за 10 часов, если одна бактерия делится пополам каждый час?
Задача 6 . Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 мин. Сколько дней следует принимать воздушные ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1ч 45 мин? ( 10)

Задача 7 . При свободном падении тело проходит в первую секунду 4,8 м, а в каждую следующую на 9,8 м больше. Найдите глубину шахты, если свободно падающее тело достигло ее дна через 5 с после начала падения.

Задача 8 . Гражданина К. осталось завещание. Он в первый месяц истратил 1000$, а каждый последующий месяц истратил на 500$ больше. Сколько денег было завещано гражданину К., если их хватит на 1 год безбедной жизни? (45000)

Быстро и без ошибок решать такие задачи нам позволит изучение следующих тем этой главы «Прогрессии».

Домашнее задание: стр.66 №151, 156, 157

Творческое задание: сообщение о треугольнике Паскаля

Подведение итого. Рефлексия. (оценка «приращения» знаний и достижения целей)

    Какова была цель сегодняшнего урока?

    Цель достигнута?

    Продолжи высказывание

Я не знал….

Теперь я знаю…

Задачи на практическое применение свойств последовательностей (прогрессий)

Задача 1. Продолжи последовательности чисел:

16, 15, 18, …

1, 2, 2, 4, 8, …

33, 31, 32, …

Задача 2. На складе имеется 500 т угля, каждый день подвозят по 30 т. Сколько угля будет на складе в 1 день? 2 день? 3 день? 4 день? 5 день?

Задача 3. Автомобиль, двигаясь со скоростью 1 м/с за каждую последующую секунду изменял свою скорость на 0,6 м/с. Какую скорость он будет иметь спустя 10 секунд?

Задача 4 . Ежедневно каждый болеющий гриппом человек может заразить 4 окружающих. Через сколько дней заболеют все ученики нашей школы (300 человек)?

Задача 5. Сколько появится бактерий куриной холеры за 10 часов, если одна бактерия делится пополам каждый час?

Задача 6. Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 мин. Сколько дней следует принимать воздушные ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1ч 45 мин?

Задача 7. При свободном падении тело проходит в первую секунду 4,8 м, а в каждую следующую на 9,8 м больше. Найдите глубину шахты, если свободно падающее тело достигло ее дна через 5 с после начала падения.

Задача 8. Гражданина К. осталось завещание. Он в первый месяц истратил 1000$, а каждый последующий месяц истратил на 500$ больше. Сколько денег было завещано гражданину К., если их хватит на 1 год безбедной жизни?

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ 127. Числовые последовательности и способы их задания. Конечныеи бесконечные последовательности.

Рассмотрим следующие три совокупности чисел:

Естественно считать, что каждое число в любой из этих совокупностей снабжено номером в соответствии с тем местом, которое оно занимает в этой совокупности. Например, во второй совокупности число 1 имеет номер 1, число - 1 / 2 номер 2, число 1 / 3 номер 3 и т. д.

Наоборот, какой бы номер мы ни указали, в каждой из этих совокупностей найдется число, снабженное этим номером. Например, номер 2 в первой последовательности имеет число 2, во второй - число - 1 / 2 , в третьей - число sin 2. Аналогично номер 10 имеют: в первой последовательности - число 10, во второй - число - 1 / 10 , в третьей - число sin 10 и т. д. Таким образом, в приведенных выше совокупностях каждое число имеет вполне определенный номер и полностью определяется этим номером.

Совокупность чисел, каждое из которых снабжено своим номером п (п = 1, 2, 3, ...), называется числовой последовательностью.

Отдельные числа последовательности называются ее членами и обозначаются обычно так: первый член a 1 , второй a 2 , .... п -й член a n и т. д. Вся числовая последовательность обозначается

a 1 , a 2 , a 3 , ... , a n , ... или {a n }.

Задать числовую последовательность - это знанит указать, как отыскивается тот или иной ее член, если известен номер занимаемого им места. Существует много различных способов задания числовых последовательностей. Ниже мы остановимся на некоторых из них.

1. Обычно числовая последовательность задается с помощью формулы, позволяющей по номеру члена последовательности определить этот член. Например, если известно, что при любом п

a n = n 2 ,

a 1 = 1, a 2 = 4, a 3 = 9

и т. д. При a n = sin π / 2 п мы получим: a 1 = sin π / 2 = 1, a 2 = sin π = 0, a 3 = sin 3 π / 2 = - 1, a 4 = sin 2π = 0 и т. д.

Формула, позволяющая найти любой член числовой последовательности по его номеру, называется формулой общего члена числовой последовательности.

2. Бывают случаи, когда последовательность задается посредством описания ее членов. Например, говорят, что последовательность

1,4; 1,41; 1,414; 1,4142; ...

составлена из приближенных значений √2 с недостатком с точностью до 0,1; 0,01; 0,001; 0,0001 и т. д. В подобных случаях иногда вообще нельзя установить формулу общего члена; тем не менее последовательность оказывается полностью определенной.

3. Иногда указывается несколько первых членов последовательности, а все остальные члены определяются этими заданными членами по тому или иному правилу. Пусть, например,

a 1 = 1, a 2 = 1,

а каждый последующий член определяется как сумма двух предыдущих. Другими словами, при любом п > 3

a n = a n - 1 + a n - 2

Так определяется числовая последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, .... члены которой носят название «чисел Фибоначчи» [по имени итальянского математика Леонарда Пизанского (около 1170-1250), которого называли также Фибоначчи, что означает «сын Боначчо»].Они обладают многими интересными свойствами, рассмотрение которых, однако, выходит за пределы нашей программы.

Последовательность может содержать как конечное, так и бесконечное число членов.

Последовательность, состоящая из конечного числа членов, называется конечной, а последовательность, состоящая из бесконечного числа членов, - бесконечной последовательностью.

Например, последовательность всех четных положительных чисел 2, 4, 6, 8, 10, 12, ... бесконечна, а последовательность однозначных четных положительных чисел 2, 4, 6, 8 конечна.

Упражнения

932. Написать 4 первых числа последовательности с общим членом:

933. Найти формулу общего члена для каждой из данных последовательностей:

а) 1, 3, 5, 7, 9, ... ; . д) tg 45°, tg 22°30", tg 11°15", ... ;

б) 2, 4, 6, 8, 10, ... ; е) 1, - 1 / 2 , 1 / 4 , - 1 / 8 , 1 / 16 , ... ;

в) 3, -3, 3, -3, 3, ... ; ж) 1, 9, 25, 49, 81.....

г) 1 / 3 , 1 / 9 , 1 / 27 , 1 / 81 , ....;

934. Является ли конечной последовательность всех положительных корней уравнения:

а) sin х = х - 1; б) tg х = х ; в) sin х = ах + b ?

Практическая работа № 13

Задание числовых последовательностей различными способами, вычисление членов последовательности. Нахождение пределов последовательностей и функций

Цель: научиться записывать числовые последовательности различными способами, описывать их свойства; находить пределы последовательностей и функций.

Краткая теория

Функция у=f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Существуют следующие способы задания числовой последовательности:

    Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

    Аналитический способ. Последовательность задается формулой n-го члена: у n =f(n). По этой формуле можно найти любой член последовательности.

    Рекуррентный способ. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Числовую последовательность называют возрастающей , если ее члены возрастают (у n+1 у n) и убывающей, если ее члены убывают (у n+1 n).

Возрастающая или убывающая числовые последовательности называются монотонными .

Пусть – точка прямой, а – положительное число. Интервал называется окрестностью точки , а число − радиусом окрестности.

Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу b при увеличении порядкового номера n . В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Число b называют пределом последовательности (у n), если в любой заранее выбранной окрестности точки b содержат все члены последовательности, начиная с некоторого номера

Теорема 1 Если , , то:

    Предел суммы/разности двух последовательностей равен сумме/разности пределов от каждой из них, если последние существуют:

    Предел произведения двух последовательностей равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух последовательностей равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

Для любого натурального показателя m и любого коэффициента k справедливо соотношение:

Теорема 1 Если , , то:

    Предел суммы/разности двух функций равен сумме/разности пределов от каждой из них, если последние существуют:

;

    Предел произведения двух функций равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух функций равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

    Постоянный множитель можно вынести за знак предела:

Функцию у=f(x) называют непрерывной в точке x=a, если предел функции у=f(x) при стремлении x к a равен значению функции в точке х=а.

Первый замечательный предел: .

Практические задания для аудиторной работы

    Задайте последовательность аналитически и найдите пять первых членов этой последовательности:

а) каждому натуральному числу ставится в соответствие противоположное ему число;

б) каждому натуральному числу ставится в соответствие квадратный корень из этого числа;

в) каждому натуральному числу ставится в соответствие число -5;

г) каждому натуральному числу ставится в соответствие половина его квадрата.

2. По заданной формуле n-го члена вычислите пять первых членов последовательности (y n):

3. Является ли последовательность ограниченной?

4. Является ли последовательность убывающей или возрастающей?

5. Запишите окрестность точки a=-3 радиуса r=0,5 в виде интервала.

6. Окрестностью какой точки и какого радиуса является интервал (2,1;2,3).

7. Вычислите предел последовательности:

8. Вычислите:

Самостоятельная работа

Вариант 1

Часть А

Часть В

Часть С

7. Вычислите:

Вариант 2

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 3

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 4

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Контрольные вопросы

    Что называют числовой последовательностью?

    Какими способами можно задавать числовую последовательность?

    Какая последовательность называется ограниченной сверху?

    Какая последовательность называется ограниченной снизу?

    Какая последовательность называется возрастающей?

    Какая последовательность называется убывающей?

    Что называют пределом числовой последовательности?

    Перечислите правила вычисления пределов последовательностей.

    Перечислите правила вычисления пределов функций.

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Урок № 32 Дата ____________

Алгебра

Класс: 9 «Б»

Тема: « Числовая последовательность и способы её задания».

Цель урока: учащиеся должны знать, что такое числовая последовательность; способы задания числовой последовательности; уметь различать различные способы задания числовых последовательностей.

Дидактические материалы: раздаточный материал, опорные конспекты.

Технические средства обучения: презентация по теме «Числовые последовательности».

Ход урока.

1.Организационный момент.

2.Постановка целей урока.

Сегодня на уроке вы, ребята, узнаете:

    Что такое последовательность?

    Какие виды последовательностей существуют?

    Как задаётся числовая последовательность?

    Научитесь записывать последовательность с помощью формулы и множества ее элементов.

    Научитесь находить члены последовательности.

3.Работа над изучаемым материалом.

3.1. Подготовительный этап.

Ребята, давайте проверим ваши логические способности. Я называю несколько слов, а вы должны продолжить:

–понедельник, вторник,…..

– январь, февраль, март…;

– Глебова Л, Гановичев Е, Дряхлов В, Ибраева Г,…..(список класса);

–10,11,12,…99;

Из ответов ребят делается вывод, что вышеназванные задания – это последовательности, то есть какой-то упорядоченный ряд чисел или понятий, когда каждое число или понятие стоит строго на своем месте, и, если поменять местами члены, то последовательность нарушится (вторник, четверг, понедельник – это просто перечисление дней недели). Итак, тема урока – числовая последовательность.

3.1. Объяснение нового материала. (Демонстрационный материал)

Анализируя ответы учащихся, дать определение числовой последовательности и показать способы задания числовых последовательностей.

(Работа с учебником с. 66 – 67)

Определение 1. Функцию y = f(x), xN называют функцией натурального аргумента или числовой последовательностью и обозначают: y = f(n) или y 1 , y 2 , y 3 , ..., y n , ... или (y n).

В данном случае независимая переменная – натуральное число.

Чаще всего последовательности будем обозначать так: (а n ), (b n ), (с n ) и т.д.

Определение 2. Члены последовательности .

Элементы, образующие последовательность, называются членами последовательности.

Новые понятия: предыдущий и последующий член последовательности,

а 1 …а п. (1-ый и п-ый член последовательности)

Способы задания числовой последовательности.

    Аналитический способ.

Любой n-й элемент последовательности можно определить с помощью формулы.(демонстрационный материал)

Разобрать примеры

Пример 1. Последовательность чётных чисел: y = 2n.

Пример 2. Последовательность квадрата натуральных чисел: y = n 2 ;

1, 4, 9, 16, 25, ..., n 2 , ... .

Пример 3. Стационарная последовательность: y = C;

C, C, C, ...,C, ... .

Частный случай: y = 5; 5, 5, 5, ..., 5, ... .

Пример 4 . Последовательность y = 2 n ;

2, 2 2 , 2 3 , 2 4 , ..., 2 n , ... .

    Словесный способ.

Правила задания последовательности описываются словами, без указания формул или когда закономерности между элементами последовательности нет.

Пример 1. Приближения числа π.

Пример 2. Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .... .

Пример 3. Последовательность чисел делящихся на 5.

Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .

Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ... .

    Рекуррентный способ.

Рекуррентный способ заключается в том, что указывается правило, позволяющее вычислить n-й член последовательности, если указаны ее несколько первых членов (как минимум один первый член) и формула, позволяющая по предыдущим членам вычислить ее следующий член. Термин рекуррентный произошло от латинского слова recurrere , что означает возвращаться . При вычислении членов последовательности по этому правилу мы как бы все время возвращаемся назад, вычисляя следующий член на основе предыдущего. Особенностью этого способа является то, что для определения, например, 100-го члена последовательности необходимо сначала определить все предыдущие 99 членов.

Пример 1 . a 1 =a, a n+1 =a n +0,7. Пусть a 1 =5, тогда последовательность будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .

Пример 2. b 1 = b, b n +1 = ½ b n . Пусть b 1 =23, тогда последовательность будет иметь вид: 23; 11,5; 5,75; 2,875; ... .

Пример 3. Последовательность Фибоначчи. Эта последовательность легко задаётся рекуррентно: y 1 =1, y 2 =1,y n -2 +y n -1 , если n=3, 4, 5, 6, ... . Она будет иметь вид:

1, 1,2, 3, 5, 8, 13, 21, 34, 55, ... . (п -ый член этой последовательности равен сумме двух предыдущих членов)

Аналитически последовательность Фибоначчи задать трудно, но возможно. Формула, по которой определяется любой элемент этой последовательности, выглядит так:

Дополнительная информация:

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был значительным математиком средневековья. С помощью данной последовательности Фибоначчи определил число φ (фи); φ=1,618033989.

    Графический способ

Члены последовательности можно изображать точками на координатной плоскости. Для этого по горизонтальной оси откладывают номер, а по вертикальной – значение соответствующего члена последовательности.

Для закрепления способов задания прошу привести несколько примеров последовательностей, которые задаются или словесным, или аналитическим, или рекуррентным способом.

Виды числовых последовательностей

( На перечисленных ниже последовательностях отрабатываются виды последовательностей ).

Работа с учебником стр.69-70

1) Возрастающая – если каждый член меньше следующего за ним, т.е. a n a n +1.

2) Убывающая – если каждый член больше следующего за ним, т.е. a n a n +1 .

3) Бесконечная.

4) Конечная.

5) Знакочередующаяся.

6) Постоянная (стационарная).

Возрастающую или убывающую последовательность называют монотонными.

    3; 6; 9; 12; 15; 18;…

  1. –1; 2; –3; 4; –5; …

    1, 4, 9, 16 ,…

    –1; 2; –3; 4; –5; 6; …

    3; 3; 3; 3; …; 3; … .

Работа с учебником: выполним устно №150, 159 стр.71, 72

3.2. Закрепление нового материала. Решение задач.

Для закрепления знаний выбираются примеры в зависимости от уровня подготовки учащихся.

Пример 1. Составить возможную формулу n-го элемента последовательности (y n):

а) 1, 3, 5, 7, 9, 11, ...;

б) 4, 8, 12, 16, 20, ...;

Решение.

а) Это последовательность нечётных чисел. Аналитически эту последовательность можно задать формулой y = 2n+1.

б) Это числовая последовательность, у которой последующий элемент больше предыдущего на 4. Аналитически эту последовательность можно задать формулой y = 4n.

Пример 2 . Выписать первые десять элементов последовательности, заданной рекуррентно: y 1 =1, y 2 =2, y n = y n -2 +y n -1 , если n = 3, 4, 5, 6, ... .

Решение.

Каждый последующий элемент этой последовательности равен сумме двух предыдущих элементов.

Пример 3. Последовательность (y n) задана рекуррентно: y 1 =1, y 2 =2,y n =5y n -1 - 6y n -2 . Задать эту последовательность аналитически.

Решение.

Найдём несколько первых элементов последовательности.

y 3 =5y 2 -6y 1 =10-6=4;

y 4 =5y 3 -6y 2 =20-12=8;

y 5 =5y 4 -6y 3 =40-24=16;

y 6 =5y 5 -6y 4 =80-48=32;

y 7 =5y 6 -6y 5 =160-96=64.

Получаем последовательность: 1; 2; 4; 8; 16; 32; 64; ..., которую можно представить в виде

2 0 ; 2 1 ; 2 2 ; 2 3 ; 2 4 ; 2 5 ; 2 6 ... .

n = 1; 2; 3; 4; 5; 6; 7... .

Анализируя последовательность, получаем следующую закономерность: y = 2 n -1 .

Пример 4. Дана последовательность y n =24n+36-5n 2 .

а) Сколько в ней положительных членов?

б) Найти наибольший элемент последовательности.

в) Есть в данной последовательности наименьший элемент?

Данная числовая последовательность – это функция вида y = -5x 2 +24x+36, где x

а) Найдём значения функции, при которых -5x 2 +24x+360. Решим уравнение -5x 2 +24x+36=0.

D = b 2 -4ac=1296, X 1 =6, X 2 =-1,2.

Уравнение оси симметрии параболы y = -5x 2 +24x+36 можно найти по формуле x=, получим: x=2,4.

Неравенство -5x 2 +24x+360 выполняется при -1,2 В этом интервале находится пять натуральных чисел (1, 2, 3, 4, 5). Значит в заданной последовательности пять положительных элементов последовательности.

б) Наибольший элемент последовательности определяется методом подбора и он равен y 2 =64.

в) Наименьшего элемента нет.

3.4.Задания для самостоятельной работы