Процессы биологического самоочищения природных вод. Самоочищение природных вод. Виды загрязнений и их стоки

К негативным природным факторам относится наличие крутых склонов и подтопленных участков, неустойчивых к дополнительной техногенной нагрузке. Негативными техногенными факторами следует считать высокую захламленность территории на отдельных участках, влияние загрязненных и недостаточно очищенных стоков жилых кварталов, производственных зон и предприятий, влияющих на качество водных объектов. Следовательно, состояние водоемов не соответствует требованиям, предъявляемым к объектам культурно-бытового назначения. Кроме того, сверхнормативное загрязнение атмосферного воздуха вдоль магистралей характерно практически для всей территории.

II. Водные объекты, являясь природными и природно-техногенными элементами ландшафтно-геохимических систем, в большинстве случаев являются конечным звеном в стоковой аккумуляции большей части подвижных техногенных веществ. В ландшафтно-геохимических системах вещества с более высоких уровней к более низким гипсометрическим уровням переносятся с поверхностным и подземным стоками, а обратно (от низких к более высоким уровням) - атмосферными потоками и только в некоторых случаях потоками живого вещества (например, при массовом вылете из водоемов насекомых после завершения личиночной стадии развития, проходящей в воде, и др.).

Элементы ландшафта, представляющие начальные, наиболее высокорасположенные звенья (занимающие, например, местные водораздельные поверхности), геохимических автономны и поступление в них загрязняющих веществ ограничено, за исключением поступления их из атмосферы. Элементы ландшафта, образующие более низкие ступени геохимической системы (расположенные на склонах и в понижениях рельефа), представляют собой геохимически подчиненные или гетерономные элементы которые наряду с поступлениями загрязняющих веществ из атмосферы получают часть загрязняющих веществ, поступающие с поверхностными и грунтовыми водами из более высокорасположенных звеньев ландшафтно-геохимического каскада. В связи с этим образующиеся на водосборе загрязняющие вещества за счет миграции в природной среде рано или поздно попадают в водные объекты преимущественно с поверхностным и грунтовым стоками, постепенно накапливаясь в них.


5 Основные процессы самоочищения воды в водном объекте

Самоочищение воды водоемов – это совокупность взаимосвязанных гидродинамических, физико-химических, микробиологических и гидробиологических процессов, ведущих к восстановлению первоначального состояния водного объекта.

Среди физических факторов первостепенное значение имеет разбавление, растворение и перемешивание поступающих загрязнений. Хорошее перемешивание и снижение концентраций взвешенных частиц обеспечивается быстрым течением рек. Способствует самоочищению водоемов оседание на дно нерастворимых осадков, а также отстаивание загрязненных вод. В зонах с умеренным климатом река самоочищается через 200-300 км от места загрязнения, а на Крайнем Севере – через 2 тыс. км.

Обеззараживание воды происходит под влиянием ультрафиолетового излучения солнца. Эффект обеззараживания достигается прямым губительным воздействием ультрафиолетовых лучей на белковые коллоиды и ферменты протоплазмы микробных клеток, а также споровые организмы и вирусы.

Из химических факторов самоочищения водоемов следует отметить окисление органических и неорганических веществ. Часто дают оценку самоочищения водоема по отношению к легко окисляемому органическому веществу или по общему содержанию органических веществ.

Санитарный режим водоема характеризуется прежде всего количеством растворенного в нем кислорода. Его должно бить не менее 4 мг на 1 л воды в любой период года для водоемов для водоемов первого и второго видов. К первому виду относят водоемы, используемые для питьевого водоснабжения предприятий, ко второму – используемые для купания, спортивных мероприятий, а также находящихся в черте населенных пунктов.

К биологическим факторам самоочищения водоема относятся водоросли, плесневые и дрожжевые грибки. Однако фитопланктон не всегда положительно воздействует на процессы самоочищения: в отдельных случаях массовое развитее сине-зеленых водорослей в искусственных водоемах можно рассматривать как процесс самозагрязнения.

Самоочищению водоемов от бактерий и вирусов могут способствовать и представители животного мира. Так, устрица и некоторые другие амебы адсорбируют кишечные и другие вирусы. Каждый моллюск отфильтровывает в сутки более 30 л воды.

Чистота водоемов немыслима без охраны их растительности. Только на основе глубокого знания экологии каждого водоема, эффективного контроля за развитием населяющих его различных живых организмов можно достичь положительных результатов, обеспечить прозрачность и высокую биологическую продуктивность рек, озер и водохранилищ.

Неблагоприятно на процессы самоочищения водоемов влияют и другие факторы. Химическое загрязнение водоемов промышленными стоками, биогенными элементами (азотом, фосфором и др.) тормозит естественные окислительные процессы, убивает микроорганизмы. То же относится и к спуску термальных сточных вод тепловыми электростанциями.

Многостадийный процесс, иногда растягивающийся на длительное время – самоочищение от нефти. В природных условиях комплекс физических процессов самоочищения воды от нефти состоит из ряда составляющих: испарения; оседания комочков, особенно перегруженных наносами и пылью; слипание комочков, взвешенных в толще воды; всплывания комочков, образующих пленку с включениями воды и воздуха; снижения концентраций взвешенной и растворенной нефти вследствие оседания, всплывания и смешивания с чистой водой. Интенсивность этих процессов зависит от свойств конкретного вида нефти (плотность, вязкость, коэффициент теплового расширения), наличия в воде коллоидов, взвешенных и влекомых частиц планктона и т.д., температура воздуха и от солнечного освещения.


6 Мероприятия по интенсификации процессов самоочищения водного объекта

Самоочищение воды – это непременное звено в цикле круговорота воды в природе. Загрязнения любых типов при самоочищении водных объектов в конечном счете оказываются сконцентрированными в виде продуктов жизнедеятельности и отмерших тел микроорганизмов, растений и питающихся ими животных, которые скапливаются в иловой массе на дне. Водные объекты, в которых природная среда уже не справляется с поступающими загрязняющими веществами, деградирует, и это происходит главным образом из-за изменений в составе биоты и нарушений пищевых цепочек, прежде всего микробного населения водного объекта. Процессы самоочищения в таких водных объектах минимальны или полностью прекращаются.

Приостановить подобные изменения можно только целенаправленным воздействием на факторы, способствующие уменьшению образования объемов отходов, снижению эмиссии загрязнения.

Поставленную задачу можно решить только путем выполнения системы организационных мероприятий и инженерно-мелиоративных работ, направленных на восстановление природной среды водных объектов.

При восстановлении водных объектов выполнение системы организационных мероприятий и инженерно-мелиоративных работ желательно начинать с обустройства водосбора, а затем проводить очистку водного объекта с последующим обустройством прибрежных и пойменных территорий.

Основная задача выполняемых природоохранных мероприятий и инженерно-мелиоративных работ на водосборе – уменьшение образования отходов и недопущение несанкционированного сброса загрязняющих веществ на рельеф водосбора, для чего осуществляют следующие мероприятия: внедрение системы нормирования образования отходов; организация экологического контроля в системе обращения с отходами производства и потребления; проведение инвентаризации объектов и мест размещения отходов производства и потребления; рекультивация нарушенных земель и их обустройство; ужесточение платы за несанкционированный сброс загрязняющих веществ на рельеф местности; внедрение малоотходных и безотходных технологий и систем оборотного водоснабжения.

Природоохранные мероприятия и работы, выполняемые на прибрежных и пойменных территориях, включают работы по выравниванию поверхности, выполаживанию или террасированию склонов; возведение гидротехнических и рекреационных сооружений, крепление берегов и воссоздание устойчивого травяного покрова и древесно-кустарниковой растительности, препятствующих впоследствии эрозионным процессам. Работы по озеленению выполняют для восстановления природного комплекса водного объекта и перевода большей части поверхностного стока в подземный горизонт с целью его очистки, используя горные породы прибрежной зоны и пойменных земель в качестве гидрохимического барьера.

Берега многих водных объектов замусорены, а воды загрязнены химическими веществами, тяжелыми металлами, нефтепродуктами плавающим мусором, а часть из них эвтрофированы и заилены. Стабилизировать или активизировать процессы самоочищения в подобных водных объектах без специального инженерно-мелиоративного вмешательства невозможно.

Цель выполнении инженерно-мелиоративных мероприятий и природоохранных работ – создание в водных объектах условий, обеспечивающих эффективное функционирование различных очищающих воду сооружений, и выполнения работ по ликвидации или уменьшению негативного воздействия источников распространения загрязняющих веществ как внеруслового, так и руслового происхождения.

Экологическое состояние водных объектов в значительной степени связано с процессами самоочищения - естественного резерва восстановления первоначальных свойств и состава вод.
Основные процессы самоочищения приводят к:

  • превращению (трансформации) загрязняющих веществ в безвредные или менее вредные вещества в результате химического и особенно биохимического окисления;
  • относительному очищению - переходу загрязняющих веществ из водной толщи в донные отложения, что в дальнейшем может служить источником вторичного загрязнения воды;
  • удалению загрязняющих веществ за пределы водного объекта в результате испарения, выделения газов из водной толщи или ветрового выноса пены.

Наибольшую роль в процессе самоочищения вод играет трансформация загрязняющих веществ. Она охватывает неконсервативные загрязняющие вещества, концентрация которых изменяется в результате химических, биохимических и физических процессов в водных объектах. К неконсервативным относятся, в основном, органические и биогенные вещества. Интенсивность окисления трансформируемого загрязняющего вещества зависит, прежде всего, от свойств этого вещества, температуры воды, условий поступления кислорода в водный объект.

Температурные условия могут оцениваться по средней температуре воды за три летних месяца, которая в достаточной мере отражает условия за весь теплый период (температура воды на реках России в зимние месяцы остается практически одинаковой, близкой к 0°С). По этому показателю реки и водоемы разделены на три группы: с температурой ниже 15°С, от 15 до 20°С и выше 20° С.

Условия поступления кислорода определяются, в основном, интенсивностью перемешивания воды и продолжительностью , которая имеет довольно тесную корреляцию с летней .

Интенсивность перемешивания воды в реках оценивается приближенно, в зависимости от характера рельефа местности, по которой они протекают, а для озер и водохранилищ - коэффициентом мелководности g, зависящим от площади водной поверхности и средней глубины водоема. По этим критериям оценки реки и водоемы разделены на 4 группы: с сильным, значительным, умеренным и слабым перемешиванием. По сочетанию условий температуры и перемешивания выделяются 4 категории условий трансформации загрязняющих веществ в поверхностных водах: благоприятные, средние, неблагоприятные и крайне неблагоприятные. Оценка самоочищения вод по этим показателям неприемлема ни к наиболее крупным трансзональным рекам (Волга, Енисей, Лена и др.), ни к малым рекам (с площадью бассейна менее 500 – 1000 км2), так как температура воды в них и условия перемешивания сильно отличаются от фоновых значений.

Важную роль в самоочищении вод играет, также, физический процесс разбавления содержания загрязняющих веществ, концентрация которых в речной воде уменьшается с увеличением расхода воды в реке. Роль разбавления заключается не только в уменьшении концентрации загрязняющих веществ, но и в снижении вероятности отравления (токсикоза) водных организмов, ответственных за биохимическое разложение загрязняющих веществ. Показателем условий разбавления загрязняющих веществ служит для реки ее средний годовой расход воды, а для водоема - суммарный расход воды впадающих в него притоков. По этому показателю все реки и водоемы разделены на 6 групп (с расходом воды от менее 100 до более 10 000 м3/с). По сочетанию двух важнейших условий – трансформации загрязняющих веществ и расхода воды – можно приблизительно оценить условия самоочищения поверхностных вод от загрязняющих веществ и объединить их в 5 категорий: от «наиболее благоприятных» до «крайне неблагоприятных». Условия самоочищения с учетом разбавления для трансзональных рек рассчитывались индивидуально по отдельным участкам каждой реки. Верховья средних и крупных рек, характеризующиеся слабой разбавляющей способностью, отнесены к категории рек с «крайне неблагоприятными» условиями самоочищения.
Существуют определенные пространственные закономерности условий трансформации загрязняющих веществ в поверхностных водах России. Так, водные объекты с «крайне неблагоприятными» условиями расположены на низменных тундровых и лесотундровых территориях. К этой же группе принадлежат все глубоководные озера (Ладожское, Онежское, Байкал и др.) и водохранилища с особенно замедленным водообменом. А территории с «благоприятными» условиями трансформации приурочены к Среднерусской и Приволжской возвышенностям, предгорьям Северного Кавказа.

С учетом разбавления загрязнений большинство средних и почти все малые реки России характеризуются «крайне неблагоприятными» условиями самоочищения. «Наиболее благоприятными» условиями самоочищения характеризуются участки рек Обь, Енисей, Лена и Амур, попадающие в самую высокую категорию водоносности (более 10 000 м3/с) при температуре воды в среднем интервале (15–20°С), а также нижнее течение Волги с температурой выше 20°С. Эту же категорию условий имеют водохранилища: Волгоградское, Цимлянское, Нижнекамское.

Анализ территориального различия в условиях самоочищения рек и водоемов дает возможность приблизительно оценить степень опасности их загрязнения от поступления загрязняющих веществ. Это, в свою очередь, может служить основанием для установления уровня ограничений по сбросу сточных вод в городах и выработки рекомендаций по размерам уменьшения рассредоточенного поступления загрязняющих веществ в поверхностные воды.

О загрязнение и о дефиците питьевой воды на планете написано достаточно. В одной из самых богатых водными ресурсами стран, России, только один процент исходной воды поверхностных источников питьевого водоснабжения соответствует нормативам качества. В Карелии, стране рек и озер, где обеспеченность водными ресурсами превосходит среднероссийские показатели в 2-3 раза, - около 70% проб воды, поступающей в разводящие сети населенных пунктов, не отвечают гигиеническим требованиям, предъявляемым к питьевой воде. Во многом это объясняется интенсивной техногенной и агропромышленной деятельностью, направленной, прежде всего на удовлетворение сиюминутных потребностей человечества и недостаточным вниманием к сбережению водных ресурсов для последующих поколений. Но не только, «благодаря» этому природная вода, которая жизненно необходима человечеству находится в состоянии, близком к критическому.

Природная вода получается загрязнения из самых различных сфер. Источники загрязнения водных объектов чрезвычайно многообразны. Прежде всего, это стоки городов и промышленных предприятий. Наиболее водоемкие отрасли промышленности – это горнодобывающая, сталелитейная, химическая, нефтехимическая, целлюлозно-бумажная и пищевая. На них уходит до 70 % всей воды, затрачиваемой в промышленности. Также огромное количество воды для охлаждения используют тепловые и атомные электростанции, сбрасываемая вода приводит к тепловому загрязнению водоемов, что нарушает термический, гидрохимический и гидробиологический режимы водных объектов.

В последние годы в ряде районов с ними "конкурируют" стоки животноводческих комплексов и воды, поступающие с ирригационных массивов и богарных земель. На нужды сельского хозяйства уходит 60-80% всей пресной воды. Во многих регионах мира загрязнение вод все больше связывается с атмосферными осадками. Определенную роль в ухудшении качества воды играет изменение режима рек и озер.

В связи с огромной проблемой загрязнения природных вод существуют разные методы и способы очистки воды. Но несмотря на это одним из наиболее ценных свойств природных вод является их способность к самоочищению.

Самоочищение вод - это восстановление их природных свойств в реках, озерах и других водных объектах, происходящее естественным путем в результате протекания взаимосвязанных физико-химических, биохимических и других процессов (турбулентная диффузия, окисление, сорбция, адсорбция и т.д.). Способность рек и озер к самоочищению находится в тесной зависимости от многих природных факторов. К числу таких факторов следует отнести: биологические - сложные процессы взаимодействия водных растительных организмов с составными частями поступающих стоков; гидрологические - разбавление и смешивание попавших загрязнений с основной массой воды; физические - влияние солнечной радиации и температуры; механические - осаждение взвешенных частиц; химические - превращение органических веществ в минеральные (т. е. минерализация).

При поступлении сточных вод в водоем происходят смешивание стоков с водой водоема и снижение концентрации загрязнений. Полная смена воды в реках занимает в среднем 16 сут., болотах – 5сут., озерах - 17 лет. Разница во времени связана с разными сроками полного водообмена в разных водотоках и водоемах.

Наиболее интенсивно самоочищение воды в водоемах и водотоках осуществляется в теплый период года, когда биологическая активность в водных экосистемах наибольшая. Быстрее самоочищение протекает на реках с быстрым течением. Большая часть взвешенных загрязнений осаждается, это взвешенные минеральные и органические частицы, яйца гельминтов и микроорганизмы, благодаря этому, вода осветляется и становится прозрачной.

Уменьшение концентрации загрязняющих водные объекты неорганических веществ происходит путем нейтрализации кислот и щелочей за счет естественной буферности природных вод, образования труднорастворимых соединений, гидролиза, сорбции и осаждения. Концентрация органических веществ и их токсичность снижаются вследствие химического и биохимического окисления.

Одним из важных процессов самоочищения воды является минерализация органических веществ, т. е. образование минеральных веществ из органических под воздействием биологических, химических и других факторов. При минерализации в воде снижается количество органических веществ, наряду с этим может окисляться и органическое вещество микробов, а следовательно, часть бактерий гибнет.

В процессе самоочищения происходит отмирание сапрофитов и патогенных микроорганизмов. Они погибают в результате обеднения воды питательными веществами; бактерицидного действия ультрафиолетовых лучей солнца, которые проникают в толщу воды более чем на 1 м; влияния бактериофагов и антибиотических веществ, выделяемых сапрофитами; неблагоприятных температурных условий; антагонистического воздействия водных организмов и других факторов. Существенную роль в процессах самоочищения воды играют так называемые сапрофитная микрофлора и водные организмы. Некоторые представители микрофлоры водоемов обладают антагонистическими свойствами к патогенным микроорганизмам, что приводит к гибели последних. Простейшие водные организмы, а также зоопланктон (рачки, коловратки и др.), пропуская воду через свой кишечник, уничтожают огромное количество бактерий. Бактериофаги, попавшие в водоем, также оказывают воздействие на болезнетворные организмы.

Самоочищение подземных вод происходит благодаря фильтрации через почву и за счет процессов минерализации.

Необходимо помнить, что способность водоемов к самоочищению ограничена. Замедлить процессы самоочищения воды и ухудшить ее органолептические свойства могут соединения свинца, меди, цинка, ртути, которые могут попасть в водоемы со стоками, оказывая токсическое действие на организм животных.

Большое значение имеет распространение водной растительности (густые заросли тростника, камыша и рогоза вдоль берегов), которая выполняет в них роль своеобразного биофильтра. Высокую очищающую способность водных растений широко используют на многих промышленных предприятиях, как в нашей стране, так и за рубежом. Для этого создают разнообразные искусственные отстойники, в которых сажают озерную и болотную растительность, хорошо очищающую загрязненные воды.

В последние годы получила распространение искусственная аэрация - один из эффективных способов очищения загрязненных вод, когда процесс самоочищения резко сокращается при дефиците растворенного в воде кислорода. Хорошая аэрация воды обеспечивает активизацию окислительных, биологических и других процессов, способствуя очищению воды. Для этого специальные аэраторы устанавливают в водоемах и водотоках или на станциях аэрации перед сбросом загрязненных вод.

Список литературы

1. Авакян А.Б., Широков В.М. Комплексное использование и охрана водных ресурсов: Учеб. пособие. - Мн.: Ун-кое, 1999 г.;

2. Бернард Небел "Наука об окружающей среде" (В 2-ух томах), "МИР" М. 1993г.;

3. Беличенко Ю.П., Швецов М.Н. Рациональное использование и охрана водных ресурсов. - М.: Россельхозиздат, 2006г

Самоочищение воды водоемов - это совокупность взаимосвязанных гидродинамических, физико-химических, микробиологических и гидробиологических процессов, ведущих к восстановлению первоначального состояния водного объекта.

Среди физических факторов первостепенное значение имеет разбавление, растворение и перемешивание поступающих загрязнений. Хорошее перемешивание и снижение концентраций взвешенных частиц обеспечивается быстрым течением рек. Способствует самоочищению водоемов оседание на дно нерастворимых осадков, а также отстаивание загрязненных вод. В зонах с умеренным климатом река самоочищается через 200-300 км от места загрязнения, а на Крайнем Севере - через 2 тыс. км.

Обеззараживание воды происходит под влиянием ультрафиолетового излучения солнца. Эффект обеззараживания достигается прямым губительным воздействием ультрафиолетовых лучей на белковые коллоиды и ферменты протоплазмы микробных клеток, а также споровые организмы и вирусы.

Из химических факторов самоочищения водоемов следует отметить окисление органических и неорганических веществ. Часто дают оценку самоочищения водоема по отношению к легко окисляемому органическому веществу или по общему содержанию органических веществ.

Санитарный режим водоема характеризуется прежде всего количеством растворенного в нем кислорода. Его должно бить не менее 4 мг на 1 л воды в любой период года для водоемов для водоемов первого и второго видов. К первому виду относят водоемы, используемые для питьевого водоснабжения предприятий, ко второму - используемые для купания, спортивных мероприятий, а также находящихся в черте населенных пунктов.

К биологическим факторам самоочищения водоема относятся водоросли, плесневые и дрожжевые грибки. Однако фитопланктон не всегда положительно воздействует на процессы самоочищения: в отдельных случаях массовое развитее сине-зеленых водорослей в искусственных водоемах можно рассматривать как процесс самозагрязнения.

Самоочищению водоемов от бактерий и вирусов могут способствовать и представители животного мира. Так, устрица и некоторые другие амебы адсорбируют кишечные и другие вирусы. Каждый моллюск отфильтровывает в сутки более 30 л воды.

Чистота водоемов немыслима без охраны их растительности. Только на основе глубокого знания экологии каждого водоема, эффективного контроля за развитием населяющих его различных живых организмов можно достичь положительных результатов, обеспечить прозрачность и высокую биологическую продуктивность рек, озер и водохранилищ.

Неблагоприятно на процессы самоочищения водоемов влияют и другие факторы. Химическое загрязнение водоемов промышленными стоками, биогенными элементами (азотом, фосфором и др.) тормозит естественные окислительные процессы, убивает микроорганизмы. То же относится и к спуску термальных сточных вод тепловыми электростанциями.

Многостадийный процесс, иногда растягивающийся на длительное время - самоочищение от нефти. В природных условиях комплекс физических процессов самоочищения воды от нефти состоит из ряда составляющих: испарения; оседания комочков, особенно перегруженных наносами и пылью; слипание комочков, взвешенных в толще воды; всплывания комочков, образующих пленку с включениями воды и воздуха; снижения концентраций взвешенной и растворенной нефти вследствие оседания, всплывания и смешивания с чистой водой. Интенсивность этих процессов зависит от свойств конкретного вида нефти (плотность, вязкость, коэффициент теплового расширения), наличия в воде коллоидов, взвешенных и влекомых частиц планктона и т.д., температура воздуха и от солнечного освещения.

Самоочищение водных объектов

Между компонентами водной экосистемы в процессе ее функционирования непрерывно происходит обмен веществом и энергией. Этот обмен носит циклический характер различной степени замкнутости, сопровождаясь трансформацией органического вещества, в частности фенолов под воздействием физических, химических и биологических факторов. В ходе трансформации может происходить постепенное разложение сложных органических веществ до простых, а простые вещества могут синтезироваться в сложные. В зависимости от интенсивности внешнего воздействия на водную экосистему и характера протекания процессов происходит либо восстановление водной экосистемы до фоновых состояний (самоочищение), либо водная экосистема переходит к другому устойчивому состоянию, которое будет характеризоваться уже иными количественными и качественными показателями биотических и абиотических компонент. В случае если внешнее воздействие превысит саморегулирующие возможности водной экосистемы, может произойти ее разрушение.

Самоочищение природных вод осуществляется благодаря вовлечению поступающих из внешних источников веществ в непрерывно происходящие процессы трансформации, в результате которых поступившие вещества возвращаются в свой резервный фонд.

Трансформация веществ есть результат различных одновременно действующих процессов, среди которых можно выделить физические, химические и биологические механизмы. Величина вклада каждого из механизмов зависит от свойств примеси и особенностей конкретной экосистемы.

Биохимическое самоочищение.

Биохимическое самоочищение является следствием трансформации веществ, осуществляемой гидробионтами. Как правило, биохимические механизмы вносят основной вклад в процесс самоочищения и только при угнетении водных организмов (например, под действием токсикантов) более существенную роль начинают играть физико-химические процессы. Биохимическая трансформация органических веществ происходит в результате их включения в трофические сети и осуществляется в ходе процессов продукции и деструкции.

Особенно важную роль играет первичная продукция, так как она определяет большинство внутриводоемных процессов. Основным механизмом новообразования органического вещества является фотосинтез. В большинстве водных экосистем ключевым первичным продуцентом является фитопланктон. В процессе фотосинтеза энергия Солнца непосредственно трансформируется в биомассу. Побочным продуктом этой реакции является свободный кислород, образованный за счет фотолиза воды. Наряду с фотосинтезом в растениях идут процессы дыхания с затратой кислорода.

Химические механизмы самоочищения.

Фотолиз -- превращение молекул вещества под действием поглощаемого ими света. Частными случаями фотолиза являются фотохимическая диссоциация -- распад частиц на несколько более простых и фотоионизация -- превращение молекул в ионы. Из общего количества солнечной радиации порядка 1% используется в фотосинтезе, от 5% до 30% отражается водной поверхностью. Основная же часть солнечной энергии преобразуется в тепло и участвует в фотохимических реакциях. Наиболее действенной частью солнечного света является ультрафиолетовое излучение. Ультрафиолетовое излучение поглощается в слое воде толщиной порядка 10 см, однако благодаря турбулентному перемешиванию может проникать и в более глубокие слои водных объектов. Количество вещества, подвергшегося действию фотолиза, зависит от вида вещества и его концентрации в воде. Из веществ, поступающих в водные объекты, относительно быстрому фотохимическому разложению поддаются гумусные вещества.

Гидролиз -- реакция ионного обмена между различными веществами и водой. Гидролиз является одним из ведущих факторов химического превращения органических веществ в водных объектах. Количественной характеристикой этого процесса является степень гидролиза, под которой понимают отношение гидролизированной части молекул к общей концентрации соли. Для большинства солей она составляет несколько процентов и повышается с увеличением разбавления и температуры воды. Гидролизу подвержены и органические вещества. При этом гидролитическое расщепление чаще всего происходит по связи атома углерода с другими атомами.

Одним из эффективных путей самоочищения является трансформация загрязнителя за счет окислительно-восстановительных реакций при взаимодействии с редокс-компанентами водной среды.

Возможность протекания Red-Ox превращений в системе характеризуется величиной ее окислительно-восстановительного потенциала (E h). На величину E h природных вод влияют свободный O 2 , H 2 O 2, Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , H + , органические соединения и другие "потенциалзадающие компоненты". В природных водах E h обычно колеблется от +0,7 до -0,5В. Поверхностные и грунтовые воды, насыщенные кислородом, чаще всего характеризуются интервалом E h от +0,150 до +0,700В. Исследования показывают, что в процессах самоочищения природных водоёмов от фенолов большую роль играют редокс - превращения с участием H 2 O 2 естественного происхождения и присутствующих в водоемах ионов металлов переменной валентности. В природной воде стационарная концентрация H 2 O 2 находится в пределах 10 -6 - 10 -4 моль/л . Перекись водорода образуется за счет фотохимических и окислительных процессов с участием молекулярного кислорода в гомогенной среде. Поскольку распад H 2 O 2 , главным образом, определяют каталитические количества ионов металлов и солнечный свет, его скорость почти не зависит от исходной концентрации.

Физические механизмы самоочищения.

Газообмен на границе раздела "атмосфера-вода". Благодаря этому процессу осуществляется поступление в водный объект веществ, имеющих резервный фонд в атмосфере, и возврат этих веществ из водного объекта в резервный фонд. Одним из важных частных случаев газообмена является процесс атмосферной реаэрации, благодаря которому происходит поступление в водный объект значительной части кислорода. Интенсивность и направление газообмена определяются отклонением концентрации газа в воде от концентрации насыщения С. Величина концентрации насыщения зависит от природы вещества и физических условий в водном объекте -- температуры и давления. При концентрациях, больших С, газ улетучивается в атмосферу, а при концентрациях, меньших C s , газ поглощается водной массой.

Сорбция -- поглощение примесей взвешенными веществами, донными отложениями и поверхностями тел гидробионтов. Наиболее энергично сорбируются коллоидные частицы и органические вещества, например фенолы, находящиеся в недиссоциированном молекулярном состоянии. В основе процесса лежит явление адсорбции. Скорость накопления вещества в единице массы сорбента пропорциональна его ненасыщенности по данному веществу и концентрации вещества в воде и обратно пропорциональна содержанию вещества в сорбенте.

Осаждение и взмучивание. Водные объекты всегда содержат некоторое количество взвешенных веществ неорганического и органического происхождения. Осаждение характеризуется способностью взвешенных частиц выпадать на дно под действием силы тяжести. Процесс перехода частиц из донных отложений во взвешенное состояние называется взмучиванием. Он происходит под действием вертикальной составляющей скорости турбулентного потока .

Таким образом, сорбционные и окислительно-восстановительные процессы играют важную роль в самоочистке природных водоёмов .