Тела и поверхности вращения. Поверхности и тела вращения

Определение 3. Тело вращения – это тело, полученное вращением плоской фигуры вокруг оси, не пересекающей фигуру и лежащей с ней в одной плоскости.

Ось вращения может и пересекать фигуру, если это ось симметрии фигуры.

Теорема 2.
, осью
и отрезками прямых
и

вращается вокруг оси
. Тогда объём получающегося тела вращения можно вычислить по формуле

(2)

Доказательство. Для такого тела сечение с абсциссой – это круг радиуса
, значит
и формула (1) даёт требуемый результат.

Если фигура ограничена графиками двух непрерывных функций
и
, и отрезками прямых
и
, причём
и
, то при вращении вокруг оси абсцисс получим тело, объём которого

Пример 3. Вычислить объём тора, полученного вращением круга, ограниченного окружностью

вокруг оси абсцисс.

Решение. Указанный круг снизу ограничен графиком функции
, а сверху –
. Разность квадратов этих функций:

Искомый объём

(графиком подынтегральной функции является верхняя полуокружность, поэтому написанный выше интеграл – это площадь полукруга).

Пример 4. Параболический сегмент с основанием
, и высотой, вращается вокруг основания. Вычислить объём получающегося тела («лимон» Кавальери).

Решение. Параболу расположим как показано на рисунке. Тогда её уравнение
, причем
. Найдём значение параметра:
. Итак, искомый объём:

Теорема 3. Пусть криволинейная трапеция, ограниченная графиком непрерывной неотрицательной функции
, осью
и отрезками прямых
и
, причём
, вращается вокруг оси
. Тогда объём получающегося тела вращения может быть найден по формуле

(3)

Идея доказательства. Разбиваем отрезок
точками

, на части и проводим прямые
. Вся трапеция разложится на полоски, которые можно считать приближенно прямоугольниками с основанием
и высотой
.

Получающийся при вращении такого прямоугольника цилиндр разрежем по образующей и развернём. Получим «почти» параллелепипед с размерами:
,
и
. Его объём
. Итак, для объёма тела вращения будем иметь приближенноё равенство

Для получения точного равенства надо перейти к пределу при
. Написанная выше сумма есть интегральная сумма для функции
, следовательно, в пределе получим интеграл из формулы (3). Теорема доказана.

Замечание 1. В теоремах 2 и 3 условие
можно опустить: формула (2) вообще нечувствительна к знаку
, а в формуле (3) достаточно
заменить на
.

Пример 5. Параболический сегмент (основание
, высота) вращается вокруг высоты. Найти объём получающегося тела.

Решение. Расположим параболу как показано на рисунке. И хотя ось вращения пересекает фигуру, она – ось – является осью симметрии. Поэтому надо рассматривать лишь правую половину сегмента. Уравнение параболы
, причем
, значит
. Имеем для объёма:

Замечание 2. Если криволинейная граница криволинейной трапеции задана параметрическими уравнениями
,
,
и
,
то можно использовать формулы (2) и (3) с заменойна
и
на
при измененииt от
до.

Пример 6. Фигура ограничена первой аркой циклоиды
,
,
, и осью абсцисс. Найти объём тела, полученного вращением этой фигуры вокруг: 1) оси
; 2) оси
.

Решение. 1) Общая формула
В нашем случае:

2) Общая формула
Для нашей фигуры:

Предлагаем студентам самостоятельно провести все вычисления.

Замечание 3. Пусть криволинейный сектор, ограниченный непре-рывной линией
и лучами
,

, вращается вокруг полярной оси. Объём получающегося тела можно вычислить по формуле.

Пример 7. Часть фигуры, ограниченной кардиоидой
, лежащая вне окружности
, вращается вокруг полярной оси. Найти объём тела, которое при этом получается.

Решение. Обе линии, а значит и фигура, которую они ограничивают, симметричны относительно полярной оси. Поэтому необходимо рассматривать лишь ту часть, для которой
. Кривые пересекаются при
и

при
. Далее, фигуру можно рассматривать как разность двух секторов, а значит и объём вычислять как разность двух интегралов. Имеем:

Задачи для самостоятельного решения.

1. Круговой сегмент, основание которого
, высота , вращается вокруг основания. Найти объём тела вращения.

2. Найти объём параболоида вращения, основание которого , а высота равна.

3. Фигура, ограниченная астроидой
,
вращает-ся вокруг оси абсцисс. Найти объём тела, которое получается при этом.

4. Фигура, ограниченная линиями
и
вращается вокруг оси абсцисс. Найти объём тела вращения.

Примеры тел вращения

  • Шар - образован полукругом, вращающимся вокруг диаметра разреза
  • Цилиндр - образован прямоугольником, вращающимся вокруг одной из сторон

За площадь боковой поверхности цилиндра принимается площадь его развертки: Sбок = 2πrh.

  • Конус - образован прямоугольным треугольником, вращающимся вокруг одного из катетов

За площадь боковой поверхности конуса принимается площадь ее развертки: Sбок = πrl Площадь полной поверхности конуса: Sкон = πr(l+ r)

При вращении контуров фигур возникает поверхность вращения (например, сфера , образованная окружностью), в то время как при вращении заполненных контуров возникают тела (как шар, образованный кругом).

Объём и площадь поверхности тел вращения

  • Первая теорема Гульдина-Паппа гласит:
  • Вторая теорема Гульдина-Паппа гласит:

Литература

А.В. Погорелов. «Геометрия. 10-11 класс» §21.Тела вращения. - 2011

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Тела вращения" в других словарях:

    деталь с закрытым уступом – тела вращения - Часть детали, поверхность которой ограничена с обеих сторон поверхностями вращения, имеющими больший диаметр. Наличие закрытых уступов не влияет на определение ступенчатости наружной поверхности. Проточки для выхода инструмента не считается… …

    оболочка, имеющая форму тела вращения - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN shell of revolution … Справочник технического переводчика

    тонкого тела теория Энциклопедия «Авиация»

    тонкого тела теория - Обтекание тонкого тела при отличном от нуля угле атаки. тонкого тела теория — теория пространственного безвихревого течения идеальной жидкости около тонких тел [тела, у которых поперечный размер l (толщина, размах) мал по сравнению с… … Энциклопедия «Авиация»

    Теория пространственного безвихревого течения идеальной жидкости около тонких тел (тела, у которых поперечный размер l (толщина, размах) мал по сравнению с продольным размером L: (τ) = l/LЭнциклопедия техники

    Угловая скорость (синяя стрелка) в одну единицу по часовой стрелке Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки Уг … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Движение тела в поле тяготения Земли с нач. скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), к рая зависит от скорости v движения. На… … Физическая энциклопедия

    Прямая, неподвижная относительно вращающегося вокруг неё твердого тела. Для твердого тела, имеющего неподвижную точку (например, для детского волчка), прямая, проходящая через эту точку, поворотом вокруг которой тело перемещается из данного… … Энциклопедический словарь

    Движение тела в поле тяготения Земли с начальной скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), которая зависит от скорости… … Большая советская энциклопедия

Книги

  • Комплект таблиц. Математика. Многогранники. Тела вращения. 11 таблиц + 64 карточки + методика , . Учебный альбом из 11 листов (формат 68 х 98 см): - Параллельное проектирование. - Изображение плоских фигур. - Поэтапное иллюстрирование доказательства теорем. - Взаимноерасположение прямых и…
  • Интегрирование уравнений равновесия упругого тела вращения при симметричном относительно его оси распределении объемных и поверхностных сил , Г.Д. Гродский. Воспроизведено в оригинальной авторской орфографии издания 1934 года (издательство`Известия академии наук СССР`). В…

Поверхности вращения и ограничиваемые ими тела имеют широкое применение во многих областях техники: баллон электронно-лучевой трубки (рис. 8.11, а), центр токарного станка (рис. 8.11, б), объемный сверхвысокочастотный резонатор электромагнитных колебаний (рис. 8.11, в), сосуд Дьюара для хранения жидкого воздуха (рис. 8.11, г), коллектор электронов мощного электронно-лучевого прибора (рис. 8.11, д) и т.д.

В зависимости от вида образующей поверхности вращения могут быть линейчатыми, нелинейчатыми или состоять из частей таких поверхностей.

Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии вокруг неподвижной прямой- оси поверхности.


На чертежах ось изображают штрихпунктирной линией. Образующая линия может в общем случае иметь как криволинейные, так и прямолинейные участки. Поверхность вращения на чертеже можно задать образующей и положением оси. На рисунке 8.12 изображена поверхность вращения, которая образована вращением образующей AьCD (ее фронтальная проекция a"b"c"d") вокруг оси OO 1 (фронтальная проекция о"o 1 " , перпендикулярной плоскости Н. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно линия пересечения поверхности вращения любой плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями. На виде сверху (рис. 8.12) показаны проекции окружностей, описываемых точками А, В, С и D, проходящие через проекции а, b, с, d. Наибольшую параллель из двух соседних с нею параллелей по обе стороны от нее называют экватором, аналогично наименьшую - горлом.

Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Если ось поверхности параллельна плоскости проекций, то меридиан, лежащий в плоскости, параллельной этой плоскости проекций, называют главным меридианом. На эту плоскость проекций главный меридиан проецируется без искажений. Так, если ось поверхности вращения параллельна плоскости V, то главный меридиан проецируется на плоскость V без искажений, например проекция a"f"b"c"d". Если ось поверхности вращения перпендикулярна к плоскости Н, то горизонтальная проекция поверхности имеет очерк в виде окружности.

Наиболее удобными для выполнения изображений поверхностей вращения являются случаи, когда их оси перпендикулярны к плоскости Н, к плоскости V или к плоскости W.

Некоторые поверхности вращения являются частными случаями поверхностей, рассмотренных в 8.1, например цилиндр вращения, конус вращения. Для цилиндра и конуса вращения меридианами являются прямые линии. Они параллельны оси и равноудалены от нее для цилиндра или пересекают ось в одной и той же ее точке под одним и тем же углом к оси для конуса. Цилиндр и конус вращения - поверхности, бесконечные в направлении их образующих; поэтому на изображениях их ограничивают какими-либо линиями, например линиями пересечения этих поверхностей с плоскостями проекций или какими-либо из параллелей. Из стереометрии известно, что прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпендикулярными к оси поверхности. Меридиан такого цилиндра - прямоугольник, конуса - треугольник.

Такая поверхность вращения, как сфера, является ограниченной и может быть изображена на чертеже полностью. Экватор и меридианы сферы - равные между собой окружности. При ортогональном проецировании на все три плоскости проекций очертания сферы проецируются в окружность.

Тор. При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность с названием тор. На рисунке 8.13 приведены: открытый тор, или круговое кольцо, - рисунок 8.13, а, закрытый тор - рисунок 8.13, б, самопересекающийся тор - рисунок 8.13, в, г. Тор (рис. 8.13, г) называют также лимоновидным. На рисунке 8.13 они изображены в положении, когда ось тора перпендикулярна к плоскости проекций Н. В открытый и закрытый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибающую одинаковые сферы, центры которых находятся на окружности.

В построениях на чертежах широко используют две системы круговых сечений тора: в плоскостях, перпендикулярных к его оси, и в плоскостях, проходящих через ось тора. При этом в плоско-

стях, перпендикулярных к оси тора, в свою очередь имеются два семейства окружностей - линий пересечения плоскостей с наружной поверхностью тора и линий пересечения плоскостей с внутренней поверхностью тора. У лимоновидного тора (рис. 8.13, г) имеется только первое семейство окружностей.

Кроме того, тор имеет еще и третью систему круговых сечений, которые лежат в плоскостях, проходящих через центр тора и касательных к его внутренней поверхности. На рисунке 8.14 показаны круговые сечения с центрами о 1р и о 2р на дополнительной плоскости проекций Р, образованные фронтально-проецирующей плоскостью Q (Q v), проходящей через центр тора с проекциями о" о и касательной к внутренней поверхности тора в точках с проекциями 1" , 1, 2" 2. Проекции точек 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10 облегчают чтение чертежа. Диаметр d этих круговых сечений равен длине больших осей эллипсов, в которые проецируются круговые сечения на горизонтальной плоскости проекций: d = 2R.

Точки на поверхности вращения. Положение точки на поверхности вращения определяют по принадлежности точки линии каркаса поверхности, т. е. с помощью окружности, проходящей через эту точку на поверхности вращения. В случае линейчатых поверхностей для этой цели возможно применение и прямолинейных образующих.

Применение параллели и прямолинейной образующей для построения проекций точек, принадлежащих данной поверхности вращения, показано на рисунке 8.12. Если

дана проекция т", то проводят фронтальную проекцию f"f1" параллели, а затем радиусом R проводят окружность - горизонтальную проекцию параллели - и на ней находят проекцию т. Если бы была задана горизонтальная проекция т, то следовало бы провести радиусом R=om окружность, по точке f построить f" и провести f"f1" - фронтальную проекцию параллели - и на ней в проекционной связи отметить точку т". Если дана проекция п" на линейчатом (коническом) участке поверхности вращения, то проводят фронтальную проекцию d"s" очерковой образующей и через проекцию n" - фронтальную проекцию s"к" образующей на поверхности конуса. Затем на горизонтальной проекции sk этой образующей строят проекцию n. Если бы была задана горизонтальная проекция n, то следовало бы провести через нее горизонтальную проекцию sk образующей, по проекции к" и s" (построение ее было рассмотрено выше) построить фронтальную проекцию s "к" и на ней в проекционной связи отметить проекцию n"

На рисунке 8.15 показано построение проекций точки К, принадлежащей поверхности тора. Следует отметить, что построение выполнено для видимых горизонтальной проекции к и фронтальной проекции к".

На рисунке 8.16 показано построение по заданной фронтальной проекции т" точки на поверхности сферы ее горизонтальной т и профильной т" проекций. Проекция т построена с помощью окружности - параллели, проходящей через проекцию т". Ее радиус - о-1. Проекция т "" построена с помощью окружности, плоскость которой параллельна профильной плоскости проекций, проходящей через проекцию т". Ее радиус о "2".

Построение проекций линий на поверхности вращения может быть выполнено также при помощи окружностей - параллелей, проходящих через точки, принадлежащие этой линии.

На рисунке 8.17 показано построение горизонтальной проекции aь линии, заданной фронтальной проекцией a"b" на поверхности вращения, состоящей из частей поверхностей сферы, тора, конической. Для более точного вычерчивания горизонтальной проекции линии продолжим ее фронтальную проекцию вверх и вниз и отметим проекции 6" и 5" крайних точек. Горизонтальные проекции 6, 1, 3, 4, 5 построены с помощью линий связи. Проекции b , 2, 7, 8, а построены с помощью параллелей, фронтальные проекции которых проходят через проекции b " 2", 7", 8", а" этих точек. Количество и расположение промежуточных точек выбирают исходя из формы линии и требуемой точности построения. Горизонтальная проекция линии состоит из участков: b -1 - части эллипса,

Цилиндр

Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.

Круги называются основаниями цилиндра, а отрезки, соединяющими цилиндра.

Так как параллельный перенос есть движение, то основания цилиндра равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям основания.

Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Конус

Конусом называется тело, которое состоит из круга – основания конуса, точки, не лежащей в плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.

Отрезки, соединяющие вершину конуса с точьками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой.

Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называется радиусом.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, так же как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Призма называется вписанной в цилиндр, если основание её равные многоугольники, вписанные в основание цилиндра, а боковые рёбра являются образующими цилиндра.


Призма называется описанной около цилиндра, если осно­вание её – это многоугольники описанные около основания цилиндра, а боковые грани касаются цилиндра.

Шаровой или сферической поверхностью называется геометрическое место точек пространст­ва, удаленных от данной точки О (центра) на заданное расстоя­ние R (радиус). Все пространство по отношению к данной ша­ровой поверхности разбивается на внут­реннюю область (куда можно присоеди­нить и точки самой поверхности) и внешнюю. Первая из этих областей назы­вается шаром. Итак, шар - геометрическое место всех точек, удаленных от заданной точки О (центра) на расстоя­ние, не превышающее данной величины R (радиуса). Шаровая поверхность яв­ляется границей, отделяющей шар от ок­ружающего пространства.

Шаровую поверхность и шар можно получить также, вращая окружность (круг) вокруг одного из диаметров.

Рассмотрим окружность с центром О и радиусом R (рис. 1), лежащую в плоско­сти Я. Будем вращать ее вокруг диаметра АВ. Тогда каждая из точек окружности, например М, в свою оче­редь опишет при вращении окружность, имеющую своим центром точку М 0 -проекцию вращающейся точки М на ось враще­ния АВ. Плоскость этой окружности перпендикулярна к оси вращения. Радиус ОМ, ведущий из центра исходной окружности в точку М, будет сохранять свою величину во все время вра­щения, и потому точка М все время будет находиться на сфе­рической поверхности с центром О и радиусом R. Шаровая поверхность может быть получена вращением окружности вокруг любого из ее диаметров.

Сам шар как тело получается вращением круга; ясно, что для получения всего шара достаточно вращать полукруг около ограничивающего его диаметра.