Условия волновой функции. Следствие физического смысла волновой функции. Волновая функция и уравнение Шредингера. Статический смысл волновой функции

Волнова́я фу́нкция , или пси-фу́нкция ψ {\displaystyle \psi } - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

| ψ (t) ⟩ = ∫ Ψ (x , t) | x ⟩ d x {\displaystyle \left|\psi (t)\right\rangle =\int \Psi (x,t)\left|x\right\rangle dx}

где | x ⟩ = | x 1 , x 2 , … , x n ⟩ {\displaystyle \left|x\right\rangle =\left|x_{1},x_{2},\ldots ,x_{n}\right\rangle } - координатный базисный вектор, а Ψ (x , t) = ⟨ x | ψ (t) ⟩ {\displaystyle \Psi (x,t)=\langle x\left|\psi (t)\right\rangle } - волновая функция в координатном представлении.

Нормированность волновой функции

Волновая функция Ψ {\displaystyle \Psi } по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

∫ V Ψ ∗ Ψ d V = 1 {\displaystyle {\int \limits _{V}{\Psi ^{\ast }\Psi }dV}=1}

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями Ψ 1 {\displaystyle \Psi _{1}} и Ψ 2 {\displaystyle \Psi _{2}} , то она может пребывать и в состоянии, описываемом волновой функцией

Ψ Σ = c 1 Ψ 1 + c 2 Ψ 2 {\displaystyle \Psi _{\Sigma }=c_{1}\Psi _{1}+c_{2}\Psi _{2}} при любых комплексных c 1 {\displaystyle c_{1}} и c 2 {\displaystyle c_{2}} .

Очевидно, что можно говорить и о суперпозиции (сложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией Ψ Σ = c 1 Ψ 1 + c 2 Ψ 2 + … + c N Ψ N = ∑ n = 1 N c n Ψ n {\displaystyle \Psi _{\Sigma }=c_{1}\Psi _{1}+c_{2}\Psi _{2}+\ldots +{c}_{N}{\Psi }_{N}=\sum _{n=1}^{N}{c}_{n}{\Psi }_{n}} .

В таком состоянии квадрат модуля коэффициента c n {\displaystyle {c}_{n}} определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией Ψ n {\displaystyle {\Psi }_{n}} .

Поэтому для нормированных волновых функций ∑ n = 1 N | c n | 2 = 1 {\displaystyle \sum _{n=1}^{N}\left|c_{n}\right|^{2}=1} .

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

Волновая функция в различных представлениях используется состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия

Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин. Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия

волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave function … Справочник технического переводчика

волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь

волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas

волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas

ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция, описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь

Книги

  • , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 882 грн (только Украина)
  • Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…

корпускулярно -- волновым дуализмом в квантовой физике состояние частицы описывается при помощи волновой функции ($\psi (\overrightarrow{r},t)$- пси-функция).

Определение 1

Волновая функция -- это функция, которая используется в квантовой механике. Она описывает состояние системы, которая имеет размеры в пространстве. Она является вектором состояния.

Данная функция является комплексной и формально имеет волновые свойства. Движение любой частицы микромира определено вероятностными законами. Распределение вероятности выявляется при проведении большого числа наблюдений (измерений) или большого количества частиц. Полученное распределение аналогично распределению интенсивности волны. То есть в местах с максимальной интенсивностью отмечено максимальное количество частиц.

Набор аргументов волновой функции определяет ее представление. Так, возможно координатное представление: $\psi(\overrightarrow{r},t)$, импульсное представление: $\psi"(\overrightarrow{p},t)$ и т.д.

В квантовой физике целью ставится не точность предсказания события, а оценка вероятности того или иного события. Зная величину вероятности, находят средние значения физических величин. Волновая функция позволяет находить подобные вероятности.

Так вероятность присутствия микрочастицы в объеме dV в момент времени t может быть определена как:

где $\psi^*$- комплексно сопряженная функция к функции $\psi.$ Плотность вероятности (вероятность в единице объёма) равна:

Вероятность является величиной, которую можно наблюдать в эксперименте. В это же время волновая функция не доступна для наблюдения, так как она является комплексной (в классической физике параметры, которые характеризуют состояние частицы, доступны для наблюдения).

Условие нормировки $\psi$- функции

Волновая функция определена с точностью до произвольного постоянного множителя. Данный факт не оказывает влияния на состояние частицы, которую $\psi$- функция описывает. Однако волновую функцию выбирают таким образом, что она удовлетворяет условию нормировки:

где интеграл берут по всему пространству или по области, в которой волновая функция не равна нулю. Условие нормировки (2) значит то, что во всей области, где $\psi\ne 0$ частица достоверно присутствует. Волновую функцию, которая подчинятся условию нормировки, называют нормированной. Если ${\left|\psi\right|}^2=0$, то данное условие означает, что частицы в исследуемой области наверняка нет.

Нормировка вида (2) возможна при дискретном спектре собственных значений.

Условие нормировки может оказаться не осуществимым. Так, если $\psi$ -- функция является плоской волной де-Бройля и вероятность нахождения частицы является одинаковой для всех точек пространства. Данные случаи рассматривают как идеальную модель, в которой частица присутствует в большой, но имеющей ограничения области пространства.

Принцип суперпозиции волновой функции

Данный принцип является одним их основных постулатов квантовой теории. Его смысл в следующем: если для некоторой системы возможны состояния, описываемые волновыми функциями $\psi_1\ {\rm и}\ $ $\psi_2$, то для этой системы существует состояние:

где $C_{1\ }и\ C_2$ -- постоянные коэффициенты. Принцип суперпозиции подтверждается эмпирически.

Можно говорить о сложении любого количества квантовых состояний:

где ${\left|C_n\right|}^2$ -- вероятность того, что система обнаруживается в состоянии, которое описывается волновой функцией $\psi_n.$ Для волновых функций, подчиненных условию нормировки (2) выполняется условие:

Стационарные состояния

В квантовой теории особую роль имеют стационарные состояния (состояния в которых все наблюдаемые физические параметры не изменяются во времени). (Сама волновая функция принципиально не наблюдаема). В стационарном состоянии $\psi$- функция имеет вид:

где $\omega =\frac{E}{\hbar }$, $\psi\left(\overrightarrow{r}\right)$ не зависит от времени, $E$- энергия частицы. При виде (3) волновой функции плотность вероятности ($P$) является постоянной времени:

Из физических свойств стационарных состояний следуют математические требования к волновой функции $\psi\left(\overrightarrow{r}\right)\to \ (\psi(x,y,z))$.

Математические требования к волновой функции для стационарных состояний

$\psi\left(\overrightarrow{r}\right)$- функция должна быть во всех точках:

  • непрерывна,
  • однозначна,
  • конечна.

Если потенциальная энергия имеет поверхность разрыва, то на подобных поверхностях функция $\psi\left(\overrightarrow{r}\right)$ и ее первая производная должны оставаться непрерывными. В области пространства, где потенциальная энергия становится бесконечной, $\psi\left(\overrightarrow{r}\right)$ должна быть равна нулю. Непрерывность функции $\psi\left(\overrightarrow{r}\right)$ требует, чтобы на любой границе этой области $\psi\left(\overrightarrow{r}\right)=0$. Условие непрерывности накладывается на частные производные от волновой функции ($\frac{\partial \psi}{\partial x},\ \frac{\partial \psi}{\partial y},\frac{\partial \psi}{\partial z}$).

Пример 1

Задание: Для некоторой частицы задана волновая функция вида: $\psi=\frac{A}{r}e^{-{r}/{a}}$, где $r$ -- расстояние от частицы до центра силы (рис.1), $a=const$. Примените условие нормировки, найдите нормировочный коэффициент A.

Рисунок 1.

Решение:

Запишем условие нормировки для нашего случая в виде:

\[\int{{\left|\psi\right|}^2dV=\int{\psi\psi^*dV=1\left(1.1\right),}}\]

где $dV=4\pi r^2dr$ (см.рис.1 Из условий понятно, что задача обладает сферической симметрией). Из условий задачи имеем:

\[\psi=\frac{A}{r}e^{-{r}/{a}}\to \psi^*=\frac{A}{r}e^{-{r}/{a}}\left(1.2\right).\]

Подставим $dV$ и волновые функции (1.2) в условие нормировки:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=1\left(1.3\right).}\]

Проведем интегрирование в левой части:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=2\pi A^2a=1\left(1.4\right).}\]

Из формулы (1.4) выразим искомый коэффициент:

Ответ: $A=\sqrt{\frac{1}{2\pi a}}.$

Пример 2

Задание: Каково наиболее вероятное расстояние ($r_B$) электрона от ядра, если волновая функция, которая описывает основное состояние электрона в атоме водорода может быть определена как: $\psi=Ae^{-{r}/{a}}$, где $r$- расстояние от электрона до ядра, $a$ -- первый Боровский радиус?

Решение:

Используем формулу, которая определяет вероятность присутствия микрочастицы в объеме $dV$ в момент времени $t$:

где $dV=4\pi r^2dr.\ $Следователно, имеем:

В таком случае, $p=\frac{dP}{dr}$ запишем как:

Для определения наиболее вероятного расстояния производную $\frac{dp}{dr}$ приравняетм к нулю:

\[{\left.\frac{dp}{dr}\right|}_{r=r_B}=8\pi rA^2e^{-{2r}/{a}}+4\pi r^2A^2e^{-{2r}/{a}}\left(-\frac{2}{a}\right)=8\pi rA^2e^{-{2r}/{a}}\left(1-\frac{r}{a}\right)=0(2.4)\]

Так как решение $8\pi rA^2e^{-{2r_B}/{a}}=0\ \ {\rm при}\ \ r_B\to \infty $, нам не подходит, то отсается:

Для описания корпускулярно-волновых свойств электрона в квантовой механике используют волновую функцию, которая обозначается греческой буквой пси (Т). Главные свойства волновой функции таковы:

  • в любой точке пространства с координатами х, у, z она имеет определенные знак и амплитуду: ЧДд:, у , г);
  • квадрат модуля волновой функции | ЧДх, y,z) | 2 равен вероятности нахождения частицы в единице объема, т.е. плотности вероятности.

Плотность вероятности обнаружения электрона на различных расстояниях от ядра атома изображают несколькими способами. Часто ее характеризуют числом точек в единице объема (рис. 9.1, а). Точечное изображение плотности вероятности напоминает облако. Говоря об электронном облаке, следует иметь в виду, что электрон - это частица, проявляющая одновременно и корпускулярные, и волновые

Рис. 9.1.

свойства. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность его обнаружения велика или даже максимальна.

На рис. 9.1, а штриховой линией обозначена сферическая поверхность, внутри которой вероятность обнаружения электрона составляет 90%. На рис. 9.1, б приведено контурное изображение электронной плотности в атоме водорода. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона 10%, вероятность же обнаружения электрона внутри второго от ядра контура составляет 20%, внутри третьего - 30% и т.д. На рис. 9.1, в электронное облако изображено в виде сферической поверхности, внутри которой вероятность обнаружения электрона составляет 90%.

Наконец, на рис. 9.1, г и б двумя способами показана вероятность обнаружения электрона Is на разных расстояниях г от ядра: вверху показан «разрез» этой вероятности, проходящий через ядро, а внизу - сама функция 4лг 2 |У| 2 .

Уравнение Шрёдингсра. Это фундаментальное уравнение квантовой механики было сформулировано австрийским физиком Э. Шрёдингером в 1926 г. Оно связывает полную энергию частицы Е, равную сумме потенциальной и кинетической энергий, потенциальную энергию?„, массу частицы т и волновую функцию 4*. Для одной частицы, например электрона массой т е, оно имеет следующий вид :

С математической точки зрения это уравнение с тремя неизвестными: У, Е и?„. Решить его, т.е. найти эти неизвестные, можно, если решать его совместно с двумя другими уравнениями (для нахождения трех неизвестных требуется три уравнения). В качестве таких уравнений используют уравнения для потенциальной энергии и граничных условий.

Уравнение потенциальной энергии не содержит волно- вую функцию У. Оно описывает взаимодействие заряженных частиц по закону Кулона. При взаимодействии одного электрона с ядром, имеющим заряд +z, потенциальная энергия равна

где г = У* 2 + у 2 + z 2 .

Это случай так называемого одноэлектронного атома. В более сложных системах, когда заряженных частиц много, уравнение потенциальной энергии состоит из суммы таких же кулоновских членов.

Уравнением граничных условий является выражение

Оно означает, что волновая функция электрона стремится к нулю на больших расстояниях от ядра атома.

Решение уравнения Шрёдингера позволяет найти волновую функцию электрона? = (х, у , z) как функцию координат. Это распределение называется орбиталью.

Орбиталь - это заданная в пространстве волновая функция.

Система уравнений, включающая уравнения Шрёдингера, потенциальной энергии и граничных условий, имеет не одно, а много решений. Каждое из решений одновременно включает 4 х = (х, у , г) и Е , т.е. описывает электронное облако и соответствующую ему полную энергию. Каждое из решений определяется квантовыми числами.

Физический смысл квантовых чисел можно понять, рассмотрев колебания струны, в результате которых образуется стоячая волна (рис. 9.2).

Длина стоячей волны X и длина струны b связаны уравнением

Длина стоячей волны может иметь лишь строго определенные значения, отвечающие числу п, которое принимает только целочисленные неотрицательные значения 1,2,3 и т.д. Как очевидно из рис. 9.2, число максимумов амплитуды колебаний, т.е. форма стоячей волны, однозначно определяется значением п.

Поскольку электронная волна в атоме представляет собой более сложный процесс, чем стоячая волна струны, значения волновой функции электрона определяются не одним, а че-


Рис. 9.2.

тырьмя числами, которые называются квантовыми числами и обозначаются буквами п, /, т и s. Данному набору квантовых чисел п, /, т одновременно отвечают определенная волновая функция Ч"лДл, и полная энергия E„j. Квантовое число т при Е не указывают, так как в отсутствие внешнего поля энергия электрона от т не зависит. Квантовое число s не влияет ни на 4* п хт, ни на E n j.

  • , ~ elxv dlxv 62*p
  • Символы --, --- означают вторые частные производные от fir1 дуг 8z2 Ч"-функции. Это производные от первых производных. Смысл первой производной совпадает с тангенсом угла наклона функции Ч" от аргумента х, уили z на графиках? = j(x), Т =/2(у), Ч" =/:!(z).

Волновая функция
Wave function

Волновая функция (или вектор состояния) – комплексная функция, описывающая состояние квантовомеханической системы. Её знание позволяет получить максимально полные сведения о системе, принципиально достижимые в микромире. Так с её помощью можно рассчитать все измеряемые физические характеристики системы, вероятность пребывания её в определенном месте пространства и эволюцию во времени. Волновая функция может быть найдена в результате решения волнового уравнения Шредингера.
Волновая функция ψ (x, y, z, t) ≡ ψ (x,t) точечной бесструктурной частицы является комплексной функцией координат этой частицы и времени. Простейшим примером такой функции является волновая функция свободной частицы с импульсом и полной энергией Е (плоская волна)

.

Волновая функция системы А частиц содержит координаты всех частиц: ψ ( 1 , 2 ,..., A ,t).
Квадрат модуля волновой функции отдельной частицы | ψ (,t)| 2 = ψ *(,t) ψ (,t) дает вероятность обнаружить частицу в момент времени t в точке пространства, описываемой координатами , а именно, | ψ (,t)| 2 dv ≡ | ψ (x, y, z, t)| 2 dxdydz это вероятность найти частицу в области пространства объемом dv = dxdydz вокруг точки x, y, z. Аналогично, вероятность найти в момент времени t систему А частиц с координатами 1 , 2 ,..., A в элементе объема многомерного пространства дается величиной | ψ ( 1 , 2 ,..., A ,t)| 2 dv 1 dv 2 ...dv A .
Волновая функция полностью определяет все физические характеристики квантовой системы. Так среднее наблюдаемое значение физической величины F у системы дается выражением

,

где - оператор этой величины и интегрирование проводится по всей области многомерного пространства.
В качестве независимых переменных волновой функции вместо координат частиц x, y, z могут быть выбраны их импульсы p x , p y , p z или другие наборы физических величин. Этот выбор зависит от представления (координатного, импульсного или другого).
Волновая функция ψ (,t) частицы не учитывает ее внутренних характеристик и степеней свободы, т. е. описывает ее движение как целого бесструктурного (точечного) объекта по некой траектории (орбите) в пространстве. Этими внутренними характеристиками частицы могут быть её спин, спиральность, изоспин (для сильновзаимодействующих частиц), цвет (для кварков и глюонов) и некоторые другие. Внутренние характеристики частицы задаются специальной волновой функцией её внутреннего состояния φ. При этом полная волновая функция частицы Ψ может быть представлена в виде произведения функции орбитального движения ψ и внутренней функции φ:

поскольку обычно внутренние характеристики частицы и её степени свободы, описывающие орбитальное движение, не зависят друг от друга.
В качестве примера ограничимся случаем, когда единственной внутренней характеристикой, учитываемой функцией , является спин частицы, причем этот спин равен 1/2. Частица с таким спином может пребывать в одном из двух состояний − с проекцией спина на ось z, равной +1/2 (спин вверх), и с проекцией спина на ось z, равной -1/2 (спин вниз). Эту двойственность описывают спиновой функцией взятой в виде двухкомпонентного спинора:

Тогда волновая функция Ψ +1/2 = χ +1/2 ψ будет описывать движение частицы со спином 1/2, направленным вверх, по траектории, определяемой функцией ψ , а волновая функция Ψ -1/2 = χ -1/2 ψ будет описывать движение по той же траектории этой же частицы, но со спином, направленным вниз.
В заключении отметим, что в квантовой механике возможны такие состояния, которые нельзя описать с помощью волновой функции. Такие состояния называют смешанными и их описывают в рамках более сложного подхода, использующего понятие матрицы плотности. Состояния квантовой системы, описываемые волновой функцией, называют чистыми.