273 абсолютный ноль. Что такое абсолютный ноль. Самая низкая температура на Земле

Когда в сводке погоды предсказывают температуру около нуля, на каток идти не стоит: лед будет таять. Температура таяния льда принята за нуль градусов по шкале Цельсия - самой распространенной температурной шкале.
Нам отлично знакомы отрицательные градусы шкалы Цельсия - градусы <ниже нуля>, градусы холода. Наиболее низкая температура на Земле была зарегистрирована в Антарктиде: -88,3°Ц. Вне Земли возможны и еще более низкие температуры: на поверхности Луны в лунную полночь бывает до - 160°Ц.
Но нигде не могут существовать сколь угодно низкие температуры. Предельно низкая температура - абсолютный нуль - по шкале Цельсия соответствует - 273,16°.
От абсолютного нуля берет начало абсолютная температурная шкала, шкала Кельвина. Лед тает при 273,16° Кельвина, а вода кипит при 373,16° К. Таким образом, градус К равен градусу Ц. Но по шкале Кельвина все температуры положительны.
Почему же 0°К - предел холода?
Тепло - хаотическое движение атомов и молекул вещества. Когда вещество охлаждают, у него отнимают тепловую энергию, и при этом беспорядочное движение частиц ослабевает. В конце концов, при сильном охлаждении, тепловая <пляска> частиц почти полностью прекращается. Совсем замерли бы атомы и молекулы при температуре, которая и принята за абсолютный нуль. Согласно принципам квантовой механики, при абсолютном нуле прекратилось бы именно тепловое движение частиц, но сами частицы не замерли бы, так как они не могут находиться в полном покое. Таким образом, при абсолютном нуле частицы все же должны сохранять какое-то движение, которое называют нулевым.

Однако охладить вещество до температуры ниже абсолютного нуля - замысел столь же бессмысленный, как, скажем, намерение <идти медленнее, чем стоять на месте>.

Более того, даже достичь точного абсолютного нуля практически тоже невозможно. К нему можно лишь приблизиться. Потому что никакими способами нельзя отнять у вещества абсолютно всю его тепловую энергию. Некоторая доля тепловой энергии остается при самом глубоком охлаждении.
Как же достигают сверхнизких температур?
Заморозить вещество сложнее, чем нагреть. Это видно хотя бы из сравнения устройства печки и холодильника.
В большинстве бытовых и промышленных холодильников тепло отнимается благодаря испарению особой жидкости - фреона, который циркулирует по металлическим трубкам. Секрет в том, что фреон может пребывать в жидком состоянии лишь при достаточно низкой температуре. В холодильной камере за счет тепла камеры он нагревается и кипит, превращаясь в пар. Но пар сжимается компрессором, сжижается и поступает в испаритель, восполняя убыль испаряющегося фреона. Энергия расходуется на работу компрессора.
В аппаратах глубокого охлаждения носителем холода служит сверххолодная жидкость - жидкий гелий. Бесцветный, легкий (в 8 раз легче воды), он кипит под атмосферным давлением при 4,2°К, а в вакууме - при 0,7°К. Еще более низкую температуру дает легкий изотоп гелия: 0,3°К.
Устроить постоянно действующий гелиевый холодильник довольно сложно. Исследования ведутся просто в ваннах с жидким гелием. А чтобы сжижить этот газ, физики пользуются разными приемами. Например, расширяют предварительно охлажденный и сжатый гелий, выпуская его через тонкое отверстие в вакуумную камеру. При этом температура еще снижается и некоторая часть газа обращается в жидкость. Более эффективно не только расширять охлажденный газ, но и заставить его выполнять работу - двигать поршень.
Полученный жидкий гелий хранят в специальных термосах - сосудах Дьюара. Стоимость этой самой холодной жидкости (единственной не замерзающей у абсолютного нуля) получается довольно высокой. Тем не менее жидкий гелий в наши дни используется все шире, не только в науке, но и в различных технических устройствах.
Самых низких температур удалось добиться иным способом. Оказывается, молекулы некоторых солей, например хромокалиевых квасцов, могут поворачиваться вдоль силовых магнитных линий. Такую соль предварительно охлаждают жидким гелием до 1°К и помещают в сильное магнитное поле. При этом молекулы поворачиваются вдоль силовых линий, а выделившееся тепло отбирается жидким гелием. Затем магнитное поле резко снимают, молекулы вновь поворачиваются в разные стороны, а затраченная

на это работа ведет к дальнейшему охлаждению соли. Так получили температуру 0,001° К. Подобным же в принципе методом, применяя другие вещества, можно получить еще более низкую температуру.
Наинизшая температура, полученная пока на Земле, равна 0,00001° К.

Сверхтекучесть

Вещество, замороженное до сверхнизких температур в ваннах с жидким гелием, заметно изменяется. Резина становится хрупкои, свинец - твердым, как сталь, и упругим, многие сплавы увеличивают прочность.

Своеобразно ведет себя сам жидкий гелий. При температуре ниже 2,2° К он приобретает небывалое для обычных жидкостей свойство - сверхтекучесть: некоторая его часть полностью теряет вязкость и без всякого трения протекает сквозь самые узкие щели.
Явление это, открытое в 1937 г. советским физиком академиком П. JI. Капицей, было затем объяснено академиком JI. Д. Ландау.
Оказывается, при сверхнизких температурах начинают заметно сказываться квантовые законы поведения вещества. Как требует один из таких законов, от тела к телу энергия может передаваться лишь вполне определенными порциями-квантами. В жидком гелии так мало квантов тепла, что на все атомы их не хватает. Часть жидкости, лишенная квантов тепла, пребывает как бы при абсолютном нуле температуры, ее атомы совершенно не участвуют в беспорядочном тепловом движении и никак не взаимодействуют со стенками сосуда. Эта часть (ее назвали гелием-Н) и обладает сверхтекучестью. С понижением температуры гелия-П становится все больше, и при абсолютном нуле весь гелий превратился бы в гелий-Н.
Сверхтекучесть сейчас изучена очень подробно и даже нашла полезное практическое применение: с ее помощью удается разделять изотопы гелия.

Сверхпроводимость

Возле абсолютного нуля чрезвычайно любопытные изменения происходят с электрическими свойствами некоторых материалов.
В 1911 г. голландский физик Камерлинг-Оннес сделал неожиданное открытие: оказалось, что при температуре 4,12° К в ртути полностью исчезает электрическое сопротивление. Ртуть становится сверхпроводником. Электрический ток, наведенный в сверхпроводящем кольце, не затухает и может течь практически вечно.
Над таким кольцом сверхпроводящий шарик будет парить в воздухе и не падать, будто сказочный <гроб Магомета>, потому что его тяжесть компенсируется магнитным отталкиванием между кольцом и шариком. Ведь незатухающий ток в кольце создаст магнитное поле, а оно, в свою очередь, наведет в шарике электрический ток и вместе с ним противоположно направленное магнитное поле.
Кроме ртути, сверхпроводимостью возле абсолютного нуля обладают олово, свинец, цинк, алюминий. Это свойство обнаружено у 23 элементов и более ста различных сплавов и других химических соединений.
Температуры появления сверхпроводимости (критические температуры) составляют довольно широкий интервал - от 0,35° К (гафний) до 18° К (сплав ниобий-олово).
Явление сверхпроводимости, как и сверх-
текучести, подробно изучено. Найдены зависимости критических температур от внутренней структуры материалов и внешнего магнитного поля. Разработана глубокая теория сверхпроводимости (важный вклад внесен советским ученым академиком Н. Н. Боголюбовым).
Сущность этого парадоксального явления опять-таки сугубо квантовая. При сверхнизких температурах электроны в

сверхпроводнике образуют систему попарно связанных частиц, которые не могут отдавать энергию кристаллической решетке, тратить кванты энергии на ее нагревание. Пары электронов движутся, как бы <танцуя>, между <прутьями решетки> - ионами и обходят их без столкновений и передачи энергии.
Сверхпроводимость все шире используется в технике.
Входят в практику, например, сверхпроводящие соленоиды - катушки из сверхпроводника, погруженные в жидкий гелий. В них сколь угодно долго может храниться однажды наведенный ток и, следовательно, магнитное поле. Оно может достигать гигантской величины - свыше 100 ООО эрстед. В будущем, несомненно, появятся мощные промышленные сверхпроводящие устройства - электродвигатели, электромагниты и т. д.
В радиоэлектронике немалую роль начинают играть сверхчувствительные усилители и генераторы электромагнитных волн, которые особенно хорошо действуют в ваннах с жидким гелием, - там полностью исчезают внутренние <шумы> аппаратуры. В электронно-вычислительной технике блестящую будущность сулят маломощным сверхпроводящим переключателям - криотронам (см. ст. <Пути электроники>).
Нетрудно представить себе, сколь заманчиво было бы продвинуть действие подобных приборов в область более высоких, более доступных температур. В последнее время открывается надежда создания полимерных пленочных сверхпроводников. Своеобразный характер электропроводности в таких материалах сулит блистательную возможность сохранить сверхпроводимость даже при комнатных температурах. Ученые настойчиво ищут пути осуществления этой надежды.

В недрах звезд

А теперь заглянем в царство самого горячего, что есть на свете, - в недра звезд. Туда, где температуры достигают миллионов градусов.
Беспорядочное тепловое движение в звездах настолько интенсивно, что целые атомы там существовать не могут: они разрушаются в бесчисленных столкновениях.
Столь сильно раскаленное вещество поэтому не может быть ни твердым, ни жидким, ни газообразным. Оно пребывает в состоянии плазмы, т. е. смеси электрически заряженных <осколков> атомов - атомных ядер и электронов.
Плазма - своеобразное состояние вещества. Поскольку ее частицы электрически заряжены, они чутко повинуются электрическим и магнитным силам. Поэтому близкое соседство двух атомных ядер (они несут положительный заряд) - явление редкое. Лишь при высоких плотностях и огромных температурах налетающие друг на друга атомные ядра способны сблизиться вплотную. Тогда совершаются термоядерные реакции - источник энергии звезд.
Ближайшая к нам звезда - Солнце состоит главным образом из водородной плазмы, которая раскалена в недрах светила до 10 млн. градусов. При таких условиях тесные сближения быстрых водородных ядер - протонов хоть и редко, но случаются. Иногда сблизившиеся протоны вступают во взаимодействие: преодолев электрическое отталкивание, они попадают во власть гигантских ядерных сил притяжения, стремительно <падают> друг на друга и сливаются. Тут происходит мгновенная перестройка: вместо двух протонов возникают дейтрон (ядро тяжелого изотопа водорода), позитрон и нейтрино. Освобождается энергия 0,46 млн. электрон-вольт (Мэв).
Каждый отдельно взятый солнечный протон может вступить в такую реакцию в среднем один раз за 14 млрд. лет. Но протонов в недрах светила так много, что то тут, то там совершается это маловероятное событие, - и горит наша звезда своим ровным, ослепительным пламенем.
Синтез дейтронов лишь первый шаг солнечных термоядерных превращений. Новорожденный дейтрон очень скоро (в среднем через 5,7 сек) соединяется еще с одним протоном. Возникает ядро легкого гелия и гамма-квант электромагнитного излучения. Освобождается 5,48 Мэв энергии.
Наконец, в среднем раз в миллион лет могут сойтись и соединиться два ядра легкого гелия. Тогда образуется ядро обычного гелия (альфа-частица) и отщепляются два протона. Выделяется 12,85 Мэв энергии.
Этот трехступенчатый <конвейер> термоядерных реакций не единственный. Существует и другая цепочка ядерных превращений, более быстрых. В ней участвуют (не расходуясь) атомные ядра углерода и азота. Но в обоих вариантах из водородных ядер синтезируются альфа-частицы. Фигурально выражаясь, водородная плазма Солнца <сгорает>, превращаясь в <золу> - плазму гелия. И в процессе синтеза каждого грамма гелиевой плазмы выделяется 175 тыс. квт-ч энергии. Огромное количество!
Ежесекундно Солнце излучает 4 1033 эргов энергии, теряя в весе 4 1012 г (4 млн. т) вещества. Но полная масса Солнца 2 1027 т. Значит, за миллион лет благодаря лучеиспусканию Солнце <худеет> всего лишь на одну десятимиллионную часть своей массы. Эти цифры красноречиво иллюстрируют эффективность термоядерных реакций и гигантскую калорийность солнечного <горючего> - водорода.
Термоядерный синтез, по-видимому, главный источник энергии всех звезд. При разных температурах и плотностях звездных недр осуществляются разные типы реакций. В частности, солнечная <зола>-ядра гелия - при 100 млн. градусов сама становится термоядерным <горючим>. Тогда из альфа-частиц могут синтезироваться еще более тяжелые атомные ядра - углерода и даже кислорода.
Как считают многие ученые, вся наша Метагалактика в целом тоже плод термоядерного синтеза, который проходил при температуре в миллиард градусов (см. ст. <Вселенная вчера, сегодня и завтра>).

К искусственному солнцу

Необычайная калорийность термоядерного <горючего> побудила ученых добиваться искусственного осуществления реакций ядерного синтеза.
<Горючего> - изотопов водорода на нашей планете немало. Например, сверхтяжелый водород тритий можно получить из металла лития в ядерных реакторах. А тяжелый водород - дейтерий входит в состав тяжелой воды, которую можно добыть из обычной воды.
Тяжелый водород, извлеченный из двух стаканов обычной воды, дал бы в термоядерном реакторе столько энергии, сколько сейчас дает сжигание бочки первосортного бензина.
Трудность заключается в том, чтобы предварительно нагреть <горючее> до температур, при которых оно способно воспламениться могучим термоядерным огнем.
Впервые эта задача была решена в водородной бомбе. Изотопы водорода там поджигаются взрывом атомной бомбы, что сопровождается нагревом вещества до многих десятков миллионов градусов. В одном из вариантов водородной бомбы термоядерным горючим служит химическое соединение тяжелого водорода с легким литием - дейтерид легкого л и т и я. Этот белый порошок, похожий на столовую соль, <воспламеняясь> от <спички>, которой служит атомная бомба, мгновенно взрывается и создает температуру в сотни миллионов градусов.
Чтобы возбудить мирную термоядерную реакцию, надо прежде всего научиться без услуг атомной бомбы разогревать малые дозы достаточно плотной плазмы изотопов водорода до температур в сотни миллионов градусов. Эта проблема - одна из труднейших в современной прикладной физике. Над ней уже много лет работают ученые всего мира.
Мы уже говорили, что именно хаотическое движение частиц создает нагретость тел, причем средняя энергия их беспорядочного движения и соответствует температуре. Нагреть холодное тело - значит любым способом создать этот беспорядок.
Вообразите, что две группы бегунов стремительно несутся навстречу друг другу. Вот они столкнулись, перемешались, началась толчея, неразбериха. Отличный беспорядок!
Примерно так же физики на первых порах пытались получить высокую температуру - путем сталкивания газовых струй высокого давления. Газ нагревался до 10 тыс. градусов. В свое время это был рекорд: температура выше, чем на поверхности Солнца.
Но при этом способе дальнейший, достаточно медленный, не взрывной нагрев газа невозможен, так как тепловой беспорядок мгновенно распространяется во все стороны, согревая стенки экспериментальной камеры и окружающую среду. Полученное тепло быстро покидает систему, и изолировать ее невозможно.
Если струи газа заменить потоками плазмы, проблема теплоизоляции остается очень трудной, но открывается и надежда на ее решение.
Правда, и плазму нельзя оградить от потерь тепла сосудами, изготовленными из вещества пусть даже самого тугоплавкого. Соприкасаясь с твердыми стенками, горячая плазма немедленно остывает. Зато можно попытаться удержать и разогреть плазму, создав ее скопление в вакууме так, чтобы она не касалась стенок камеры, а висела в пустоте, ни до чего не дотрагиваясь. Тут следует воспользоваться тем, что частицы плазмы не нейтральные, как атомы газа, а электрически заряженные. Поэтому в движении они подвергаются действию магнитных сил. Возникает задача: устроить магнитное поле особой конфигурации, в котором горячая плазма висела бы как в мешке с невидимыми стенками.
Простейший вид такого п.эля создается автоматически, когда через плазму пропускают сильные импульсы электрического тока. Вокруг плазменного шнура при этом наводятся магнитные силы, которые стремятся сжать шнур. Плазма отделяется от стенок разрядной трубки, и у оси шнура в толчее частиц температура поднимается до 2 млн. градусов.
У нас в стране такие эксперименты были исполнены еще в 1950 г. под руководством академиков JI. А. Арцимовича и М. А. Леонтовича.
Другое направление опытов - использование магнитной бутылки, предложенной в 1952 г. советским физиком Г. И. Буд-кером, ныне академиком. Магнитная бутылка устраивается в пробкотроне - цилиндрической вакуумной камере, снабженной наружной обмоткой, которая сгущается у концов камеры. Ток, протекающий по обмотке, создает в камере магнитное поле. Его силовые линии в средней части располагаются параллельно образующим цилиндра, а у концов сжимаются и образуют магнитные пробки. Частицы плазмы, впрыснутой в магнитную бутылку, вьются вокруг силовых линий, отражаются от пробок. В результате плазма некоторое время удерживается внутри бутылки. Если энергия введенных в бутылку плазменных частиц достаточно велика и их достаточно много, они вступают в сложные силовые взаимодействия, их поначалу упорядоченное движение запутывается, становится беспорядочным - температура водородных ядер поднимается до десятков миллионов градусов.
Дополнительный нагрев достигается электромагнитными <ударами> по плазме, сжатием магнитного поля и т. д. Сейчас плазму ядер тяжелого водорода раскаляют до сотен миллионов градусов. Правда, это удается сделать либо на короткое время, либо при малой плотности плазмы.
Чтобы возбудить самоподдерживающуюся реакцию, предстоит дальше поднять температуру и плотность плазмы. Добиться этого трудно. Однако проблема, как убеждены ученые, бесспорно разрешима.

Г.Б. Анфилов

Размещение фотографий и цитирование статей с нашего сайта на других ресурсах разрешается при условии указания ссылки на первоисточник и фотографии.

Физическое понятие «абсолютный нуль температуры» имеет для современной науки очень важное значение: с ним тесно связано такое понятие, как сверхпроводимость, открытие которой произвело настоящий фурор во второй половине ХХ века.

Чтобы понять, что же такое абсолютный ноль, следует обратиться к работам таких известных физиков, как Г. Фаренгейт, А. Цельсий, Ж. Гей-Люссак и У. Томсон. Именно они сыграли ключевую роль в создании используемых до сих пор основных температурных шкал.

Первым свою температурную шкалу предложил в 1714 году немецкий физик Г. Фаренгейт. При этом за абсолютный нуль, то есть за самую низкую точку этой шкалы, была принята температура смеси, которая включала в себя снег и нашатырь. Следующим важным показателем стала которая стала равняться 1000. Соответственно, каждое деление данной шкалы получило название «градус Фаренгейта», а сама шкала - «шкалы Фаренгейта».

Спустя 30 лет шведский астроном А. Цельсий предложил свою температурную шкалу, где основными точками стали температура таяния льда и воды. Эта шкала получила название «шкалы Цельсия», она до сих пор популярна в большинстве стран мира, в том числе и в России.

В 1802 году, проводя свои знаменитые опыты, французский ученый Ж. Гей-Люссак обнаружил, что объем массы газа при постоянном давлении находится в прямой зависимости от температуры. Но самое любопытное состояло в том, что при изменении температуры на 10 по шкале Цельсия, объем газа увеличивался или уменьшался на одну и ту же величину. Произведя необходимые вычисления, Гей-Люссак установил, что эта величина равнялась 1/273 от объема газа при температуре, равной 0С.

Из этого закона следовал напрашивающийся вывод: температура, равная -2730С, является наименьшей температурой, даже подойдя к которой вплотную, достичь ее невозможно. Именно эта температура получила название «абсолютный нуль температуры».

Более того, абсолютный нуль стал отправной точкой для создания шкалы абсолютной температуры, активное участие в котором принял английский физик У. Томсон, известный также, как лорд Кельвин.

Его основное исследование касалось доказательства того, что ни одно тело в природе не может быть охлаждено ниже, чем абсолютный нуль. При этом он активно использовал второй поэтому, введенная им в 1848 году абсолютная шкала температур стала называться термодинамической или «шкалой Кельвина».

В последующие годы и десятилетия происходило только числовое уточнение понятия «абсолютный ноль», которое после многочисленных согласований стало считаться равным -273,150С.

Стоит также обратить внимание, что абсолютный ноль играет очень важную роль в Все дело в том, что в 1960 году на очередной Генеральной конференции по мерам и весам единица термодинамической температуры - кельвин - стала одной из шести основных единиц измерений. При этом специально оговаривалось, что один градус Кельвина численно равен одному только вот точкой отсчета «по Кельвину» принято считать абсолютный ноль, то есть -273,150С.

Основной физический смысл абсолютного нуля состоит в том, что, согласно основным физическим законам, при такой температуре энергия движения элементарных частиц, таких как атомы и молекулы, равна нулю, и в этом случае должно прекратиться любое хаотическое движение этих самых частиц. При температуре, равной абсолютному нулю, атомы и молекулы должны занять четкое положение в основных пунктах кристаллической решетки, образуя упорядоченную систему.

В настоящее время, используя специальное оборудование, ученые смогли получить температуру, лишь на несколько миллионных долей превышающую абсолютный ноль. Достичь же самой этой величины физически невозможно из-за описанного выше второго закона термодинамики.

Абсолютный температурный нуль соответствует 273,15 градусам Цельсия ниже нуля, 459,67 ниже нуля по Фаренгейту. Для температурной шкалы Кельвина такая температура сама по себе является нулевой отметкой.

Сущность абсолютного нуля температуры

Понятие абсолютного нуля исходит из самой сущности температуры. Любое тело , которую отдает во внешнюю среду в ходе . При этом снижается температура тела, т.е. энергии остается меньше. Теоретически этот процесс может продолжаться до тех пор, пока количество энергии не достигнет такого минимума, при котором отдавать ее тело уже не сможет.
Отдаленное предвестие такой идеи можно найти уже у М.В.Ломоносова. Великий русский ученый объяснял теплоту «коловратным» движением. Следовательно, предельная степень охлаждения – это полная остановка такого движения.

По современным представлениям, абсолютный нуль температуры – , при котором молекулы наименьшим возможным уровнем энергии. При меньшем количестве энергии, т.е. при более низкой температуре ни одно физическое тело существовать не может.

Теория и практика

Абсолютный нуль температуры – понятие теоретическое, достичь его на практике невозможно в принципе, даже в условиях научных лабораторий с самой сложной аппаратурой. Но ученым удается охлаждать вещество до очень низких температур, которые близки к абсолютному нулю.

При таких температурах вещества приобретают удивительные свойства, которых они не могут иметь при обычных обстоятельствах. Ртуть, которую называют «живым серебром» из-за ее пребывания в состоянии, близком к жидкому, при такой температуре становится твердой – до такой степени, что ею можно забивать гвозди. Некоторые металлы становятся хрупкими, как стекло. Такой же твердой и становится резина. Если при температуре, близкой к абсолютному нулю, ударить молотком какой-нибудь резиновый предмет, он разобьется, как стеклянный.

Такое изменение свойств тоже связано с природой теплоты. Чем выше температура физического тела, тем интенсивнее и хаотичнее двигаются молекулы. По мере снижения температуры движение становится менее интенсивным, а структура – более упорядоченной. Так газ становится жидкостью, а жидкость твердым телом. Предельный уровень упорядоченности – кристаллическая структура. При сверхнизких температурах ее приобретают даже такие вещества, которые в обычном состоянии остаются аморфными, например, резина.

Интересные явления происходят и с металлами. Атомы кристаллической решетки колеблются с меньше амплитудой, рассеяние электронов уменьшается, поэтому падает электрическое сопротивление. Металл приобретает сверхпроводимость, практическое применение которой представляется весьма заманчивым, хотя и труднодостижимым.

Абсолютному нулю соответствует температура −273,15 °C.

Считается, что абсолютный ноль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки . Однако, на самом деле, даже при абсолютном нуле температуры регулярные движения составляющих вещество частиц останутся . Оставшиеся колебания, например нулевые колебания , обусловлены квантовыми свойствами частиц и физического вакуума , их окружающего.

В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный ноль всего на несколько миллионных долей градуса; достичь же его самого, согласно законам термодинамики, невозможно.

Примечания

Литература

  • Г. Бурмин. Штурм абсолютного нуля. - М.: «Детская литература», 1983.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Абсолютный Ноль" в других словарях:

    АБСОЛЮТНЫЙ НОЛЬ, температура, при которой все компоненты системы обладают наименьшим количеством энергии, допустимым по законам КВАНТОВОЙ МЕХАНИКИ; ноль на шкале температур по Кельвину, или 273,15 °С (459,67° по Фаренгейту). При этой температуре … Научно-технический энциклопедический словарь

    Температуры это минимальный предел температуры, которую может иметь физическое тело. Абсолютный ноль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. По шкале Цельсия абсолютному нулю соответствует температура −273 … Википедия

    АБСОЛЮТНЫЙ НОЛЬ ТЕМПЕРАТУРЫ - начало отсчёта термодинамической шкалы температуры; расположен на 273,16 К (Кельвин) ниже (см.) воды, т.е. равен 273,16°С (Цельсия). Абсолютный ноль предельно низкая температура, в природе и практически недостижимая … Большая политехническая энциклопедия

    Это минимальный предел температуры, которую может иметь физическое тело. Абсолютный ноль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. По шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.… … Википедия

    Абсолютный ноль температуры это минимальный предел температуры, которую может иметь физическое тело. Абсолютный ноль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. По шкале Цельсия абсолютному нулю соответствует… … Википедия

    Разг. Пренебр. Ничтожный, незначительный человек. ФСРЯ, 288; БТС, 24; ЗС 1996, 33 …

    ноль - абсолютный ноль … Словарь русской идиоматики

    Ноль и нуль сущ., м., употр. сравн. часто Морфология: (нет) чего? ноля и нуля, чему? нолю и нулю, (вижу) что? ноль и нуль, чем? нолём и нулём, о чём? о ноле, нуле; мн. что? ноли и нули, (нет) чего? нолей и нулей, чему? нолям и нулям, (вижу)… … Толковый словарь Дмитриева

    Абсолютный ноль (нуль). Разг. Пренебр. Ничтожный, незначительный человек. ФСРЯ, 288; БТС, 24; ЗС 1996, 33 В ноль. 1. Жарг. мол. Шутл. ирон. О сильном опьянении. Югановы, 471; Вахитов 2003, 22. 2. Жарг. муз. Точно, в полном соответствии с… … Большой словарь русских поговорок

    абсолютный - абсолютный абсурд абсолютный авторитет абсолютный безупречность абсолютный беспорядок абсолютный вымысел абсолютный иммунитет абсолютный лидер абсолютный минимум абсолютный монарх абсолютный мораль абсолютный ноль … … Словарь русской идиоматики

Книги

  • Абсолютный ноль , Абсолют Павел. Жизнь всех творений безумного ученого расы нэсов очень коротка. Но у очередного эксперимента появляется шанс на существование. Что же ждет его впереди?…
- 48.67 Кб

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Воронежский Государственный Педагогический Университет»

Кафедра общей физики

на тему: «Абсолютный ноль температуры»

Выполнила: студентка 1-го курса, ФМФ,

ПИ, Кондратенко Ирина Александровна

Проверил: ассистент кафедры общей

физики Афонин Г.В.

Воронеж-2013

Введение………………………………………………………. 3

1.Абсолютный ноль…………………………………………...4

2.История……………………………………………………… 6

3.Явления, наблюдаемые вблизи абсолютного нуля………..9

Заключение…………………………………………………… 11

Список используемой литературы…………………………..12

Введение

На протяжении многих лет исследователи ведут наступление на абсолютный нуль температуры. Как известно, температура, равная абсолютному нулю, характеризует основное состояние системы многих частиц - состояние с наименьшей возможной энергией, при которой атомы и молекулы совершают так называемые «нулевые» колебания. Таким образом, глубокое охлаждение, близкое к абсолютному нулю (считается, что сам абсолютный нуль на практике недостижим), открывает неограниченные возможности для изучения свойств вещества.

1. Абсолютный ноль

Абсолютный нуль температуры (реже - абсолютный ноль температуры) - минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.

В рамках применимости термодинамики абсолютный нуль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки (жидкий гелий составляет исключение). Однако, с точки зрения квантовой физики и при абсолютном нуле температуры существуют нулевые колебания, которые обусловлены квантовыми свойствами частиц и физического вакуума, их окружающего.

При стремлении температуры системы к абсолютному нулю к нулю стремятся и ее энтропия, теплоемкость, коэффициент теплового расширения, прекращается хаотическое движение частиц, составляющих систему. Одним словом вещество становится супервеществом с сверхпроводимостью и сверхтекучестью.

Абсолютный нуль температуры на практике недостижим, а получение температур, предельно приближающихся к нему, представляет сложную экспериментальную проблему, но уже получены температуры, лишь на миллионные доли градуса отстоящие от абсолютного нуля. .

Найдем значение абсолютного нуля по шкале Цельсия, приравнивая объем V нулю и учитывая, что

Отсюда абсолютный нуль температуры равен -273°С.

Это предельная, самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказал Ломоносов.

Рис.1. Абсолютная шкала и шкала Цельсия

Единица абсолютной температуры в системе СИ называется кельвином (сокращенно К). Следовательно, один градус по шкале Цельсия равен одному градусу по шкале Кельвина: 1 °С = 1 К.

Таким образом, абсолютная температура является производной величиной, зависящей от температуры Цельсия и от экспериментально определяемого значения а. Однако она имеет фундаментальное значение.

С точки зрения молекулярно-кинетической теории абсолютная температура связана со средней кинетической энергией хаотического движения атомов или молекул. При Т = О К тепловое движение молекул прекращается.

2. История

Физическое понятие « абсолютный нуль температуры» имеет для современной науки очень важное значение: с ним тесно связано такое понятие, как сверхпроводимость, открытие которой произвело настоящий фурор во второй половине ХХ века.

Чтобы понять, что же такое абсолютный ноль, следует обратиться к работам таких известных физиков, как Г. Фаренгейт, А. Цельсий, Ж. Гей-Люссак и У. Томсон. Именно они сыграли ключевую роль в создании используемых до сих пор основных температурных шкал.

Первым свою температурную шкалу предложил в 1714 году немецкий физик Г. Фаренгейт. При этом за абсолютный нуль, то есть за самую низкую точку этой шкалы, была принята температура смеси, которая включала в себя снег и нашатырь. Следующим важным показателем стала нормальная температура тела человека, которая стала равняться 1000. Соответственно, каждое деление данной шкалы получило название «градус Фаренгейта», а сама шкала – «шкалы Фаренгейта».

Спустя 30 лет шведский астроном А. Цельсий предложил свою температурную шкалу, где основными точками стали температура таяния льда и точка кипения воды. Эта шкала получила название «шкалы Цельсия», она до сих пор популярна в большинстве стран мира, в том числе и в России.

В 1802 году, проводя свои знаменитые опыты, французский ученый Ж. Гей-Люссак обнаружил, что объем массы газа при постоянном давлении находится в прямой зависимости от температуры. Но самое любопытное состояло в том, что при изменении температуры на 10 по шкале Цельсия, объем газа увеличивался или уменьшался на одну и ту же величину. Произведя необходимые вычисления, Гей-Люссак установил, что эта величина равнялась 1/273 от объема газа. Из этого закона следовал напрашивающийся вывод: температура, равная -273°С, является наименьшей температурой, даже подойдя к которой вплотную, достичь ее невозможно. Именно эта температура получила название «абсолютный нуль температуры». Более того, абсолютный нуль стал отправной точкой для создания шкалы абсолютной температуры, активное участие в котором принял английский физик У. Томсон, известный также, как лорд Кельвин. Его основное исследование касалось доказательства того, что ни одно тело в природе не может быть охлаждено ниже, чем абсолютный нуль. При этом он активно использовал второй закон термодинамики, поэтому, введенная им в 1848 году абсолютная шкала температур стала называться термодинамической или «шкалой Кельвина».В последующие годы и десятилетия происходило только числовое уточнение понятия «абсолютный ноль».

Рис.2. Соотношение между температурными шкалами Фаренгейта (F), Цельсия (C) и Кельвина (K).

Стоит также обратить внимание, что абсолютный ноль играет очень важную роль в системе СИ. Все дело в том, что в 1960 году на очередной Генеральной конференции по мерам и весам единица термодинамической температуры – кельвин – стала одной из шести основных единиц измерений. При этом специально оговаривалось, что один градус Кельвина

численно равен одному градусу Цельсия, только вот точкой отсчета «по Кельвину» принято считать абсолютный ноль.

Основной физический смысл абсолютного нуля состоит в том, что, согласно основным физическим законам, при такой температуре энергия движения элементарных частиц, таких как атомы и молекулы, равна нулю, и в этом случае должно прекратиться любое хаотическое движение этих самых частиц. При температуре, равной абсолютному нулю, атомы и молекулы должны занять четкое положение в основных пунктах кристаллической решетки, образуя упорядоченную систему.

В настоящее время, используя специальное оборудование, ученые смогли получить температуру, лишь на несколько миллионных долей превышающую абсолютный ноль. Достичь же самой этой величины физически невозможно из-за второго закона термодинамики.

3.Явления, наблюдаемые вблизи абсолютного нуля

При температурах, близких к абсолютному нулю, на макроскопическом уровне могут наблюдаться чисто квантовые эффекты, такие как:

1.Сверхроводимость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние.

Сверхпроводимость - квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании. Открытие в 1986-1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.

2.Сверхтекучесть - способность вещества в особом состоянии (квантовой жидкости), возникающем при понижении температуры к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разреженных атомных бозе-конденсатах, твёрдом гелии.

Сверхтекучесть объясняется следующим образом. Поскольку атомы гелия являются бозонами, квантовая механика допускает нахождение в одном состоянии произвольного числа частиц. Вблизи абсолютного нуля температур все атомы гелия оказываются в основном энергетическом состоянии. Поскольку энергия состояний дискретна, атом может получить не любую энергию, а только такую, которая равна энергетическому зазору между соседними уровнями энергии. Но при низкой температуре энергия столкновений может оказаться меньше этой величины, в результате чего рассеяния энергии попросту не будет происходить. Жидкость будет течь без трения.

3. Конденсат Бозе - Эйнштейна - агрегатное состояние вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли градуса выше абсолютного нуля). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне.

Заключение

Изучение свойств вещества вблизи абсолютного нуля представляет большой интерес для науки и техники.

Многие свойства вещества, завуалированные при комнатных температурах тепловыми явлениями (например, тепловыми шумами), при понижении температуры начинают все более и более проявляться, позволяя в чистом виде изучать закономерности и связи, присущие данному веществу. Исследования в области низких температур позволили открыть много новых явлений природы, таких, например, как сверхтекучесть гелия и сверхпроводимость металлов.

При низких температурах резко меняются свойства материалов. Одни металлы повышают свою прочность, становятся пластичными, другие становятся хрупкими, как стекло.

Изучение физико-химических свойств при низких температурах позволит в будущем создать новые вещества с заранее заданными свойствами. Все это весьма ценно для конструирования и создания космических кораблей, станций и приборов.

Известно, что при радиолокационных исследованиях космических тел принимаемый радиосигнал весьма мал и его трудно выделить из различных шумов. Созданные недавно учеными молекулярные генераторы и усилители работают при весьма низких температурах и поэтому обладают очень низким уровнем шума.

Низкотемпературные электрические и магнитные свойства металлов, полупроводников и диэлектриков позволяют разработать принципиально новые радиотехнические устройства микроскопических размеров.

Сверхнизкие температуры используются для создания вакуума, необходимого, например, для работы гигантских ускорителей ядерных частиц.

Список используемой литературы

  1. http://wikipedia.org
  2. http://rudocs.exdat.com
  3. http://fb.ru

Краткое описание

На протяжении многих лет исследователи ведут наступление на абсолютный нуль температуры. Как известно, температура, равная абсолютному нулю, характеризует основное состояние системы многих частиц - состояние с наименьшей возможной энергией, при которой атомы и молекулы совершают так называемые «нулевые» колебания. Таким образом, глубокое охлаждение, близкое к абсолютному нулю (считается, что сам абсолютный нуль на практике недостижим), открывает неограниченные возможности для изучения свойств вещества.