Элементы и объект технической системы. Понятие технической системы

1

Разработана методика моделирования объектных моделей сложных технических систем. Методика основана на классификации технических систем. Рассмотрены существующие системы классификации по виду, по составу технических систем. Сделан вывод о том, что существующих систем классификации недостаточно для построения методики моделирования сложных технических систем. Предложена классификация технических систем по структуре ее элементов, включающая три типа структур: парковая, сетевая и линейная. Рассмотрена методика построения объектной модели технических систем, имеющих сетевую и линейную структуру. Методика построения объектных моделей позволяет учитывать особенности инфраструктуры функционирования технической системы, взаимосвязь комплексов технических систем, а также структуру того оборудования, которое используется в комплексах технических систем.

техническая система

классификация технических систем

структура технической системы

1. ГОСТ 27.001-95 Система стандартов «Надежность в технике».

2. Кириллов Н.П. Признаки класса и определение понятия «технические системы» // Авиакосмическое приборостроение. – 2009. – № 8.

3. ОК 005-93 Общероссийский классификатор продукции.

4. ПР 50.1.019-2000 Основные положения единой системы классификации и кодирования технико-экономической и социальной информации и унифицированных систем документации в Российской федерации.

5. Хубка В. Теория технических систем. – М.: Мир, 1987. – 202 с.

В задачах проектирования систем автоматизации управления организационно-техническими системами (ОТС) важное место занимает задача моделирования технической части таких систем. Разнообразие видов технической составляющей ОТС, сложность ее структуры требует разработки общих подходов к моделированию технических систем.

Формулировка термина техническая система (ТС) зависит от поставленной задачи . Базовым элементом систем автоматизации управления ОТС является информационная среда, в которой содержатся сведения о структуре технической системы. Поэтому при моделировании технических систем для решения задач автоматизации ОТС можно ограничиться следующим определением: «Техническая система это взаимосвязанная совокупность технических объектов, предназначенная для выполнения определенных функций». Здесь технический объект это любое изделие (элемент, устройство, подсистема, функциональная единица или система), которое можно рассматривать в отдельности .

Классификация технических систем

Разработку моделей технических систем целесообразно подчинить набору правил, что позволит упорядочить процесс создания модели и повысить качество моделирования. Важнейшим из таких правил является использование классификация технических систем как основы построения модели технической системы. Наличие классификации технических систем позволяет идентифицировать вид структуры сложной технической системы, что позволяет провести декомпозицию системы в соответствии с типовой структурой.

Классификация с точки зрения состава технических систем

Рассмотрим существующие системы классификации технических систем. Все технические объекты, которые производятся на предприятиях, имеют классификационные признаки в соответствии с Единой системой классификации и кодирования технико-экономической и социальной информации (ЕСКК) . Основной целью классификации в системе ЕСКК является упорядочение информации об объектах, что обеспечивает совместное использование этой информации различными субъектами. Из классификаторов, представленных в ЕСКК, для задачи моделирования технических систем наибольшее значение имеет общероссийский классификатор продукции (ОКП) , который содержит перечень кодов и наименований иерархически классифицированных групп видов продукции.

Для задачи моделирования структуры технической системы наибольший интерес представляет классификация по уровню сложности технической системы . Выделены следующие уровни сложности:

I. Конструктивный элемент, деталь машины.

II. Узел, механизм.

III. Машина, прибор, аппарат.

IV. Установка, предприятие, промышленный комплекс.

При разработке классификации технических систем необходимо учитывать принципы разделения изделий на части, которые приняты в Единой системе конструкторской документации. ГОСТ 2.101-68 «Виды изделий» определяет изделие как предмет или набор предметов, изготовляемых на предприятии, и делит изделия на следующие виды:

  • Детали - изделия, не имеющие составных частей.
  • Сборочные единицы — изделия, состоящие из нескольких частей.
  • Комплексы — два или более изделия предназначенных для выполнения взаимосвязанных эксплуатационных функций.

Сравнивая классификации по уровню сложности и по видам изделий, можно сделать следующие выводы:

  • Обе классификации выделяют в качестве простейшего объекта деталь.
  • Понятие сборочная единица соответствует как понятию узел, так и понятию машина (прибор, аппарат).
  • Понятия промышленный комплекс (установка) и комплекс как вид изделия отражают одинаковое свойство - объединение частей в единое целое.

Объединяя классификацию по уровню сложности, видам изделий и по видам продукции, введем следующие элементы классификации по составу технической системы:

  • Техническая система это совокупность технических объектов, выполняющих определенную функцию, соответствующую цели ее создания.
  • Оборудование - изделие, представляющее собой продукцию.
  • Узел - часть изделия, собираемая по сборочному чертежу.
  • Деталь - часть оборудования или узла, выполненная из однородного материала, изготавливаемая по детальному чертежу.
  • Комплекс оборудования - два и более оборудования, предназначенных для выполнения общих функций.

Узел и деталь являются элементами оборудования, а комплекс - это объединение оборудований. Объединение оборудований в комплексы может разделяться по уровням объединения - комплекс верхнего, среднего и нижнего уровня.

Рис. 1. Иерархическая структура технической системы

Классификация с точки зрения структуры технической системы

Техническая система как составная часть организационно-технической системы может быть отнесена к одному из следующих структурных представлений:

  • Списочная (парковая) структура однородных объектов, между которыми отсутствует взаимодействие. Каждый объект выполняет свою функцию.
  • Сетевая структура технической системы - совокупность технических объектов, между которыми есть взаимодействие. Для такого типа структуры необходимо описание не только самих технических объектов, но и описание элементов инженерной сети, через которую происходит взаимодействие технических объектов;
  • Структура линейной технической системы.

Примерами парковой структуры являюется автопарк или парк оборудования предприятия. Примером сетевой структуры являются система теплоснабжения города, включающая центральную тепловую станцию (ЦТС), совокупность тепловых пунктов (ТП) и тепловые сети для передачи теплоносителя от ЦТС к ТП и от них к жилым домам.

Примером структуры линейной технической системы является железнодорожный путь, который формируется рядом локальных и линейных инженерных сооружений - верхним строением пути, состоящим из рельсов, шпал, скреплений и балласта, и искусственными сооружениями.

Сетевая структура технической системы отличается от парковой структуры наличием сетевой компоненты, обеспечивающей взаимосвязь элементов. Это позволяет рассматривать парковую структуру является частным случаем сетевой структуры.

Моделирование структуры технических систем

Задачей моделирования структуры технической системы является отображение структурных свойств технической системы, описание отдельных ее подсистем и элементов. В зависимости от целей проекта автоматизации одна и та же техническая система будет представлена разными моделями. Отличие моделей технической системы будет заключаться в полноте и детальности описания структурных свойств технической системы. Полнота описания ТС определяется той частью комплекса технических объектов, которая будет учтена в модели ТС. Детальность описания ТС определяется тем уровнем иерархии, вплоть до которого будут учтены элементы ТС.

Объектная модель технической системы

Базовой моделью технической системы является ее объектная модель. Объектная модель ТС технической системы отображает ее структуру и должна отвечать на вопрос: «Из каких частей состоит каждый элемент технической системы?». Использование принципа деления целого на части определяет иерархический характер объектной модели технической системы.

Рассмотрим проблемы построения объектной модели для сетевой и линейной технической системы.

Объектная модель сетевой технической системы

Построение объектной модели основано на анализе следующей технической документации:

  • Схема расположения комплексов технической системы и экспликации к ней.
  • Эксплуатационная документация на каждый вид оборудования, используемый в технической системе.
  • Техническая документация на сетевой комплекс.

Схема расположения позволяет определить положение элементов технической системы по отношению к элементам инфраструктуры функционирования технической системы. Для технической системы, расположенной в черте города, положение объектов указывают по отношению к улицам и домам. Для технической системы, расположенной на промышленном предприятии, положение объектов указывают по отношению к номеру цеха и номеру ячейки в данном цехе, которые образованы опорными колоннами. Могут быть использованы и другие способы указания положения объектов по отношению к элементам инфраструктуры функционирования ТС. На схеме расположения указываются комплексы технической системы, элементы сети, обеспечивающие взаимодействие комплексов и элементы инфраструктуры функционирования технической системы. Пример схемы расположения дан на рис. 2. На схеме представлена техническая система, состоящая из 4-х комплексов технических средств (КТС 1, 2, 3, 4), и физическая сеть, объединяющая КТС в единую систему. Сетка {A, B, C, D; 1, 2, 3, 4}служит для позиционирования элементов технической системы в системе функционирования технической системы.

На основе анализа модели уровня технической системы необходимо выделить:

  • Виды комплексов технической системы.
  • Виды элементов инженерных сетей.

Виды комплексов технических систем определяются по критерию одинаковой внутренней структуры. Для каждого вида комплекса технической системы необходимо построить свою модель, в которой отображаются комплексы технической системы нижнего уровня и те виды оборудования, которые используются в данном комплексе.

Рис. 2. Схема расположения комплексов технической системы

Рис. 3. Объектная модель комплекса технической системы

Так как каждый вид оборудования имеет свою внутреннюю структуру, то для каждого вида оборудования необходимо построить свою модель, в которой это оборудование разделено на узлы и детали.

Завершающим этапом разработки модели сетевой технической системы является разработка модели инженерных сетей. На этапе анализа схемы расположения технической системы и экспликации к ней необходимо выделить виды технических объектов, которые использованы для построения инженерной сети ТС. Рассмотрим модель инженерной сети на примере трубопроводной сети, основные элементы которой представлены на схеме.

Отличительной особенностью трубопроводной сети, является то, что часть ее элементов (трубы, соединительные элементы) изготавливаются по монтажной схеме, а часть (арматура) является определенным видом оборудования. Однако в большинстве случаев, разрабатывать модель внутренняя структура арматуры не требуется.

Рис. 4. Объектная модель оборудования

Рис. 5. Объектная модель сетевой структуры технической системы

Объектная модель линейной технической системы

Особенностью линейной технической системы является использование технических объектов для формирования инфраструктуры. Рассмотрим проблемы создания объектной модели распределенной технической системы на примере железнодорожного пути.

Железнодорожный путь - сложный комплекс линейных и сосредоточенных инженерных сооружений и обустройств, расположенных в полосе отвода. Основным элементом железнодорожного пути является рельсовая колея, которая образована из рельсов, шпал, скреплений и других элементов, которые вместе составляют верхнее строение пути. Верхнее строение пути укладывают на земляное полотно. В местах пересечения железнодорожного пути с реками, оврагами и другими препятствиями верхнее строение пути укладывается на искусственные сооружения. К важным устройствам железнодорожного пути относят стрелочные переводы, так как вся сложная структура железнодорожных путей основана на их разделении (соединении), которое происходит в стрелочном переводе.

Технической системой является совокупность железнодорожных путей, представляющих единое целое - инфраструктурную часть железной дороги как целостную часть организационно-технической системы. В действительности в инфраструктурную часть железной дороги кроме железнодорожного пути входят и устройства электроэнергетики, сигнализации и связи. Однако структурообразующим элементом инфраструктуры железной дороги является железнодорожный путь.

С геометрической точки зрения железнодорожный путь представляет собой сеть, состоящую из узлов и дуг. Дугами являются участки железнодорожного пути между двумя узлами. Узлами являются объекты, соединяющие несколько участков железнодорожного пути.

Схема расположения железнодорожных путей представляет собой совокупность узлов и дуг, каждый из которых имеет уникальное имя.

Рис. 6. Схема расположения объектов линейной технической системы

Для представления элементов линейной технической системы необходимо представить иерархическую структуру объектов, которая в совокупности образует эту систему. Если ограничиваться только основными элементами, то модель инфраструктурной части железной дороги может быть представлена на следующей схеме (рис. 7).

Рис. 7. Модель объектов железной дороги

Рельсы, шпалы, скрепления являются изделиями (деталями), которые собираются на специализированных предприятиях в технологические комплексы, которые затем укладываются в железнодорожный путь. Такими комплексами могут быть: рельсошпальная решетка, в которой с помощью скреплений соединены два рельса и необходимое число шпал; рельсовая плеть - сваренные воедино несколько рельсов. Элементы стрелочных переводов также изготавливаются на предприятиях как детали и собираются в единый технический объект в месте установки. Искусственные сооружения представляют собой сложные инженерные сооружения, которые строятся по специальным проектам. Модель искусственного сооружения разрабатывается по тем же правилам, что и модель оборудования.

Заключение

Технические системы часто имеют сложную структуру, что требует структурного подхода к их моделированию. Моделирование технических систем должно основываться на типизации технических систем и на анализе структурных свойств как технической системы в целом, так и ее отдельных элементов. Центральным элементом модели технической системы является оборудование как изделие, которое производится на предприятии.

Рецензенты:

Панов А.Ю., д.т.н., заведующий кафедрой «Теоретическая и прикладная механика», ФГБОУ ВПО «Нижегородский государственный технический университет им. Р.Е. Алексеева», г. Нижний Новгород;

Федосенко Ю.С., д.т.н., профессор, заведующий кафедрой Информатика, системы управления и телекоммуникации», ФГБОУ ВПО «Волжская государственная академия водного транспорта», г. Нижний Новгород.

Работа поступила в редакцию 28.07.2014.

Библиографическая ссылка

Запорожцев А.В. МОДЕЛИРОВАНИЕ ТЕХНИЧЕСКИХ СИСТЕМ // Фундаментальные исследования. – 2014. – № 8-6. – С. 1288-1294;
URL: http://fundamental-research.ru/ru/article/view?id=34755 (дата обращения: 04.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Техническая система - это материальный объект искусственного происхождения, который состоит из элементов (составных частей, различающихся свойствами, проявляющимися при взаимодействии), объединённых связями (линиями передачи единиц или потоков чего-либо) и вступающих в определённые отношения (условия и способы реализации свойств элементов) между собой и с внешней средой, чтобы осуществить процесс (последовательность действий для изменения или поддержания состояния) и выполнить функцию технической системы (ТС) - цель, назначение, роль. ТС имеет структуру (строение, устройство, взаиморасположение элементов и связей, задающее устойчивость и воспроизводимость функции ТС). Каждая составная часть ТС имеет индивидуальное функциональное назначение (цели использования) в системе.

Энциклопедичный YouTube

    1 / 3

    Техническая система инфобизнеса от Евгения Попова Часть 1

    Передача 2. Неразрушающий контроль и техническая диагностика

    Монтажникам санитарно-технических систем и оборудования посвящается

    Субтитры

Функциональный состав и свойства объектов технической системы

В каждой ТС существует функциональная часть - объект управления (ОУ). Функции ОУ в ТС заключаются в восприятии управляющих воздействий (УВ) и в изменении в соответствии с ними своего состояния . ОУ в ТС не выполняет функций принятия решений, то есть не формирует и не выбирает альтернативы своего поведения, а только реагирует на внешние (управляющие и возмущающие) воздействия, изменяя свои состояния предопределенным его конструкцией образом.

В объекте управления всегда могут быть выделены две функциональные части - сенсорная и исполнительная .

Сенсорная часть образована совокупностью технических устройств, непосредственной причиной изменения состояний каждого из которых является соответствующие ему и предназначенные для этого управляющие воздействия. Примеры сенсорных устройств: выключатели, переключатели, задвижки , заслонки , датчики и другие подобные им по функциональному назначению устройства управления техническими системами.

Исполнительная часть образована совокупностью материальных объектов, все или отдельные комбинации состояний которых рассматриваются в качестве целевых состояний технической системы, в которых она способна самостоятельно выполнять предусмотренные её конструкцией потребительские функции. Непосредственной причиной изменения состояний исполнительной части ТС (ОУ в ТС) являются изменения состояний её сенсорной части.

Классификационные признаки объектов

  • представляют собой целостную совокупность конечного множества совзаимодействующих материальных объектов
  • имеют условия штатной эксплуатации, предусмотренные их конструкцией
  • содержат последовательно взаимодействующие друг с другом сенсорные и исполнительные функциональные части
  • имеют модели управляемого предопределенного причинно-следственного поведения в пространстве достижимых равновесных устойчивых состояний
  • имеют целевые состояния, соответствующие состояниям исполнительной части объекта управления в ТС
  • имеют способность, находясь в целевых состояниях, самостоятельно выполнять потребительские функции

Техническая система - это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая последовательно взаимодействующие сенсорную и исполнительную функциональные части, модель их предопределенного поведения в пространстве равновесных устойчивых состояний и способность, при нахождении хотя бы в одном из них (целевом состоянии), самостоятельно выполнять в штатных условиях предусмотренные её конструкцией потребительские функции.

Техническая подсистема - это часть системы, имеющая все признаки объектов таксона «технические системы». Техническая подсистема может быть частью некоторой системы, которая сама может не относиться к классу ТС.

Устройство - это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая модель предопределенного поведения и равновесные устойчивые состояния в штатных условиях эксплуатации.

В определении понятия «устройство» учитывается, что оно как составная часть ТС также должно иметь равновесные устойчивые состояния, определяющие свойства целевых состояний системы в целом.

Деталь - неразделимый на элементы материальный и функциональный объект технической системы или устройства.

В этом определении учитывается, в частности, «функциональное» свойство детали, которое заключается в её способности выполнять отведенную ей конструктором роль в ТС, то есть быть исправной.

Техническая система (ТС) - это структура, образованная взаимосвязанными элементами, предназначенная для выполнения определенных полезных функций. Функция - это способность ТС проявлять свое свойство (качество, полезность) при определенных условиях и преобразовывать предмет труда (изделие) в требуемую форму или величину Появление цели - это результат осознания потребности. Потребность (постановка задачи) - это то, что нужно иметь (сделать), а функция - реализация потребности в ТС. Возникновение потребностей, осознание цели и формулирование функции - это процессы, происходящие внутри человека. Но реально действующая функция - это воздействие на предмет труда (изделие) или служение человеку. То есть, не хватает промежуточного звена - рабочего органа. Это и есть носитель функции в чистом виде. Рабочий орган (РО) - единственная функционально полезная человеку часть технической системы. Все остальные части вспомогательные. ТС и возникали на первых этапах как рабочие органы (взамен органов тела и в дополнение им). И только потом, для увеличения полезной функции. к рабочему органу "пристраивались" другие части, подсистемы, вспомогательные системы.

Рисунок 1. Полная принципиальная схема работающей ТС.
Пунктиром обведен состав минимальной работоспособной ТС, обеспечивающий ее жизнеспособность.

Соединение элементов в единое целое нужно для получения (образования, синтеза) полезной функции, т.е. для достижения поставленной цели. Составление структуры - это программирование системы, задание поведения ТС с целью получения в результате полезной функции. Требуемая функция и выбранный физический принцип ее осуществления определяют структуру. Структура - это совокупность элементов и связей между ними, которые определяются физическим принципом осуществления требуемой полезной функции. Структура, как правило, остается неизменной в процессе функционирования, то есть при изменении состояния, поведения, совершения операций и любых других действий. Следует различать два вида системных прибавок, получаемых при соединении элементов в структуру:
- системный эффект - непропорционально большое усиление (уменьшение) свойств, имеющихся у элементов,
- системное качество - появление нового свойства, которого не было ни у одного из элементов до включения их в систему.

Каждая ТС может выполнять несколько функций, из которых только одна рабочая, ради которой она и существует, остальные - вспомогательные, сопутствующие, облегчающие выполнение главной. Определение главной полезной функции (ГПФ) иногда вызывает затруднение. Это объясняется множественностью требований, предъявляемых к данной системе со стороны выше и ниже лежащих систем, а также соседних, внешних и прочих систем. Отсюда кажущаяся бесконечность определений ГПФ (принципиальная неохватность всех свойств и связей). С учетом иерархичности функций, ГПФ данной системы - это выполнение требований первой вышестоящей системы. Все остальные требования, по мере удаления от иерархического уровня, от которого они исходят, оказывают все меньшее влияние на данную систему. Эти над и подсистемные требования могут быть выполнены и другими веществами и системами, не обязательно данной системой. То есть, ГПФ элемента определяется той системой, в которую он включается.

Чтобы точнее определить системный эффект (системное качество) данной ТС можно воспользоваться простым приемом: надо разделить систему на составные элементы и посмотреть, какое качество (какой эффект) исчезло. Например, отдельно ни одна из самолетных частей летать не может, как не может выполнить свою функцию и "усеченная" система самолет без крыла, оперения или управления. Это, кстати, убедительный способ доказательства, что все объекты в мире - системы: разделите уголь, сахар, иголку, - на каком этапе деления они перестают быть самими собой, теряют главные признаки? Все они отличаются друг от друга лишь продолжительностью процесса деления - иголка перестает быть иголкой при делении на две части, уголь и сахар - при делении до атома. По-видимому, так называемый диалектический закон перехода количественных изменений в качественные отражает лишь содержательную сторону более общего закона - закона образования системного эффекта (системного качества).

Элемент - относительно целая часть системы, обладающая некоторыми свойствами неисчезающими при отделении от системы. Однако в системе свойства элемента не равны свойствам отдельно взятого элемента. Сумма свойств элемента в системе может быть больше или меньше суммы его свойств вне системы. Иначе говоря, часть свойств элемента, включаемого в систему, гасится или к элементу добавляются новые свойства. В подавляющем большинстве случаев часть свойств элемента нейтрализуется в системе, в зависимости от величины этой части говорят о степени потери индивидуальности элемента включенного в систему. Элемент - минимальная единица системы, способная к выполнению некоторой элементарной функции. Все технические системы начинались с одного элемента, предназначенного для выполнения одной элементарной функции. Затем, по мере развития ТС идет дифференциация элемента, то есть разделение элемента на зоны с разными свойствами. Из моноструктуры элемента (камень, палка) начинают выделяться другие элементы. Например, при превращении каменного резца в нож выделились рабочая зона и зона ручки, а затем усиление специфических свойств каждой зоны потребовало применение разных материалов (составные инструменты). Из рабочего органа выделилась и развилась трансмиссия.

Связь - это отношение между элементами системы, это реальный физический (вещественный или полевой) канал для передачи энергии, вещества или информационных сигналов; причем сигналов нематериальных не бывает, это всегда энергия или вещество. Главное условие работы связи - "разность потенциалов" между элементами, то есть градиент поля или вещества (отклонение от термодинамического равновесия - принцип Онзагера). При градиенте возникает движущая сила, вызывающая поток энергии или вещества. Основные характеристики связи: физическая реализация и мощность. Физическая реализация - это вид вещества или поля, используемого в связи. Мощность - интенсивность потока вещества или энергии. Мощность связи должна быть больше мощности внесистемных связей, выше уровня шума внешней среды.

Иерархический принцип организации структуры возможен только в многоуровневых системах (это большой класс современных технических систем) и заключается в упорядочении взаимодействий между уровнями в порядке от высшего к нижнему. Каждый уровень выступает как управляющий по отношению ко всем нижележащим и как управляемый, подчиненный, по отношению к вышележащему. Каждый уровень специализируется также на выполнении определенной функции (ГПФ уровня). Абсолютно жестких иерархий не бывает, часть систем нижних уровней обладает меньшей или большей автономией по отношению к вышележащим уровням. В пределах уровня отношения элементов взаимно дополняют друг друга, им присущи черты самоорганизации (это закладывается при формировании структуры). Возникновение и развитие иерархических структур не случайно, так как это единственный путь увеличения эффективности, надежности и устойчивости в системах средней и высокой сложности. В простых системах иерархия не требуется, так как взаимодействие осуществляется по непосредственным связям между элементами. В сложных системах непосредственные взаимодействия между всеми элементами невозможны (требуется слишком много связей), поэтому непосредственные контакты сохраняются лишь между элементами одного уровня, а связи между уровнями резко сокращаются.

Техническая система -- это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая последовательно взаимодействующие сенсорную и исполнительную функциональные части, модель их предопределенного поведения в пространстве равновесных устойчивых состояний и способность, при нахождении хотя бы в одном из них (целевом состоянии), самостоятельно выполнять в штатных условиях предусмотренные её конструкцией потребительские функции

Смысл системного подхода при исследовании процессов развития в технике заключается в рассмотрении любого технического объекта как системы взаимосвязанных элементов, образующих единое целое. Линия развития представляет собой совокупность нескольких узловых точек - технических систем, резко отличающихся друг от друга (если их сравнивать только между собой); между узловыми точками лежит множество промежуточных технических решений - технических систем с небольшими изменениями по сравнению с предшествующим шагом развития. Системы как бы "перетекают" одна в другую, медленно эволюционируя, отодвигаясь все дальше от исходной системы, преображаясь иногда до неузнаваемости. Мелкие изменения накапливаются и становятся причиной крупных качественных преобразований. Чтобы познать эти закономерности, необходимо определить, что такое техническая система, из каких элементов она состоит, как возникают и функционируют связи между частями, каковы последствия от действия внешних и внутренних факторов, и т.д. Несмотря на огромное разнообразие, технические системы обладают рядом общих свойств, признаков и структурных особенностей, что позволяет считать их единой группой объектов.

Каковы основные признаки технических систем? К ним можно отнести следующие:

системы состоят из частей, элементов, то есть имеют структуру,

системы созданы для каких-то целей, то есть выполняют полезные функции;

элементы (части) системы имеют связи друг с другом, соединены определенным образом, организованы в пространстве и времени;

каждая система в целом обладает каким-то особым качеством, неравным простой сумме свойств составляющих ее элементов, иначе пропадает смысл в создании системы (цельной, функционирующей, организованной).

Поясним это простым примером. Допустим, необходимо составить фоторобот преступника. Перед свидетелем поставлена четкая цель: составить систему (фотопортрет) из отдельных частей (элементов), система предназначается для выполнения весьма полезной функции. Естественно, что части будущей системы не соединяются как попало, они должны дополнять друг друга. Поэтому идет длительный процесс подбора элементов таким образом, чтобы каждый элемент, входящий в систему, дополнял предыдущий, а вместе они увеличивали бы полезную функцию системы, то есть усиливали бы похожесть портрета на оригинал. И вдруг, в какой-то момент, происходит чудо - качественный скачок! - совпадение фоторобота с обликом преступника. Здесь элементы организованы в пространстве строго определенным образом (невозможно переставить их), взаимосвязаны, вместе дают новое качество. Даже если свидетель абсолютно точно идентифицирует по отдельности глаза, нос и т.д. с фотомоделями, то эта сумма "кусочков лица" (каждый из которых правильный!) ничего не дает - это будет простая сумма свойств элементов. Только функционально точно соединенные элементы дают главное качество системы (и оправдывают ее существование). Точно так же набор букв (например, А, Л, К, Е), соединившись только определенным образом дает новое качество (например, ЕЛКА).

ТЕХНИЧЕСКАЯ СИСТЕМА - это совокупность упорядоченно взаимодействующих элементов, обладающая свойствами, не сводящимися к свойствам отдельных элементов, и предназначенная для выполнения определенных полезных функций.

Таким образом, техническая система имеет 4 главных (фундаментальных) признака:

функциональность,

целостность (структура),

организация,

системное качество.

Отсутствие хотя бы одного признака не позволяет считать объект технической системой.

Функционирование это изменение свойств, характеристик и качеств системы в пространстве и времени.

Функция - это способность ТС проявлять свое свойство (качество, полезность) при определенных условиях и преобразовывать предмет труда (изделие) в требуемую форму или величину.

Совокупность (целостность) элементов и свойств неотъемлемый признак системы. Соединение элементов в единое целое нужно для получения (образования, синтеза) полезной функции, т.е. для достижения поставленной цели.

Если определение функции (цели) системы в какой-то мере зависит от человека, то структура - наиболее объективный признак системы, она зависит только от вида и материального состава используемых в ТС элементов, а также от общих законов мира, диктующих определенные способы соединения, виды связи и режимы функционирования элементов в структуре. В этом смысле структура это способ взаимного соединения элементов в системе. Составление структуры - это программирование системы, задание поведения ТС с целью получения в результате полезной функции. Требуемая функция и выбранный физический принцип ее осуществления однозначно задают структуру.

Структура - это совокупность элементов и связей между ними, которые определяются физическим принципом осуществления требуемой полезной функции.

"Формула" системы:

Иерархический принцип организации структуры возможен только в многоуровневых системах (это большой класс современных технических систем) и заключается в упорядочении взаимодействий между уровнями в порядке от высшего к нижнему. Каждый уровень выступает как управляющий по отношению ко всем нижележащим и как управляемый, подчиненный, по отношению к вышележащему. Каждый уровень специализируется также на выполнении определенной функции (ГПФ уровня). Абсолютно жестких иерархий не бывает, часть систем нижних уровней обладает меньшей или большей автономией по отношению к вышележащим уровням. В пределах уровня отношения элементов равны между собой, взаимно дополняют друг друга, им присущи черты самоорганизации (закладываются при формировании структуры).

"Под идеальной системой понимается такая система, затраты на получение полезного эффекта в которой равны нулю. При этом под затратами понимается самый широкий круг понятий - энергия, материалы, занимаемое пространство... Понятие идеальной технической системы было выдвинуто Г.С. Альтшуллером. Образ идеальной системы позволяет сконцентрировать внимание разработчика только на ожидаемом полезном эффекте, лучше осознать, что требуется потребителю. Оценим, насколько эффективным может быть использование такого подхода к определению цели в практической деятельности.

Функциональный состав и свойства объектов таксона «технические системы». техническая система изобретательский творческий инженерный

В каждой ТС существует функциональная часть -- объект управления (ОУ). Функции ОУ в ТС заключаются в восприятии управляющих воздействий (УВ) и в изменении в соответствии с ними своего состояния. ОУ в ТС не выполняет функций принятия решений, то есть не формирует и не выбирает альтернативы своего поведения, а только реагирует на внешние (управляющие и возмущающие) воздействия, изменяя свои состояния предопределенным его конструкцией образом.

В объекте управления всегда могут быть выделены две функциональные части -- сенсорная и исполнительная.

Сенсорная часть образована совокупностью технических устройств, непосредственной причиной изменения состояний каждого из которых является соответствующие ему и предназначенные для этого управляющие воздействия. Примеры сенсорных устройств: выключатели, переключатели, задвижки, заслонки, датчики и другие подобные им по функциональному назначению устройства управления техническими системами.

Исполнительная часть образована совокупностью материальных объектов, все или отдельные комбинации состояний которых рассматриваются в качестве целевых состояний технической системы, в которых она способна самостоятельно выполнять предусмотренные её конструкцией потребительские функции. Непосредственной причиной изменения состояний исполнительной части ТС (ОУ в ТС) являются изменения состояний её сенсорной части.

Классификационные признаки объектов таксона «технические системы»:

представляют собой целостную совокупность конечного множества со взаимодействующих материальных объектов

имеют условия штатной эксплуатации, предусмотренные их конструкцией

имеют модели управляемого предопределенного причинно-следственного поведения в пространстве достижимых равновесных устойчивых состояний

имеют целевые состояния, соответствующие состояниям исполнительной части объекта управления в ТС

имеют способность, находясь в целевых состояниях, самостоятельно выполнять потребительские функции

Выделим несколько наиболее характерных для техники структур: 1). Корпускулярная. Состоит из одинаковых элементов, слабосвязанных между собой; исчезновение части элементов почти не отражается на функции системы. Примеры: эскадра кораблей, песчаный фильтр. Рис. 3.1. Корпускулярная структура системы 2). "Кирпичная". Состоит из одинаковых жестко связанных между собой элементов. Примеры: стена, арка, мост. Рис. 3.2. «Кирпичная» структура системы. 3). Цепная. Состоит из однотипных шарнирно связанных элементов. Примеры: гусеница, поезд. Рис. 3.3. Цепная структура системы. 4). Сетевая. Состоит из разнотипных элементов, связанных между собой непосредственно, или транзитом через другие, или через центральный (узловой) элемент (звездная структура). Примеры: телефонная сеть, телевидение, библиотека, система теплоснабжения. Рис. 3.4. Сетевая структура системы. 5). Многосвязная. Включает множество перекрестных связей в сетевой модели. Рис. 3.5. Многосвязная структура системы. 6). Иерархическая. Состоит из разнородных элементов, каждый из которых является составным элементом системы более высокого ранга и имеет связи по "горизонтали" (с элементами одного уровня) и по "вертикали" (с элементами разных уровней). Примеры: станок, автомобиль, винтовка. По типу развития во времени структуры бывают:
  1. Развертывающиеся . С течением времени при увеличении ГПФ растет количество элементов.
  2. Свертывающиеся . С течением времени при росте или неизменном значении ГПФ количество элементов уменьшается.
  3. Редуцирующие . В какой-то момент времени начинается уменьшение количества элементов при одновременном уменьшении ГПФ.
  4. Деградирующие . Уменьшение ГПФ при уменьшении связей, мощности, эффективности.
3.2. Особенности развития технических систем Для развития реальных технических систем характерен многостадийный процесс. Статистические данные изменения тех или иных параметров больших технических систем отражают результаты одновременного воздействия факторов, обусловленных действием объективных законов. Графическое представление параметров технических систем может быть представлено семейством S-образных кривых. (Рис. 3.6.).
Рис. 3.6. Изменение во времени технических характеристик систем. Несмотря на индивидуальные особенности конкретных систем (летательные аппарат, двигатели, приборы), эта зависимость имеет характерные участки. На участке 1 идет медленное развитие системы. Участок 2 соответствует массовому применению. Наступает «зрелость» системы. На участке 3 темп развития системы спадает. Происходит старение системы. Затем развитие идет по следующей кривой. Каждая следующая кривая данного графика соответствует новому поколения технической системы. В книге В.И. Муштаева «Основы инженерного творчества» Приведены аналитические выражения, аппроксимирующие такой параметр самолетов, как его скорость. В недрах каждой предыдущей стадии зарождается последующая, жизнеспособность и эффективность которой всегда выше предыдущей. Особенности развития сложных систем заключаются в том, что каждая подсистема, входящая в систему, также проходит все три этапа развития. Поэтому S – образные кривые для сложных систем являются интегральными, состоящими из совокупности S – образных кривых всех входящих подсистем. При этом самая слабая подсистема, ресурсы которой исчерпаны первыми, обычно тормозит развитие всей системы. Поэтому дальнейшее совершенствование технической системы возможно только после ее замены. Пример в области самолетостроения. В 20-е годы исчерпала себя аэродинамическая концепция. Биплан с неубирающимся шасси и открытия кабина летчика. В 40-х годах скорость самолета ограничивалась неэффективностью воздушного винта при скорости около 700 км/час. Это дало развитие реактивной авиации. Приведенные выше кривые могут служить основой для разработки научно-обоснованной методики изучения процессов развития конкретных технических устройств. 3.3. Законы развития техники и ТРИЗ (теория решения изобретательских задач) Первых законы развития технических систем были выявлены К. Марксом в работе «Нищета философии». Он писал: « Простые орудия, накопление орудий, сложные орудия, приведение в действие сложного орудия одним двигателем – руками человека. Приведение этих инструментов в действие силами природы; машины; система машин, имеющая двигатель, - вот ход развития машин». В результате статистического анализа патентного фонда Г.С. Альтшуллер разработал общую схему развития технических систем. В схеме указаны основные проблемы, трудности, конфликты, встречающиеся на разных уровнях и этапах развития, технические ошибки, допускаемые изобретателями при решении задач, а также правильные закономерные пути дальнейшего развития. Было также определено общее направление развития технических систем в направлении повышения уровня идеальности. Такой системный подход к развитию техники позволил разработать теорию решения изобретательских задач (ТРИЗ).В основе ее лежит постулат: техническая система развивается по объективно существующим законам, эти законы познаваемы. Их можно выявить и использовать для сознательного, целенаправленного решения изобретательских задач. Законы развития технических систем классифицируются на 3 группы: статика, кинематика, динамика. Статические законы определяют жизнеспособность новых технических систем. Основными из них являются следующие законы: 1. наличие и хотя бы минимальная работоспособность ее составных частей; 2. сквозной проход энергии через систему к ее рабочему органу; 3. Согласование собственных частот колебаний (или периодичности) всех частей системы. Кинематика объединяет законы, характеризующие развитие систем независимо от конкретных технических и физических механизмов этого развития. 1. Всякая техническая система стремится к увеличению степени идеальности и степени динамичности: 2. Процесс развития неравномерен и проходит через стадии возникновения и преодоления технических противоречий: 3. Техническая система развивается только до определенного предела, становясь затем частью надсистемы; при этом развитие на уровне системы резко замедляется или совсем прекращается, заменяясь развитием на уровне надсистемы. Динамические законы отражают тенденции развития современных технических систем. 1. Развитие идет в направлении увеличения степени управляемости; 2. Развитие современных технических систем идет в направлении увеличения степени дробления, дисперсности рабочих органов. В особенности, типичен переход от рабочих органов на макро уровне к рабочим органам на микро уровне. Другой подход к законам развития технических систем предложили Меерович и Шрагин в книге «Законы развития и прогнозирования технических систем». Выделено 3 группы развития технических систем. Общие законы, законы синтеза систем и законы развития систем. Общие законы: 1. Развитие любой технической системы идет в направлении повышения уровня ее идеальности; 2. Составные части системы развиваются неравномерно – через возникновения и преодоления технических противоречий; 3. Исчерпав возможности своего развития, техническая система может вырождаться, консервироваться на определенном уровне, или ее рабочий орган становится подсистемой новой системы. Законы синтеза системы: 1. Автономная система должна состоять из четырех минимально работающих частей: рабочего органа, двигателя (источника энергии), трансмиссии и органа управления; 2. Связь через части системы и сами ее части должны обеспечивать свободный проход энергии через всю систему; 3. Управление системой может осуществляться воздействием на любую ее часть. Законы развития отражают условия и причины развития системы и формулируются следующим образом: 1. Согласования ритмики технических систем; 2. Динамизация рабочего органа (на макро- и микро уровнях); 3. Повышение числа управляемых связей; 4. Структурирование; 5. Переход в надсистему; 6. увеличение числа дополнительных функций. Постулаты ТРИЗ
  1. Техника развивается по определённым законам.
  2. Для решения изобретательских задач необходимо выявить и разрешить противоречия.
  3. Изобретательские проблемы можно классифицировать и решить соответствующим методом.
Г. С. Альтшуллер пришел к выводу, что фундаментом будущей теории изобретательства должны быть законы развития технических систем. Альтшуллером была разработана система законов развития техники. Изобретательское и рутинное мышление Отличие изобретательского и рутинного (традиционного) мышления. При рутинном мышлении мы ищем компромисс . В изобретательском мышлении мы выявляем противоречие , лежащее в глубине проблемы. Углубляя и обостряя противоречие, мы определяем первопричины, породившие данное противоречие. Разрешая противоречие, получаем результат без недостатков. Структура и функции ТРИЗ Основные функции ТРИЗ
  1. Решение творческих и изобретательских задач любой сложности и направленности без перебора вариантов.
  2. Прогнозирование развития технических систем (ТС) и получение перспективных решений (в том числе и принципиально новых).
  3. Развитие качеств творческой личности.
Вспомогательные функции ТРИЗ
  1. Решение научных и исследовательских задач.
  2. Выявление проблем, трудностей и задач при работе с техническими системами и при их развитии.
  3. Выявление причин брака и аварийных ситуаций.
  4. Максимально эффективное использование ресурсов природы и техники для решения многих проблем.
  5. Объективная оценка решений.
  6. Систематизирование знаний любых областей деятельности, позволяющее значительно эффективнее использовать эти знания и на принципиально новой основе развивать конкретные науки.
  7. Развитие творческого воображения и мышления.
  8. Развитие творческих коллективов.