Ионизация атома происходит когда электроны добавляются. Ионизация и её функции. Смотреть что такое "Ионизация" в других словарях

Ионизация атомов может быть прямой, косвенной или многофотонной. В первом случае атом или молекула при столкновении с фотоном поглощает его энергию и ионизуется. При этом энергия фотона должна превышать энергию ионизации. Во втором случае атом, поглотив энергию фотона, переходит в возбужденное состояние. Если время жизни в возбужденном состоянии достаточно велико, то в результате следующих актов поглощения фотонов также может произойти ионизация атома. Эти процессы можно записать следующим образом:

где обозначают нейтральный, возбужденный и ионизованный атом.

В процессе прямой ионизации должны выполняться законы сохранения энергии и импульса:

где - единичный вектор, определяющий начальное направление светового пучка, и - масса и скорость электрона, М и V - масса и скорость иона. Отделенный от атома электрон движется в направлении, противоположном движению положительного иона . С учетом этого

Значение правой части выражения (28.3) не может превысить единицу; поэтому

Первое из выражений (28.2) можно записать в виде

Это означает, что почти вся энергия кванта передается электрону.

а. Многофотолная ионизация

Наибольший интерес представляет процесс многофотонной ионизации. Его теорию разработали Бебб и Голд , Фелпс , Бункин и Прохоров , Келдыш , Делоне , Гонтье и Траин и др. Согласно классификации Делоне, многофотонная ионизация во многих случаях является прямым, резонансным или многофотонным процессом высокого порядка. В общем случае энергия нескольких или даже 10-20 фотонов не равна точно энергии ионизации. Следовательно, взаимодействие этих фотонов с атомом не может быть резонансным. Вероятность ионизации атома в течение 1 с пропорциональна степени потока фотонов (где - кратность процесса ионизации):

Здесь Пучок рубинового лазера с плотностью мощности эквивалентен потоку фотонов Величина называется эффективным поперечным сечением ионизации порядка. Например, энергия ионизации атома гелия равна 24,58 эВ; энергия одного кванта излучения рубинового лазера - лишь 1,78 эВ, следовательно только одновременное поглощение 14 квантов может обеспечить ионизацию атомов гелия. В табл. 28.2 приведены энергии ионизации некоторых атомов и молекул. Бебб и Голд рассчитали методом теории возмущений эффективные поперечные сечения для ионизации Не и Н; ионизация этих атомов требует одновременного поглощения 7, 8, 9, 13 и 14 квантов излучения рубинового лазера, соответственно. Простейшей аппроксимацией этого процесса является введение перехода дипольного типа и представление электрона, оторванного от атома, в виде плоской волны. Изложить здесь теорию Бебба и Голда невозможно ввиду ее громоздкого характера. Приведем лишь основные результаты работы , которые представлены в виде табл. 28.3. Как видно из таблицы, поперечные сечения многофотонной ионизации чрезвычайно малы. Однако следует помнить о том, что поток фотонов в

Таблица 28.2 (см. скан) Энергии ионизации некоторых атомов и молекул

Таблица 28.3 (см. скан) Эффективные поперечные сечения многофотонной ионизации и пороговые потоки фотонов, необходимые для инициирования пробоя и рассчитанные для плотности газа и воздействия лазерного импульса длительностью 10 нс на объем газа

лазерном пучке может достигать весьма высоких значений. Экспериментальная проверка формулы (28.5) очень; проста. Отложив по осям координат получим прямую, наклон которой определяет

Процесс многофотонной ионизации можно описать теоретически и без помощи теории возмущений и др.). В этом методе, который часто называют методом Рейсса, учитываются лишь два состояния электрона - начальное и конечное. Если под конечным состоянием понимать ионизованный атом, что соответствует изменению энергии электрона от определенного значения до континуума, можно рассчитать эффективные поперечные сечения многофотонной ионизации для многих водородоподобных атомов. Это облегчило расчет зависимости эффективных поперечных сечений от состояния поляризации света ( и др.), результаты которого нашли экспериментальное подтверждение в работах Кагана и др. , Фокса и др. и Сервенана и Айсенора . Теоретические расчеты показывают, что при вероятность ионизации атомов существенно зависит от состояния поляризации света. При более эффективен свет с круговой поляризацией, чем с линейной. При более эффективным становится свет с линейной поляризацией. Для иллюстрации на рис. 28.15 приведен график зависимости от порядка процесса (при ).

Каган и др. наблюдали ионизацию паров цезия второй гармоникой рубинового лазера. Процесс был двухфотонным. Установлено, что эффективность ионизации излучением с круговой

Рис. 28.15. Отношение эффективных поперечных сечений многофотонной ионизации для излучения с круговой и линейной поляризацией в зависимости от числа одновременно поглощаемых квантов излучения неодимового лазера .

поляризацией была в раза выше, чем для линейно-поляризованного излучения. Вскоре Фокс и др. сообщили о трехфотонной ионизации атомов цезия пучком рубинового лазера, при которой свет с круговой поляризацией в два раза эффективнее, чем с линейной. Кроме того, расчеты без применения теории возмущений показали, что зависимость вероятности многофотонной ионизации от потока фотонов может иметь максимумы и минимумы. Особую роль в процессе многофотонной ионизации играет резонансный эффект. Он возникает, когда суммарная энергия нескольких фотонов точно равна энергии электрона в одном из возбужденных состояний. Таким образом, процесс ионизации может быть двухступенчатым. Вначале электрон переходит в возбужденное состояние, а затем полностью отрывается от атома. В исследования резонансных эффектов внесли значительный вклад Делоне и др. , Эванс и Тонеманн и Хелд и др. .


Или молекул .

Положительно заряженный ион образуется, если электрон в атоме или молекуле получает достаточную энергию для преодоления потенциального барьера , равную ионизационному потенциалу. Отрицательно заряженный ион, наоборот, образуется при захвате дополнительного электрона атомом с высвобождением энергии.

Принято различать ионизацию двух типов - последовательную (классическую) и квантовую, не подчиняющуюся некоторым законам классической физики .

Классическая ионизация

Аэроионы, кроме того, что они бывают положительными и отрицательными, разделяются на лёгкие, средние и тяжёлые ионы. В свободном виде (при атмосферном давлении) электрон существует не более, чем 10 −7 - 10 −8 секунды.

Ионизация в электролитах

Ионизация в тлеющем разряде происходит в разрежённой атмосфере инертного газа (например, в аргоне) между электродом и проводящим кусочком образца.

Ударная ионизация . Если какая-либо частица с массой m (электрон, ион или нейтральная молекула), летящая со скоростью V, столкнётся с нейтральным атомом или молекулой, то кинетическая энергия летящей частицы может быть затрачена на совершение акта ионизации, если эта кинетическая энергия не меньше энергии ионизации.

См. также


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Ионизация" в других словарях:

    Образование положит. и отрицат. ионов и свободных эл нов из электрически нейтральных атомов и молекул. Термином «И.» обозначают как элементарный акт (И. атома, молекулы), так и совокупность множества таких актов (И. газа, жидкости). Ионизация в… … Физическая энциклопедия

    ИОНИЗАЦИЯ, превращение атомов и молекул в ионы и свободные электроны; процесс, обратный рекомбинации. Ионизация в газах происходит в результате отрыва от атома или молекулы одного или нескольких электронов под влиянием внешних воздействий. В… … Современная энциклопедия

    Превращение атомов и молекул в ионы. Степень ионизации отношение числа ионов к числу нейтральных частиц в единице объема. Ионизация в электролитах происходит в процессе растворения при распаде молекул растворенного вещества на ионы… … Большой Энциклопедический словарь

    ИОНИЗАЦИЯ, ионизации, мн. нет, жен. 1. Образование или возбуждение ионов в какой нибудь среде (физ.). Ионизация газов. 2. Введение в организм лекарственных веществ посредством ионов, возбуждаемых электрическим током в этих веществах (мед.).… … Толковый словарь Ушакова

    Фотолиз Словарь русских синонимов. ионизация сущ., кол во синонимов: 7 автоионизация (1) … Словарь синонимов

    ИОНИЗАЦИЯ, процесс превращения нейтральных атомов или молекул в ионы. Положительные ионы могут образовываться в результате сообщения энергии отсоединенным от атома ЭЛЕКТРОНАМ, например, во время рентгеновского, УЛЬТРАФИОЛЕТОВОГО облучения или под … Научно-технический энциклопедический словарь

    ИОНИЗАЦИЯ, и, жен. (спец.). Образование ионов в какой н. среде. И. газов. | прил. ионизационный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Процесс превращения электрически нейтральных атомов и молекул в ионы обоих знаков. Происходит при хим. реакциях, при нагревании, под действием сильных электрических полей, света и др. излучений. Вещество может быть ионизировано во всех трех физ.… … Геологическая энциклопедия

    Ionization образование положительных и отрицательных ионов из электрически нейтральных атомов и молекул. Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

    ионизация - и, ж. ionisation <гр. физ. Превращение нейтральных атомов или молекул в ионы. Ионизационный ая, ое. Крысин 1998. Уш. 1934: иониза/ция … Исторический словарь галлицизмов русского языка

    ионизация - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN ionization … Справочник технического переводчика

Книги

  • Масс-спектрометрия синтетических полимеров , В. Г. Заикин. Монография представляет собой первое в отечественной литературе обобщение масс-спектрометрических подходов к разностороннему исследованию высокомолекулярных синтетических органических…

Ионизация атомов

Каждый атом состоит из положительно заряженного ядра, в котором сосредоточена почти вся масса атома, и электронов, вращающихся по орбитам вокруг ядра и в совокупности образующих так называемую электронную оболочку атома. Внешний слой оболочки содержит электроны, сравнительно слабо связанные с ядром. При бомбардировке атома частицей, например протоном, один из внешних электронов может быть оторван от атома, и атом превращается в положительно заряженный ион (рис. 6, а). Именно этот процесс и называется ионизацией.

В кристалле полупроводника, где атомы занимают строго определенные положения, в результате ионизации образуются свободные электроны и положительно заряженные ионы (дырки).

Таким образом, возникают избыточные электронно-дырочные пары, которых ранее в кристалле не было. Концентрацию таких неравновесных пар можно даже подсчитать по формуле:

где е - заряд электрона; ц - мощность дозы (плотность потока) радиации; с - коэффициент преобразования, зависящий от вида радиации и ее энергетического спектра; ф - время жизни неосновных носителей заряда.

Значительное увеличение концентрации носителей заряда нарушает функционирование полупроводниковых приборов, особенно работающих на не основных носителях.

Ионизационные токи через p-n-переход при ядерном взрыве могут достигать большой величины (10 6 А/см 2) и приводить к выходу из строя полупроводниковые приборы. Для снижения токов ионизации необходимо по возможности уменьшить габариты p-n-переходов.

Рис.а - ионизация атома; б - кристаллическая решетка до облучения; в- образование радиационного дефекта в кристалле; 1 - нормальное положение атома; 2 - атом смещен в междоузлие; 3 - образовавшаяся вакансия; 4 - бомбардирующая частица

Образование радиационных дефектов

При воздействии на полупроводники ядерных излучений (нейтронов, протонов, гамма-квантов и др.) кроме ионизации, на которую расходуется примерно 99% энергии излучения, происходит образование радиационных дефектов. Радиационный дефект может возникнуть в том случае, если энергия бомбардирующей частицы достаточна для смещения атома из узла кристаллической решетки в междоузлие. Например, атом кремния смещается, если он получает от бомбардирующей частицы энергию примерно 15 - 20 эВ. Эта энергия обычно называется пороговой энергией смещения. На рис. 6, в представлена простейшая схема образования первичных радиационных дефектов в полупроводнике. Налетающая частица 4, взаимодействуя с атомом решетки, смещает его в междоузлие 2. В результате образуется вакансия 3. Вакансия и междоузельный атом - простейшие радиационные дефекты, или, как их еще называют, пары Френкеля. Смещенный атом 2 , если ему передана энергия выше пороговой, может в свою очередь вызывать вторичные смещения. Образовывать новые смещения может также и бомбардирующая частица. Процесс этот будет продолжаться до тех пор, пока частица и смещенный атом не растратят всю свою энергию на ионизацию и смещения или не покинут объем кристалла. Таким образом, при бомбардировке ядерной частицей в кристалле может возникнуть целый каскад атомных смещений, нарушающих его строение.

Энергия, передаваемая атому решетки нейтроном или тяжелой заряженной частицей (ионом, протоном), в случае лобового столкновения рассчитывается на основе закона соударения твердых шаров по формуле:

Закон сохранения энергии

Закон сохранения импульса

Откуда (13)

где m - масса нейтрона; М - масса ядра атома полупроводника; Е m - энергия нейтрона. Из выражения видно, что чем меньше масса ядра атома, с которым сталкивается нейтрон, тем больше энергия, передаваемая этому атому.

При определении кинетической энергии атомов отдачи, возникающих под действием легких заряженных частиц (электронов, позитронов), учитывают электрический потенциал кристаллической решетки и изменение массы частицы в зависимости от се скорости. Для случая облучения быстрыми электронами выражение имеет вид:

где E max - наибольшая кинетическая энергия смещенного атома; Е э - кинетическая энергия электрона; m - масса покоя электрона; с - скорость света; М - масса ядра атома полупроводника.

При облучении полупроводников гамма-квантами вероятность образования смещений в результате непосредственного взаимодействия гамма-квантов с ядрами атомов очень мала. Смещения в данном случае будут возникать за счет электронов, образующихся в полупроводнике под действием гамма-квантов. Следовательно, появление смещений в полупроводнике при облучении гамма-квантами следует рассматривать как вторичный процесс, т.е. вначале образуются быстрые электроны, а затем под их воздействием происходят смещения атомов.

Кроме того, при облучении частицами высоких энергий (нейтроны, протоны, электроны) в кристаллах полупроводников могут образовываться также целые области радиационных нарушений - разупорядоченные области. Происходит это потому, что бомбардирующая частица, обладающая большой кинетической энергией, значительную ее часть передает смещаемому атому, который и производит сильные нарушения. В дальнейшем бомбардирующая частица может вообще оставить кристалл, вылететь из него. Смещенный же атом, обладая большими геометрическими размерами по сравнению с бомбардирующей частицей и, кроме того, являясь электрически заряженным (ион), так как при смещении от него отрывается часть валентных электронов, так свободно, как например нейтрон, вылететь из кристалла не сможет. Этому мешают малые расстояния между атомами в кристалле и электрическое поле. Всю свою огромную кинетическую энергию смещенный атом вынужден тратить в маленьком объеме на расталкивание атомов кристаллической решетки. Так образуется область радиационного нарушения, по форме близкая к сфере или эллипсоиду.

Как установлено, для образования области разупорядочения в кремнии энергия атома отдачи (смещения) должна быть более 5 КэВ. Размеры области будут возрастать с увеличением его энергии. По результатам электронно-микроскопических исследований, размеры областей разупорядочения лежат в пределах 50 - 500?. Установлено, что концентрация носителей заряда в области разупорядочения во много раз меньше, чем в ненарушенной области полупроводника. В результате на границе разупорядоченной области и основной матрицы полупроводника возникает контактная разность потенциалов, и разупорядоченная область окружена электрическим потенциальным барьером, препятствующим переносу носителей заряда.

Смещенные атомы и области разупорядочения относятся к первичным радиационным повреждениям полупроводника. Число их будет возрастать с увеличением потока бомбардирующих частиц. При очень больших потоках (больше 10 23 част/см 2) полупроводник может потерять кристаллическую структуру, его решетка полностью разрушится и он превратится в аморфное тело.

Число первично смещенных атомов в единице объема полупроводника можно оценить приближенно по формуле

где Ф - поток частиц (суммарный); N - число атомов в 1 см 3 полупроводника; у d -поперечное сечение столкновений, вызывающих смещения атомов.

Поперечное сечение столкновений есть некая эффективная площадь, измеряемая в квадратных сантиметрах, характеризующая вероятность столкновения частицы, например нейтрона, с ядром атома вещества. Ядро имеет очень малые размеры по сравнению с атомом. Поэтому вероятность попадания в него очень мала. Сечение столкновений для нейтронов с энергией 1-10 МэВ обычно равно 10 -24 см 2 . Но поскольку в 1 см 3 вещества содержится приблизительно 10 23 атомов, то столкновения происходят довольно часто. Так, на 10 «выстрелов» в 1 см 3 полупроводника приходится примерно одно столкновение (попадание). В соответствии с приведенной формулой при потоке 10 12 нейтр/см 2 в 1 см 3 полупроводника происходит около 10 11 смещений атомов, которые в свою очередь могут вызвать вторичные смещения.

Надо заметить, что первичные радиационные дефекты (междоузельный атом и вакансия) не стабильны. Они вступают во взаимодействие друг с другом или с имеющимися в кристалле примесями и другими несовершенствами. Так образуются более сложные радиационные дефекты, например, для кремния n -типа проводимости, легированного фосфором, наиболее характерны такие радиационные дефекты, как вакансия + атом фосфора (Е-центр), вакансия + атом кислорода (Л-центр), дивакансия (соединение двух вакансий). В настоящее время определено большое количество разнообразных типов радиационных дефектов, которые характеризуются различной термической устойчивостью и способностью влиять на электрические и механические свойства материала. Радиационные дефекты в зависимости от их структуры обусловливают появление в запрещенной зоне полупроводника целого спектра энергетических уровней. Эти уровни являются основной причиной изменения свойств полупроводников при облучении.

Ионизация - процесс отделения электронов от нейтрального атома или молекулы - возможна при затрате энергии на преодоление притяжения между вырываемым электроном и остальной частью атома. Эту энергию называют работой ионизации А. Если ионы образуются после столкновения быстрого электрона с атомом, то такая ионизация называется ударной.

Наименьшее значение кинетической энергии электронов, при которой происходит ионизация, чуть больше работы ионизации А i:А i = (mv 2 /2)/(1+m/M).

Отношение масс электрона и атома всегда малая величина, например для атома водорода m/M=5,443x10 -4 , и величина, стоящая в скобках, близка к единице. Разность потенциалов, при прохождении которой электрон или другая частица с таким же зарядом приобретает кинетическую энергию, равную работе ионизации, называют потенциалом ионизации: V i:V i =А i /e.

Наиболее точный способ определения потенциала ионизации состоит в измерении энергий переходов атомов при изучении их линейчатых спектров. Наиболее наглядный способ - это измерение потенциала между катодом К и сеткой С газоразрядной трубки JI (см. рис.). Если давление в трубке невелико, то электроны, испущенные накаленным катодом, в промежутке К - С не сталкиваются с молекулами газа. При этих условиях энергия электронов, прошедших сквозь сетку, будет равна V e . Такие электроны не смогут достигнуть коллектора K 2 , поскольку его потенциал меньше V e на величину ∆V В результате ток в гальванометре Г будет равен нулю. При увеличении V до значений V > V min в цепи гальванометра появится ток: в объеме С - K 2 образуются положительные ионы, которые притягиваются сборником K 2

Ионизация электронным ударом - один из многих способов получения ионов. В газе, нагретом до высокой температуры, например в солнечной короне, атомы ионизируются, сталкиваясь между собой. Много ионов и в обычном пламени. Так, горящая свеча разряжает электроскоп.

Кванты электромагнитного излучения выбивают из атомов электроны, если обладают достаточной энергией. Такой процесс называют фотоионизацией. Рентгеновские лучи, γ-кванты (см. Гамма-излучение) оставляют в газах следы из ионизированных атомов.

В газе, нагретом до высокой температуры, атомы движутся с большой скоростью и, сталкиваясь друг с другом, теряют электроны. Этот вид ионизации газа - термическая ионизация. Если температура вещества достигает многих миллиардов градусов, атомы теряют все электроны, и образуется смесь атомных ядер и электронов - высокотемпературная плазма. Атомы, потерявшие несколько электронов, называют многозарядными ионами. В солнечном излучении было открыто несколько спектров, не совпадающих ни с одним спектром нового элемента. Казалось, что обнаружена целая группа еще не открытых элементов. Однако вскоре выяснилось, что необычные спектры принадлежат многозарядным ионам обычных элементов и только гелий - новый элемент, впервые обнаруженный на Солнце по его спектру.

ИОНИЗАЦИЯ - превращение электрически нейтральных атомных частиц (атомов, молекул) в результате превращения из них одного или неск. электронов в поло ионы и свободные электроны. Ионизовываться могут также и ионы, что приводит к повышению крат их . (Нейтральные атомы и молекулы мо особых случаях и присоединять электроны, об отрицательные ионы .)Термином "И." обозна как элементарный акт (И. атома, молекулы), и совокупность множества таких актов (И. газа, кости). Осн. механизмами И. являются следующие: столкновительная И. (соударения с электронами, ионами, атомами); И. светом (фотоионизация); ионизация полем ; И. при взаимодействии с поверхностыо твёрдого тела (поверхностная ионизация); ниже рассматриваются первые два типа И. Столкновнтельная ионизация является важнейшим механизмом И. в газах и плазме. Элементарный акт И. характеризуется эфф. сечением ионизации s i [см 2 ], зависящим от сорта сталкивающихся частиц, их квантовых состояний и скорости . При анализе кинетики И. используются понятия скорости И. <v s i (v )>, характеризующей число ионизации, к-рое может произвести одна ионизующая частица в 1 с:

Здесь v - скорость относит, движения и F (v) - ф-ция распределения по скоростям ионизующих частиц. Вероятность ионизации w i данного атома (молекулы) в единицу времени при плотности N числа ионизующих частиц связана со скоростью И. соотношением Определяющую роль в газах и играет И. электронным ударом (столкновения со сводными

Рис. 1. Ионизация атомов и молекул водорода электронным ударом; 1 - атомы Н; 2 - молекулы Н 2 (экспериментальные кривые); 3 - атомы Н (теоретический расчёт, приближение Борна); 4 - расчёт

электронами). Доминирующим процессом является одноэлектронная И.- удаление из атома одного (обычно внеш.) электрона. Кинетич. энергия ионизующего электрона при этом должна быть больше или равна энергии связи электрона в атоме. Мин. значение кинетич. энергии ионизующего электрона наз. порогом (границей) ионизации. Сечение И. атомов, молекул и ионов электронным ударом равно нулю в пороге, возрастает (приблизительно по линейному закону) с ростом кинетич. энергии, достигает макс, значения при энергиях, равных нескольким (2-5) пороговым значениям, а затем убывает с дальнейшим ростом кинетич. энергии. Положение и величина макс, сечения зависят от рода атома. На рис. 1 приведены ионизац. кривые (зависимости сечения И. от энергии) для атома и молекулы водорода. В случае сложных (многоэлектронных) атомов и молекул возможно наличие неск. максимумов в зависимости сечения от энергии. Появление дополнит, максимумов сечения в области энергий столкновения между порогом , соответствующей осн. максимуму, связано обычно с интерференцией прямой И. с возбуждением одного из дискретных состояний (и последующей И. последнего) в одном и том же акте столкновения. На рис. 2 виден такой дополнит, максимум на нач. части ионизац. кривой для Zn. Дополнит. максимумы в области энергий, превышающих значение, соответствующее осн. максимуму сечения, объясняются возбуждением автоионизационных состояний либо И. внутр. оболочек атома. Последние процессы можно рассматривать независимо, поскольку их вклад в И. связан с др. электронными оболочками атома.

Рис. 2. Ионизация атомов Zn электронным ударом вблизи порога.

Наряду с одноэлсктронпои И. возможно удаление двух и более электронов в одном акте столкновения при условии, что кинетич. энергия больше или равна соответствующей энергии И. Сечение этих процессов в неск. раз (для двух- и трёхэлектронных) или на неск. порядков величины (для многоэлектронных процессов) меньше сечений одноэлектронной И. Поэтому в кинетике И. газов и плазмы осн. роль играют процессы одноэлектронной И. п одноэлектронного возбуждения автоионизац. состояний. Сечение И. атома или иона электронным ударом может быть представлено в виде:

где а 0 =0,529.10 -8 см - Бора радиус ; R =13,6 эВ -т. н. ридбергова единица энергии, равная энергии И. атома водорода из осн. состояния (см. Ридберга постоянная ; )E i - энергия И. рассматриваемого состояния атома или иона; n l - число эквивалентных электронов в оболочке атома; l - значение орбитального момента нач. состояния электрона; величина u=(E-E i )/E i есть разность кинетич. энергии налетающего электрона E и порога ионизации E i , выраженная в единицах E i . Ф-ции Ф(u) вычислены и табулированы для большого количества атомов и ионов в . При больших энергиях налетающего электрона EдE i применяется возмущений теория первого порядка (т. н. борновское приближение ).В этом случае для И. атома водорода из осн. состояния ф-ция

В областях малых и средних энергии налетающего электрона (uхl) важнейшим эффектом, влияющим на величину s i , является эффект обмена, связанный с тождественностью налетающего и выбитого из атома электронов . Расчёт s i одноэлектронной И. в рамках теории возмущений с учётом эффекта обмена приводит к удовлетворит, согласию с экспериментом для большинства атомов и ионов . Усовершенствование (и усложнение) методов расчёта позволяет описать детальную структуру ионизац. кривых, а также распределение освободившихся электронов по энергии и углу рассеяния (т. и. дифференц. сечения). Указанная выше скорость И. (1) в предположении максвелловского распределения электронов по скоростям может быть представлена в виде

где b= E i /kT, T - темп-pa ионизующих электронов. Ф-ции G(b) вычислены и табулированы в для большого числа атомов и ионов. Как видно из формул (2) и (4), с повышением заряда иона Z () сечение И. убывает пропорц. Z -4 , а скорость И. С повышением энергии налетающего электрона энергетически возможно выбивание одного из электронов

Рис. 3. Ионизации атома водорода протонами: 1 - экспериментальные данные; 2 - расчёт в приближении Борна; 3 - расчёт .

внутр. оболочек (К, L, . . .)многоэлектронных атомов (или ионов). Соответствующие течения и скорости И. описываются также ф-лами (2) и (4). Однако создание вакансии во внутр. оболочке приводит к образованию автоионизац. состояния атома, к-рое неустойчиво и распадается с удалением из атома одного или неск. электронов и фотонов (оже-эффект ).Но сечения этого процесса много меньше сечения И. внеш. оболочки, поэтому в плазме доминирующим механизмом образования многозарядных ионов является последовательная И. внеш. оболочек.

В плотных газах и при высокоинтенсивных потоках бомбардирующих частиц, обладающих кинетич. энергией i , возможна т. н. ступенчатая И. В первом соударении атомы переводятся в возбужденное состояние , а во втором соударении ионизуются (двухступенчатая И.). Ступенчатая И. возможна только в случаях столь частых соударений, что частица в промежутке между Рис. 4. Экспериментальные данные по ионизации атомов водорода многозарядными ионами углерода, азота и кислорода . двумя соударениями не успевает потерять (излучить) энергию, напр, если атомы ионизуемого вещества обладают метастабильными состояниями . Ионизация молекул электронным ударом отличается от И. атомов большим числом разл. процессов. Если молекулярная система, остающаяся после удаления электрона, оказывается устойчивой, образуется молекулярный ион; в противном случае система диссоциирует с образованием атомных ионов. Число возможных процессов И. с диссоциацией молекул возрастает с увеличением числа атомов в молекуле и в случае многоатомных молекул приводит к образованию большого числа осколочных ионов. Наиб, детально экспериментально и теоретически изучена И. двухатомных молекул. Из рис. 1 видно, что при больших энергиях электрона (в области борцовского приближения) ионизац. кривые для молекулы Н 2 (2) и для атома Н (1) отличаются примерно в два раза, что соответствует различию в числе электронов. Ионизация атомов в столкновениях с ионами и др. атомами эффективна при кинетич. энергии сталкивающихся частиц ~100 эВ и выше. При меньших энергиях сечения крайне малы и в области порога И. (E=E i ) экспериментально не наблюдались. Сечения И. атомов протонами (рис. 3) и др. ионами (рис. 4) качественно подобны сечениям И. электронным ударом в масштабе скоростей относит, движения сталкивающихся частиц. И. максимально эффективна, когда скорость относит, движения порядка скорости орбитальных электронов, т. е. при энергиях ионизующих ионов в десятки кэВ (для И. из осн. состояния атомов). Эксперимент и расчёт показывают, что макс, значение сечения И. атома ионами растёт с ростом заряда иона пропорц. величине заряда. При меньших скоростях механизм И. усложнён образованием квазимолекулы в процессе столкновения, т. е. перераспределением. электронов между ядрами сталкивающихся атомных частиц. Это может приводить к появлению дополнительных максимумов в области малых скоростей.

Рис. 5. Ионизация молекулярного водорода атомами водорода (кривая 1 )и протонами (кривая 2) .

И. атомов и молекул в столкновениях с нейтральными атомами объясняется теми же механизмами, что и в столкновениях с ионами, однако, как правило, количественно менее эффективна. На рис. 5 приведены для сравнения ионизац. кривые для ионизации молекулярного водорода атомами водорода и протонами. При взаимодействии атомных частиц электроны могут удаляться не только из частиц-мишеней, но и из бомбардирующих частиц (явление "обдирки" быстрых ионов или атомов при прохождении через газ или плазму). Налетающие положит, ионы могут также захватывать электроны от ионизуемых частиц - т. и. перезарядка ионов . "Квазимолекулярный" характер процессов столкновений атомных частиц при малых скоростях может приводить к более эффективному, чем в электронных столкновениях (при тех же скоростях), образованию ионов с зарядом больше единицы. Сечения ионизац. столкновит. процессов экспериментально исследуются в скрещенных пучках с использованием техники совпадений. Такой метод является наиб, точным и даёт детальную картину величин дифференц. и полных сечений и их зависимостей от физ. параметров. Скорости И. могут быть с хорошей точностью получены спектроскопич. методом при исследовании излучения хорошо диагностированной плазмы (см. Диагностика плазмы ). При этом необходимо иметь надёжные данные о темп-ре (ф-ции распределения) частиц и их плотности. Этот метод успешно применяется для исследования И. многозарядных (Zа10) ионов электронным ударом. Ионизация светом (фотоионизация ) - процесс И. атомных частиц в результате поглощения фотонов. В слабых световых полях происходит однофотонная И. В световых полях высокой интенсивности возможна многофотонная ионизация .Напр., частота лазерного излучения обычно недостаточна для того, чтобы поглощение одного фотона вызвало И. Однако чрезвычайно высокая плотность потока фотонов в лазерном пучке делает возможной многофотонную И. Экспериментально в разреженных парах щелочных металлов наблюдалась И. с поглощением 7-9 фотонов. В отличие от И. в столкновениях, сечение И. фотоном не равно нулю в пороге И., а обычно максимально и падает с ростом энергии фотона. Однако возможны максимумы в ионизационной кривой и вне порога И. в зависимости от строения атомов. На рис. 6 приведена зависимость сечения фотоионизации для атомов Na и Li. Для атома водорода и водородоподобных ионов существует точная теория процессов фотоионизации. Эфф. сечение фотоионизации из осн. состояния равно

где a= 1 / 137 - тонкой структуры постоянная ,w г - граничная чистота фотоионизации, w - частота фотона и . Для атома водорода w г =109678,758 см -1 (l@1216 Е). (В спектроскопии частота часто даётся в "обратных" см, т. е. ~1/l.) Вблизи границы фотоионизации (w-w г Ъw г)

вдали от границы (w-w г дw г)

Сечение фотоионизации из возбуждённых состояний убывает с ростом гл. квантового числа n пропорц. n -5 (для n/З). Сечение фотоионизации s ф связано с коэф.

Рис. 6. Фотоионизация атомов щелочных металлов: лития (1 - эксперимент; 2 - расчёт) и натрия (3 - эксперимент; 4 - расчёт).

фотопоглощения фотона фиксированной частоты следующим образом:

Здесь сумма берётся по всем уровням атома, для к-рых энергетически возможна фотоионизация, и N n - плотность числа атомов в состоянии n. Вычисление сечений и сопоставление с эксперим. данными (в т. ч. и для неводородоподобных атомов) приведены в . Сечение фотоионизации на 2-3 порядка ниже s i при столкновениях. Те же закономерности характеризуют И. внутр. оболочек атомов (при этом Z имеет смысл эфф. заряда остова, в поле к-рого движется электрон). Фотоионизация глубоких внутр. оболочек атомов, в отличие от И. электронным ударом, практически нe влияет на электроны внеш. оболочек, т. е. является весьма селективным процессом. Оже-эффект, сопровождающий ликвидацию вакансии во внутр. оболочке, приводит к образованию многозарядного иона. При этом могут образоваться ионы неск. степеней кратности. В табл. даны вычисленные и наблюдаемые значения ср. зарядов ионов для нек-рых атомов.
Т а б л. - Вычисленные и наблюдаемые значения средних зарядов ионов


Экспериментально фотоионизация исследуется по измерению коэф. поглощения, регистрации числа образовавшихся ионов, измерению рекомбинац. излучения (сечения обратного процесса - фоторекомбинации). Фотоионизация играет существенную роль в ионизацонном балансе верхних слоев атмосферы, планетарных туманностей, подверженных ионизующему излучению звёзд и др. Ионизованные газы и жидкости обладают электропроводностью, что лежит в основе их разл. применений. Это также даёт возможность измерять степень И. этих сред - отношение концентрации заряж. частиц к исходной концентрации нейтральных частиц. Газ с высокой степенью И. образует плазму . Процессом, обратным И., является рекомбинация ионов и электронов , связанная с ионизац. процессами соотношениями, следующими из принципов детального равновесия. Процессы И. и рекомбинации играют важную роль во всех электрич. разрядах в газах и разл. газоразрядных приборах. Лит.: 1) Донец Е. Д., Овсянников В. П., Исследование ионизации положительных ионов электронным ударом, ""ЖЭТФ"", 1981, т. 80, с. 916; 2) Петеркоп Р.К., Теория ионизации атомов электронным ударом, Рига, 1975; 3) Вайнштейн Л. А., Собельман И. И., Юков Е. А., Возбуждение атомов и уширение спектральных линий, М., 1979; 4) Друкарев Г. Ф., Столкновения электронов с атомами и молекулами, М., 1978; 5) Маssеу Н. S. W., Gilbоdу Н. В., Electronic and ionic impact phenomena, v. 4, Oxf., 1974; 6) Месси Г., Бархоп Е., Электронные и ионные столкновения, пер. с англ., М., 1958; 7) Janev R. К., Presnyakov L. P., Collision processes of multiply charged ions with atoms, "Phys. Repts", 1981, v. 70, №1; 8) Shah М. В., Gilbody Н. В., Experimental study of the ionization of atomic hydrogen by fast multiply charged ions of carbon, nitrogen and oxygen, "J. Phys. В.", 1981, v. 14, p. 2831; 9) Собельман И. И., Введение в теорию атомных спектров, М., 1977. Л. П. Пресняков .