Объемная емкость катионита. Большая энциклопедия нефти и газа. Характеристики ионитов и ионообменных смол

Ионный обмен протекает на тех адсорбентах, которые являются полиэлектролитами (ионообменники, иониты, ионообменные смолы).

Ионный обменом называется процесс эквивалентного обмена ионов, находящихся в ионообменнике, на другие ионы того же знака, находящиеся в растворе. Процесс ионного обмена обратим.

Иониты подразделяются на катиониты, аниониты и амфотерные иониты.

Катиониты – вещества, содержащие в своей структуре фиксированные отрицательно заряженные группы (фиксированные ионы), около которых находятся подвижные катионы (противоионы), которые могут обмениваются с катионами, находящимися в растворе (рис. 81).

Рис. 81. Модель матрицы полиэлектролита (катионита) с фиксированными анионами и подвижными противоионами, где – – фиксированные ионы;

– коионы, – противоионы

Различают природные катиониты: цеолиты, пермутиты, силикагель, целлюлоза, а также искусственные: высокомолекулярные твердые нерастворимые ионогенные полимеры, содержащие чаще всего сульфогруппы, карбоксильные, фосфиновокислые, мышьяковокислые или селеновокислые группы. Реже применяются синтетические неорганические катиониты, являющиеся чаще всего алюмосиликатами.

По степени ионизации ионогенных групп катиониты делят на сильнокислотные и слабокислотные. Сильнокислотные катиониты способны обменивать свои подвижные катионы на внешние катионы в щелочной, нейтральной и кислой средах. Слабокислотные катиониты обменивают противоионы на другие катионы только в щелочной среде. К сильнокислотным относят катиониты с сильно диссоциированными кислотными группами – сульфокислотными. К слабокислотным относят катиониты, содержащие слабодиссоциированные кислотные группы – фосфорнокислотные, карбоксильные, оксифенильные.

Аниониты – ионообменники, которые содержат в своей структуре положительно заряженные ионогенные группы (фиксированные ионы), около которых находятся подвижные анионы (противоионы), которые могут обмениваться с анионами, находящимися в растворе (рис. 82). Различают природные и синтетические аниониты.



Рис. 82. Модель матрицы полиэлектролита (анионита) с фиксированными катионами и подвижными противоионами, где + – фиксированные ионы;

– коионы, – противоионы

Синтетические аниониты содержат в макромолекулах положительно заряженные ионогенные группы. Слабоосновные аниониты имеют в своем составе первичные, вторичные и третичные аминогруппы, сильноосновные аниониты содержат группы четвертичных ониевых солей и оснований (аммониевых, пиридиниевых, сульфониевых, фосфониевых). Сильноосновные аниониты обменивают подвижные анионы в кислой, нейтральной и щелочной средах, слабоосновные – только в кислой среде.

Амфотерные иониты содержат и катионные, и анионные ионогенные группы. Эти иониты могут сорбировать одновременно и катионы и анионы.

Количественной характеристикой ионита является полная обменная емкость (ПОЕ). Определение ПОЕ можно осуществить статическим или динамическим методом, основанном на реакциях, протекающих в системе «ионит – раствор»:

RSO 3 – H + + NaOH → RSO 3 – Na + + H 2 O

RNH 3 + OH – + HCl → RNH 3 + Cl – + H 2 O

Емкость определяется числом ионогенных групп в ионите и поэтому теоретически должна быть постоянной величиной. Однако практически она зависит от ряда условий. Различают статическую обменную емкость (СОЕ) и динамическую обменную емкость (ДОЕ). Статическая обменная емкость - полная емкость, характеризующая общее количество ионогенных групп (в миллиэквивалентах), приходящихся на единицу массы воздушно-сухого ионита или нa единицу объема набухшего ионита. Природные иониты имеют небольшую статическую обменную емкость, не превышающую 0,2-0,3 мэкв/г. Для синтетических ионообменных смол она находится в пределах 3-5 мэкв/г, а иногда достигает 10,0 мэкв/г.

Динамическая, или рабочая, обменная емкость относится только к той части ионогеппых групп, которые участвуют в ионном обмене, протекающем в технологических условиях, например, в ионообменной колонке при определенной относительной скорости движения ионита и раствора. Динамическая емкость зависит от скорости движения, размеров колонки и других факторов и всегда меньше статической обменной емкости.

Для определения статической обменной емкости ионитов применяют различные методы. Все эти методы сводятся к насыщению ионита каким-либо ионом, затем вытеснению его другим ионом и анализу первого в растворе. Например, катионит удобно полностью перевести в Н + -форму (противоионами являются ионы водорода), затем промыть его раствором хлорида натрия и полученный кислый раствор оттитровать раствором щелочи. Емкость равна отношению количества перешедшей в раствор кислоты к навеске ионита.

При статическом методе титруют кислоту или щелочь, которые в результате ионообменной адсорбции появляются в растворе.

При динамическом методе ПОЕ определяется с помощью хроматографических колонок. Через колонку, заполненную ионообменной смолой, пропускают раствор электролита и регистрируют зависимость концентрации поглощаемого иона в выходящем растворе (элюате) от объема прошедшего раствора (выходная кривая). ПОЕ рассчитывают по формуле

, (337)

где V общ – суммарный объем раствора, содержащий вытесненную из смолы кислоту; с – концентрация кислоты в этом растворе; m – масса ионообменной смолы в колонке.

Константу равновесия ионного обмена можно определить из данных о равновесном распределении ионов в статических условиях (равновесное состояние при ионном обмене описывается законом действия масс), а также динамическим методом по скорости перемещения зоны вещества по слою смолы (элюентная хроматография).

Для реакции ионного обмена

константа равновесия равна

, (338)

где , – концентрация ионов в ионите; , – концентрация ионов в растворе.

Применяя иониты, можно умягчить воду или опреснять засоленную воду и получать пригодную для фармацевтических целей. Другое применение ионообменной адсорбции в фармации состоит в использовании его для аналитических целей как метода извлечения из смесей того или другого анализируемого компонента.

Примеры решения задач

1. В 60 мл раствора с концентрацией некоторого вещества 0,440 моль/л поместили активированный уголь массой 3 г. Раствор с адсорбентом взбалтывали до установления адсорбционного равновесия, в результате чего концентрация вещества снизилась до 0,350 моль/л. Вычислите величину адсорбции и степень адсорбции.

Решение:

Адсорбция рассчитывается по формуле (325):

По формуле (326) определяем степень адсорбции

2. По приведенным данным для адсорбции димедрола на поверхности угля рассчитайте графически константы уравнения Ленгмюра:

Рассчитайте адсорбцию димедрола при концентрации 3,8 моль/л.

Решение:

Для графического определения констант уравнения Ленгмюра используем линейную форму этого уравнения (327):

Рассчитаем значения 1/а и 1/с :

Строим график в координатах 1/а – 1/с (рис. 83).

Рис. 83. Графическое определение констант уравнения Ленгмюра

В том случае, когда точка х = 0 расположена за пределами рисунка, используют второй способ y=ax+b . Вначале выбираем две любые точки, лежащие на прямой (рис. 83) и определяем их координаты:

(·)1(0,15; 1,11); (·)2 (0,30; 1,25).

b= y 1 – ax 1 = 0,11 – 0,93· 0,15 = 0,029.

Получаем, что b = 1/а ¥ = 0,029 мкмоль/м 2 , следовательно а ¥ = 34,48 мкмоль/ м 2 .

Константа адсорбционного равновесия K определяется следующим образом:

Рассчитаем адсорбцию димедрола при концентрации 3,8 моль/л по уравнению Ленгмюра (327):

3. При изучении адсорбции бензойной кислоты на твердом адсорбенте получены следующие данные:

Решение:

Для расчета констант уравнения Фрейндлиха необходимо использовать линейную форму уравнения (332), в координатах lg(х/т )lgс изотерма имеет вид прямой.

Найдем значения lg c и lg x/m , входящие в линеаризованное уравнение Фрейндлиха.

lg c –2,22 –1,6 –1,275 –0,928
lg x/m –0,356 –0,11 0,017 0,158

Строим график в координатах lg(х/т )lgс (рис. 84).

Рис. 84. Графическое определение констант уравнения Фрейндлиха

Так как точка х = 0 расположена за пределами рисунка (84), используем второй способ определения коэффициентов прямой y=ax+b (См. «Вводный блок. Основы математической обработки экспериментальных данных»). Вначале выбираем две любые точки, лежащие на прямой (например, точки 1 и 2) и определяем их координаты:

(·)1 (–2,0; –0,28); (·)2 (–1,0; 0,14).

Затем рассчитываем угловой коэффициент по формуле:

b= y 1 – ax 1 = –0,28 – 0,42 · (–2,0) = 0,56.

Константы уравнения Фрейндлиха равны:

lgK = b= 0,56; K = 10 0,56 = 3,63;

1/n = а = 0,42.

Рассчитаем адсорбцию бензойной кислоты при концентрации 0,028 моль/л, используя уравнение Фрейндлиха (330):

4. Используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по данным об адсорбции газообразного азота:

Площадь, занимаемая молекулой азота в плотном монослое, равна 0,08 нм 2 , плотность азота 1,25 кг/м 3 .

Решение:

Уравнение изотермы полимолекулярной адсорбции БЭТ в линейной форме имеет вид (333)

Для построения графика определим значения:

Строим график в координатах – p/p s (рис. 85).

Используем первый способ (См. «Вводный блок. Основы математической обработки экспериментальных данных») определения коэффициентов прямой y=ax+b. По графику определяем значение коэффициента b , как ординату точки, лежащей на прямой, у которой абсцисса равна 0 (х = 0): b = 5.Выбираем точку на прямой и определяем ее координаты:

(·)1 (0,2; 309).

Затем рассчитываем угловой коэффициент:

Рис. 85. Графическое определение констант уравнения изотермы полимолекулярной адсорбции БЭТ

Константы уравнения изотермы полимолекулярной адсорбции БЭТ равны:

; .

Решая систему уравнений, получаем а ∞ = 6,6·10 –8 м 3 /кг.

Чтобы вычислить предельное значение адсорбции, отнесем а ∞ к 1 моль:

.

Величину удельной поверхности адсорбента находим по формуле (329):

5. Полистирольный сульфокатионит в Н + -форме массой 1 г внесли в раствор KCl с исходной концентрацией с 0 = 100 экв/м 3 объемом V = 50 мл и смесь выдержали до равновесного состояния. Рассчитайте равновесную концентрацию калия в ионите, если константа ионообменного равновесия = 2,5, а полная обменная емкость катионита ПОЕ = 5 моль-экв/кг.

Решение:

Для определения константы ионного обмена используем уравнение (338). В смоле ионы Н + обмениваются на эквивалентное количество ионов K

Масса сульфокатионита в Н + -форме определяется по формуле (337):

Суммарное количество анионита в ОН – -форме равно:

Масса анионита в ОН – -форме также определяется по формуле (337):

Материалы ВИОН применяются для очистки вентиляционных отходящих газовых выбросов промышленности от растворимых компонентов, аэрозолей кислот и солей тяжелых металлов, где их используют главным образом в виде нетканых иглопробивных полотен.

Ход работы:

Взвесить 2 гр. катионита ВИОН КН-1 (сухого). Насыпать в бюретку. Пропускать через колонку заполненным катионитом исходный раствор CuCl 2 (3,6 ммоль/л). Далее отдираем пробы по 50 мл титрованием. На основе методики (пункт 3.1) определяем оптическую плотность пробы и находим концентрацию меди. Результаты представлены в таблице 3.5.

Таблица 3.5

С, ммоль/л

Построили график зависимости концентрации меди в фильтрате от объема прошедшего через ионит раствора.

Рис. 3.4

Процесс сорбции заключается в полном поглощении первых порций катионов катионитом, причем область поглощения постепенно перемещается по колонке к выходу. После этого наступает момент, когда, в силу исчерпания емкости катионита, катионы начинают выходить из колонны. Из графика видно, что концентрация меди на выходе из колонки увеличивается постепенно и имеет вид S-образной кривой, начиная от нулевых концентраций до максимальной. Эта кривая растягивается при маленьких концентрациях солей.

Рассчитали количество меди, поглотившегося колонкой до полного насыщения катионита, как площадь фигуры, ограниченной S-образной кривой и прямой максимальной концентрации:

н = ?Vi*(Cmax - Ci) (3)

где Vi = 50 мл,

Cmax = 3,6ммоль

н1 = 2,20 ммоль.

Рассчитали объемную емкость катионита:

з1 = н1/m к = 2,20/2 = 1,10 ммоль/гр. катионита.

Обсуждение результатов

В ходе экспериментальных работ определили полную обменную емкость трех различных катионитов (КУ-2-8, КУ-1, ВИОН КН-1). Результаты представлены на рисунке 3.5.


Полная обменная емкость катионита пропорциональна площади фигуры, ограниченной S-образной кривой и прямой максимальной концентрации. Как видно из рисунка 3.5. Емкости различных ионитов различны и меньше полной обменной емкости катионитов заявленных в паспорте. Так полная обменная емкость катионита КУ-2-8 найдена эксперементальным путем ниже паспортного значения на 28%, полная обменная емкость КУ-1 ниже паспортного значения на 57%, а ПОЕ катионита ВИОН КН-1 ниже на 39%. Эти данные необходимо учитывать при расчете и конструировании ионообменных аппаратов и фильтров.

Умягчение воды — процесс, направленный на удаление из нее катионов кальция и магния, т.е. снижение ее жесткости .

По требованию САНПиН жесткость питьевой воды не должна превышать 7 мг-экв/л, а к воде, участвующей в процессах теплообмена выставляют требования глубокого ее умягчения, т.е. до 0,05…0,01 мг-экв/л. Жесткость воды, используемой для подпитки барабанных котлов ТЭЦ, не должна превышать 0,005 мг-экв/л, или 5 мкг-экв/л.

Снижение совокупной концентрации катионов Mg(II), Ca(II) и анионов, с которыми они при определенных условиях могут образовывать не стенках труб и аппаратов плотные нерастворимые отложения, проходит на системах водоочистки и водоподготовки различными методами, чей выбор определяется качеством исходной воды, требованию к ее очистке и технико-экономическими соображениями.

Метод ионного обмена.

В основе данного метода лежит способность некоторых материалов (катионитов и анионитов) поглощать из воды ионы (катионы и анионы) в обмен на эквивалентное количество ионов (катионов и анионов).

Процесс катионирования — тот процесс, при котором происходит обмен катионами. В водоподготовке при умягчении — катионами катионита на ионы Ca 2+ и Mg 2+ из воды.

Процесс анионирования — соответственно анионами, в основном при обессоливании и глубоком обессоливании.

Магнитная обработка воды.

Использование магнитной обработки воды целесообразно в случае высокой кальциево-карбонатной жесткости.

В процессе прохождения воды сквозь магнитное поле в ней образуются центры кристаллизации, которые укрупняются и выпадают в неприкипающий шлам, удаляемый при продувке. Т.е. выделение осадка идет не на стенках поверхности нагрева, а в объеме воды.

Влияние на противонакипный эффект оказывают такие факторы, как качественный и количественный состав воды, скорость движения жидкости сквозь магнитные силовые линии, напряженность магнитного поля и время пребывания в нем воды.

Условиями для осуществления успешной магнитной обработки воды должно являться высокое содержание карбоната и сульфата кальция, а концентрация свободного оксида углерода IV должна быть меньше равновесной. Так же увеличивают противонакипный эффект содержащиеся в воде примеси оксидов железа и прочих.

Аппараты магнитной обработки воды работают как на основе постоянных магнитов, так и на основе электромагнитов. Недостатком аппаратов с постоянными магнитами является то, что время от времени их приходится чистить от ферромагнитных примесей. Электромагниты чистят от оксидов железа, отключив их от сети.

Скорость воды в магнитном поле при ее обработке не должна превышать 1м/с. Для увеличения объема обрабатываемой воды на единицу времени применяют аппараты с послойной магнитной обработкой.

Метод магнитной обработки нашел применение на тепловых сетях горячего водоснабжения, на ТЭЦ, в теплообменных аппаратах.

Выбор данного метода при решении задачи умягчения воды должен главным образом основываться на его эффективности при очистке воды данного качества – использоваться как основной, последующей ступени или в качестве дополнительного.

Обратный осмос.

В данное время наиболее широкое распространение в водоподготовке получил метод обратного осмоса.

Суть метода состоит в том, что под высоким давлением, — от 10 до 25 атмосфер, — вода подается на мембраны. Мембраны, являясь селективным материалом по отношению к проходящим сквозь нее примесям, пропускают молекулы воды и не пропускают растворенные в воде ионы.

Таким образом, на выходе после установки обратного осмоса мы получаем два потока — первый поток чистой воды, прошедшей сквозь мембрану, так называемый пермеат, и второй поток — воды с примесями, не прошедшей сквозь мембрану, называемый концентратом.

Пермеат направляется потребителю и составляет от 50 до 80 % от объема подаваемой воды. Его количество зависит от свойств мембраны и ее состояния, качества исходной воды и желаемого результата очистки. Чаще всего это около 70%.

Концентрат, соответственно, от 50 до 20%.

При увеличении нагрузки на мембрану, т.е. увеличения процентного соотношения между пропускаемой водой и водой с примесями, селективность мембраны снижается и достигает минимума при отсутствии концентрата, т.е. тогда, когда вся вода, подающаяся на установку обратного осмоса, проходит сквозь мембрану.

Мембраны обратного осмоса изготовляются из композитного полимерного материала особой структуры, позволяющего при высоких давлениях пропускать воду и не пропускать растворенные в ней ионы и прочие примеси. При увеличении нагрузки на мембрану срок ее службы сокращается, а при достижении критических параметров, при которых попускаемая жидкость с примесями проходит сквозь мембрану полностью, она разрушается. Средний срок службы мембраны — 5 лет.

Поверхность мембран со временем может обрастать микроорганизмами, покрываться слоем труднорастворимых соединений. Для чистки обратноосмотических мембран применяют растворы кислот и щелочей с добавлением биоцидов.

При промывки обратного осмоса нельзя забывать, что полупроницаемая мембрана — это не фильтр. Промывка должна проводиться исключительно по ходу движения жидкости. Обратный ток раствора воды приведет к выходу мембраны из строя.

Реагентные методы обработки воды.

Реагентные методы обработки воды служат в основном для неглубокого умягчения воды путем добавления реагентов и перевода солей жесткости в малорастворимые соединения с последующим их осаждением.

В качестве реагентов используется известь, сода, едкий натр и пр. В настоящий момент мало где применяются, но для общего понимания процессов перевода в малорастворимые соединения кальция и магния и дальнейшее их осаждение, рассмотрим их.

Снижение накипи известкованием.

Метод применим к воде с высокой карбонатной и малой некарбонатной жесткостью.

При добавлении известкового молока pH воды повышается, что приводит к переходу растворенного диоксида углерода и гидрокарбонатного иона в карбонатный ион:
СО 2 + ОН - = СО 3 2- + Н 2 О,
НСО 3- + ОН - = СО 3 2- + Н 2 О.

При насыщении воды карбонатными ионами кальций выпадает в осадок:
Са 2+ + СО 3 2- = СаСО 3 ↓.

Также с увеличением рН в осадок выпадает и магний:
Мg 2+ + OH - = Mg(OH) 2 ↓.

В случае, если превышение карбонатной жесткости незначительно, то вместе с известью дозируют соду, чье присутствие снижает некарбонатную жесткость:

CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4 .

Для более полного осаждения катионов магния и кальция рекомендуется подогревать воду до температуры 30 - 40 градусов. С ее повышением растворимость CaCO 3 и Mg(OH) 2 падает. Это дает возможность снижать жесткость воды 1 мг-экв/л и менее.

Содово-натриевый метод умягчения воды.

Добавление соды необходимо в том случае, если некарбонатная жесткость больше чем карбонатная. При равенстве этих параметров добавление соды может и не понадобиться совсем.

Гидрокарбонаты кальция и магния в реакции со щелочью образуют малорастворимые соединения кальция и магния, соду, воду и углекислый газ:
Ca(HCO 3) 2 + 2NaOH = CaCO 3 ↓ + Na 2 CO 3 + 2H 2 O,
Mg(HCO 3) 2 + 2NaOH = Mg(OH) 2 ↓ + Na 2 CO 3 + H 2 O + CO 2 .

Образовавшийся в результате реакции гидрокарбоната магния с щелочью углекислый газ снова реагирует с щелочью с образованием соды и воды:
CO 2 + NaOH = Na 2 CO 3 + H 2 O.

Некарбонатная жесткость.
Сульфат и хлорид кальция реагирует с образовавшейся в реакциях карбонатной жесткости и щелочи содой и добавленной содой с образованием неприкипающего в щелочных условиях карбоната кальция:
CaCl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl,
CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4

Сульфат и хлорид магния реагируют со щелочью, образуя выпадающий в осадок гидроксид магния:
MgSO 4 + 2NaOH = Mg(OH) 2 ↓ + Na 2 SO 4 ,
MgCl 2 + 2NaOH = Mg(OH) 2 ↓ + 2NaCl .

Ввиду того, что в реакциях гидрокарбоната с щелочью образуется сода, которая в дальнейшем реагирует с некарбонатной жесткостью, ее количество необходимо коррелировать в соотношении карбонатной и некарбонатной жесткости: при их равенстве соду можно не добавлять, при условии Ж к > Ж нк образуется избыток соды, при обратном соотношении Ж к

Комбинированные методы.

Сочетание различных методов обработки воды с целью снижения ее жесткости дает в иной раз довольно высокую результативность. Обусловлено это, как правило, высокими требованиями к качеству воды и пара.

Примером может быть сочетание обратного осмоса с натрий-катионированием . Основная жесткость воды снижается на фильтрах-катионитах, на обратном осмосе идет ее обессоливание.

В другом случаем в качестве дополнительной ступени очистки может служить магнитная обработка воды – установку располагают после системы умягчения на трубопроводе циркуляции горячего водоснабжения.

Иониты — твердые, нерастворимые полиэлектролиты, природные или искусственные (синтетические) материалы, широко используемые для процессов очистки воды: от катионов кальция и магния (умягчения), от анионов органических кислот, деминерализации и некоторых других специальных применений.

По химической природе иониты бывают неорганическими (минеральными) и органическими.

Наиболее характерными природными неорганическими ионитами являются цеолиты . К ионитам также можно отнести глины, слюду, оксиды графита, соли поликислот титана, ванадия и многие другие соединения.

Ионообменные смолы

Синтетические, искусственно полученные иониты называются ионообменными смолами .

Ионообменные смолы - это высокомолекулярные поперечно сшитые соединения, образующие полимерную матрицу, содержащую функциональные группы кислотного или основного типа, которые диссоциируют или способны ионизироваться в воде.

  • функциональными группами кислотного типа являются: -СООН; -SО 3 Н; -РО 4 Н 2 и др.
  • функциональными группами основного типа являются: ≡N; =NH; -NH 2 ; -NR 3+ и др.

По внешнему виду ионообменные смолы - это сферические материал диаметром от 0,3 до 2,0 мм (основной размер в пределах 0,5..0,8 мм), от почти бесцветного до желто-коричневого цвета, как правило, слегка слипшиеся (поскольку влажные).

По структуре ионообменные смолы могут обладать гелевой, макропористой и промежуточной структурой, что определяется степенью сшивки полимерных молекул. Гелевая ионообменная смола обладает способностью к ионному обмену только во влажном (набухшем) состоянии, потому что у нее отсутствует истинная пористость. Макропористая ионообменная смола характеризуется наличием пор, имеющих развитую поверхность, поэтому она способна к ионному обмену как в набухшем, так и в не набухшем состоянии.

Схема зерна ионообменной смолы, анионита и катионита соответственно, в общем виде выглядит так:

  1. полимерная матрица
  2. ионные функциональные группы полимерной матрицы
  3. противоионы

Упомянутые выше функциональные группы способны вступать в реакции ионного обмена с ионами растворенных веществ (примесями - применительно к воде). Если матрицу ионообменной смолы обозначить как R, то реакция такого обмена выглядит:

а) R - - H + + Na + + Cl - → R - - Na + + H + + Cl -

б) R + - OH - + Na + + Cl - → R + - Cl - + Na + + OH -

По такой реакции легко обмениваются катионы солей жесткости, ионы железа, марганца.

Из вышеприведенных реакций видно, что ионообменные смолы могут обменивать катионы (а) - в таком случае они называются катионитами, или обменивать анионы (б) - в этом случае они называются анионитами. Кроме указанных ионообменных реакций на ионообменных смолах возможны реакции комплексообразования и окислительно-восстановительные, а также физическая сорбция.

Сорбционные свойства ионообменных смол определяются не только характером функциональных групп, но и кислотностью (водородным показателем рН) очищаемой воды.

Классификация ионообменных смол

В зависимости от функциональных групп, введенных в полимерную цепь ионообменной смолы, различают:

  • -SO 3 H - сильнокислотный катионит,
  • -COOH - слабокислотный катионит.

Сильнокислотный катионит обменивает катионы любой степени диссоциации в растворах при всех возможных значениях рН. Слабокислотный катионит обменивает катионы из растворов кислот при значениях рН >5.

  • -NH 2 , =NH, ≡N - слабоосновный анионит,
  • -NR 3 + Hal - - сильноосновный анионит.

Сильноосновный анионит обменивает анионы любой степени диссоциации в растворах при всех возможных значениях рН. Слабоосновный анионит обменивает анионы из растворов щелочей при значениях рН <8..9.

Характеристики ионитов и ионообменных смол

Важнейшими характеристиками ионитов являются:

  • полная (общая) обменная емкость — это максимальное число милиграмм-эквивалентов (мг-экв) ионов вещества, поглощаемых единицей массы или объема ионита в условиях равновесия с раствором электролита,
  • динамическая (рабочая) обменная емкость - это максимальное число мг-экв ионов, поглощаемых единицей массы или объема в условиях фильтрации раствора через слой ионита до «проскока» ионов в фильтрат.

Значения полной обменной ёмкости большинства ионообменных смол лежат в пределах 2..5 мг-экв/г (1..2,5 г-экв/дм 3). Процедура определения обменной ёмкости стандартизована.

Динамическая (рабочая) обменная ёмкость всегда меньше статической в связи с тем, что она зависит от следующих факторов:

  • природы ионообменной смолы,
  • его гранулометрической состава,
  • качества исходной воды, причем зависимость определяется не только общим количеством улавливаемых ионов, но и их соотношением друг с другом, наличием в исходной воде железа, марганца, органических примесей,
  • значения рН исходной воды, ее температуры и температуры регенерационного раствора,
  • равномерности прохождения очищаемой воды через слой ионита,
  • природы регенеранта, его чистоты, концентрации, удельного расхода,
  • требуемых показателей качества получаемой воды после фильтрования через ионообменную смолу,
  • высоты слоя ионита, скорости рабочего, регенерационного и взрыхляющего фильтрования,
  • удельного расхода отмывочной воды,
  • площади фильтрования (площади горизонтального сечения фильтра),
  • добавления к регенерационному раствору комплексообразователей и других факторов.

Заранее благодарю за ответ.

С100Е - сильнокислотная катионообменная смола гелевого типа, обладающая высокой обменной емкостью, химической и физической стабильностью и превосходными рабочими характеристиками. С100Е эффективно задерживает взвешенные частицы, а также, в кислотной (Н+) форме, удаляет ионы железа и марганца.

Высокая обменная емкость позволяет получать воду с общей жесткостью порядка 0,05 мг-экв/л, а превосходная кинетика ионного обмена - добиться высоких скоростей потока. При использовании С100Е проскок ионов, обусловливающих жесткость воды в нормальных рабочих условиях, как правило, не превышает 1% от общей жесткости исходной воды. При этом обменная емкость смолы практически не изменяется при условии, что доля одновалентных ионов не превышает 25%.

С100Е не растворим в растворах кислот и щелочей и во всех обычных органических растворителях. Присутствие в воде остаточных окислителей (например, свободного хлора или ионов гипохлорита) может привести к уменьшению механической прочности частиц катионообменной смолы. С100Е термически стабильна до температуры 150оС, однако при высоких температурах обменная емкость катионообменной смолы в кислотной (Н+) форме снижается.

Технические характеристики

Физические свойства


прозрачные сферические частицы желтоватого цвета

Форма поставки

Насыпная масса, г/см3

Удельный вес, г/см3

Коэффициент однородности

Размер гранул, мм (mesh)

Обменная емкость, г-экв/л

Набухаемость Na + → H + , макс, %

Набухаемость Сa 2+ → Na + , макс, %

Условия применения


6 - 10 (Na-форма)

Максимальная рабочая температура, оС

Высота слоя, см (дюймы)

Рабочая скорость потока, объем смолы/час

Расширение слоя в режиме обратной промывки, %

Концентрация раствора NaCl, %

Расход соли на регенерацию, гр. NaCl /л смолы

КРАТКАЯ ХАРАКТЕРИСТИКА
свободное пространство над загрузкой - 50%
размер зерен 0.6мм до 90%
Насыпной вес 820гр/л
Содержание воды (влажность) 42-48%
Общая емкость до 2 гр экв/л
рабочая температура от 4 – 120 0 С
рН воды 0 - 14
переход ионов Na на Н - 8%
высота слоя от 0.8 - 2м
скорость при сервисе от 5 - 40м/час
удельная скорость сервиса 20ОЗ/час
скорость обратной промывки при 20 С от 10 - 12м/час
объем воды для обратной промывки при новой загрузке 20ОЗ
объем воды для обратной промывки 4ОЗ
объем воды для медленной промывки соли 4ОЗ
расход соли при регенерации на 1л загрузки - 150гр
остаточная жесткость - 0.5мг экв/л
удельное потеря давления в кПа м 2 высоту загрузки - 1
потеря давления в 11мбар при 4 о С на 1м высоты загрузки
скорость при регенерации - 5м/час
скорость при промывке соли водой - 5м/час

УСЛОВИЯ ПРИМЕНЕНИЯ
отсутствие в воде окисленного железа (Fe 3+)
отсутствие в воде растворенного кислорода
отсутствие органических веществ в воде
отсутствие в воде любых окислителей
после натрий - умягчения повысится общая щелочность и сухой остаток.
сильные окислители такие как азотная кислота может вызвать сильную реакцию
взвешенные вещества в исходной воде до 8 мг/л
цветность исходной воды до 30 0 С
мутность исходной воды до 6 мг/л
общая жесткость исходной воды до 15 мг экв/л

Ниже приводятся методики расчета обменной емкости и других параметров катионита.

Рабочую обменную емкость катионита Е ф г÷экв/ м3, можно выразить следующей формулой:

Е ф = Q x Ж; Ер = ер x Vк.

Объем загруженного в фильтр катионита в набухшем состоянии выражается формулой:

Формула для определения рабочей обменной емкости катионита ep, г÷экв/ м 3:

ер = Q x Ж/S x h;

где Ж - жесткость исходной воды, г÷экв/ м3; Q - количество умягченной воды, м 2 ; S - площадь катионитового фильтра, м 2 ; h - высота слоя катионита, м.

Обозначив скорость движения воды в катионите как v k , количество умягченной воды Q можно найти по следующей формуле:

Q = v k x S x Tk = ер x S x h /Ж;

откуда можно вычислить и длительность работы катионитового фильтра Тк:

Tk = ер x h/v k x Ж.

Расчет обменной емкости катионита возможно также произвести и по коррелирующим графикам.

Исходя из приближенных практических данных, Ваш фильтр сможет очистить не более 1500 л. воды. Для более точных расчетов необходимо знать количество (объем) смолы в вашем фильтре и рабочую обменную емкость вашей смолы (для катионнообменных смол рабочая емкость варьирует от 600 до 1500 мг.-экв/л). Зная эти данные, Вы легко вычислите точное количество умягченной воды по приведенным ваше формулам.