Основы нефтегазопромысловой геологии. происхождение нефти и газа. Уменьшение притока жидкости. Способы и виды бурения

Происхождение нефти

В развитии взглядов на происхождение нефти выделяют 4 этапа:

1) донаучный период;

2) период научных догадок;

3) период формирования научных гипотез;

4) современный период.

Ярким донаучных представлений являются взгляды польского натуралиста XVIII в. каноника К.Клюка. Он считал, что нефть образовалась в раю, и является остатком благодатной почвы, на которой цвели райские сады.

Примером взглядов периода научных догадок является высказанная М.В.Ломоносовым мысль о том, что нефть образовалась из каменного угля под воздействием высоких температур.

С началом развития нефтяной промышленности вопрос о происхождении нефти приобрел важное прикладное значение. Это дало мощный толчок к появлению разных научных гипотез.

Среди многочисленных гипотез происхождения нефти наиболее важными являются: органическая и неорганическая.

Впервые гипотезу органического происхождения высказал в 1759 году великий русский ученый М.В. Ломоносов. В дальнейшем гипотеза была развита академиком И.М.Губкиным. Ученый считал, что исходным материалом для образования нефти является органическое вещество морских илов, состоящее из растительных и животных организмов. Старые слои довольно быстро перекрываются более молодыми, что предохраняет органику от окисления. Первоначальное разложение растительных и животных остатков происходит без доступа кислорода под действием анаэробных бактерий. Далее пласт, образовавшийся на морском дне, опускается в результате общего прогибания земной коры, характерного для морских бассейнов. По мере погружения осадочных пород давление и температура в них повышаются. Это приводит к преобразованию рассеянной органики в диффузно рассеянную нефть. Наиболее благоприятны для нефтеобразования давления 15…45 МПа и температуры 60…150°С, которые существуют на глубинах 1,5…6 км. Далее, под действием возрастающего давления, нефть вытесняется в проницаемые породы, по которым она мигрирует к месту образования залежей.

Автором неорганической гипотезы считается Д.И.Менделеев. Он подметил удивительную закономерность: нефтяные месторождения Пенсильвании (штат США) и Кавказа, как правило, расположены вблизи крупных разломов земной коры. Зная о том, что средняя плотность Земли превышает плотность земной коры, он сделал вывод, что в недрах нашей планеты в основном залегают металлы. По его мнению, это должно быть железо. Во время горообразовательных процессов по трещинам-разломам, рассекающим земную кору, вглубь нее проникает вода. Встречая на своем пути карбиды железа, она вступает с ними в реакцию, в результате которой образуются оксиды железа и углеводороды. Затем последние по тем же разломам поднимаются в верхние слои земной коры и образуют нефтяные месторождения.

Кроме этих двух гипотез заслуживает внимания «космическая» гипотеза . Ее выдвинул в 1892 году профессор Московского государственного университета В.Д.Соколов. По его мнению, углеводороды изначально присутствовали в газопылевом облаке, из которого сформировалась Земля. Впоследствии они стали выделяться из магмы и подниматься в газообразном состоянии по трещинам в верхние слои земной коры, где конденсировались, образуя месторождения нефти.

К гипотезам современного периода относится «магматическая» гипотеза ленинградского геолога-нефтяника, профессора Н.А.Кудрявцева. По его мнению, на больших глубинах в условиях очень высокой температуры углерод и водород образуют углеродные радикалы СН, СН 2 и СН 3 . Затем по глубинным разломам они поднимаются вверх, ближе к земной поверхности. Благодаря уменьшению температуры, в верхних слоях Земли эти радикалы соединяются друг с другом и с водородом, в результате чего образуются различные нефтяные углеводороды.

Н. А. Кудрявцев и его сторонники считают, что прорыв нефтяных углеводородов ближе к поверхности происходит по разломам в мантии и земной коре. Реальность существования таких каналов доказывается широким распространением на Земле классических и грязевых каналов, а также кимберлитовых трубок взрыва. Следы вертикальной миграции углеводородов от кристаллического фундамента в слои осадочных пород обнаружены во всех скважинах, пробуренных на большие глубины,- на Кольском полуострове, в Волго-Уральской нефтеносной провинции, в Центральной Швеции, в штате Иллинойс (США). Обычно это включе­ния и прожилки битумов, заполняющих трещины в магматических поро­дах; в двух скважинах обнаружена и жидкая нефть.

До недавнего времени общепризнанной считалась гипотеза органического происхождения нефти (этому способствовало то, что большинство открытых месторождений нефти приурочено к осадочным породам), согласно которой «черное золото» залегает на глубине 1,5...6 км. Белых пятен в недрах Земли на этих глубинах почти не осталось. Поэтому теория органического происхождения не дает практически никаких перспектив в отношении разведки новых крупных месторождений нефти.

Есть, конечно, факты открытия крупных месторождений нефти не в осадочных породах (например, гигантское месторождение «Белый тигр», обнаруженное на шельфе Вьетнама, где нефть залегает в гранитах), объяснение этому факту дает гипотеза неорганического происхождения нефти . Кроме того, в недрах нашей планеты имеется достаточное количество исходного материала для образования углеводородов. Источниками углерода и водорода считаются вода и углекислый газ. Их содержание в 1 м 3 вещества верхней мантии Земли, составляет 180 и 15 кг соответственно. Благоприятная для реакции химическая среда обеспечивается присутствием закисных соединений металлов, содержание которых в вулканических породах доходит до 20 %. Образование нефти будет продолжаться до тех пор, пока в недрах Земли есть вода, углекислый газ и восстановители (в основном закись железа). Кроме того, на гипотезу неорганического происхождения нефти работает, например практика разработки Ромашкинского месторождения (на территории Татарстана). Оно было открыто 60 лет назад и считалось выработанным на 80 %.. По словам госсоветника при президенте Татарстана Р.Муслимова, каждый год запасы нефти на месторождении пополняются на 1,5-2 млн.тонн и по новым расчетам нефть можно будет добывать до 2200г. Таким образом, теория неорганического происхождения нефти не только объясняет факты, ставящие в тупик «органиков», но и дает нам надежду на то, что запасы нефти на Земле значительно больше разведанных на сегодня, а самое главное - продолжают пополняться.

В целом можно сделать вывод, что две основные теории происхождения нефти достаточно убедительно объясняют этот процесс, взаимно дополняя друг друга. А истина лежит где-то посредине.

Происхождение газа

Метан широко распространен в природе. Он всегда входит в состав пластовой нефти. Много метана растворено в пластовых водах на глубине 1,5...5 км. Газообразный метан образует залежи в пористых и тре­щиноватых осадочных породах. В небольших концентрациях он присутствует в водах рек, озер и океанов, в почвенном воздухе и даже в атмосфере. Основная же масса метана рассеяна в осадочных и изверженных породах. Напомним также, что присутствие метана зафиксировано на ряде планет Солнечной системы и в далеком космосе.

Широкое распространение метана в природе позволяет предположить, что он образовался различными путями.

На сегодня известно несколько процессов, приводящих к образованию метана:

Биохимический;

Термокаталитический;

Радиационно-химический;

Механохимический;

Метаморфический;

Космогенный.

Биохимический процесс образования метана происходит в илах, почве, осадочных горных породах и гидросфере. Известно более десятка бактерий, в результате жизнедеятельности которых из органических соединений (белков, клетчатки, жирных кислот) образуется метан. Даже нефть на больших глубинах под действием бактерий, содержащихся в пластовой воде, разрушается до метана, азота и углекислого газа.

Термокаталитический процесс образования метана заключается в преобразовании в газ органического вещества осадочных пород под воз­действием повышенных температуры и давления в присутствии глинис­тых минералов, играющих роль катализатора. Этот процесс подобен образованию нефти. Первоначально органическое вещество, накапливающееся на дне водоемов и на суше, подвергается биохимическому разложению. Бактерии при этом разрушают простейшие соединения. По мере погружения органического вещества вглубь Земли и соответственного повышения температуры деятельность бактерий затухает и полностью прекращается при температуре 100°С. Однако уже включился другой механизм-разрушения сложных органических соединений (остатки живого вещества) в более простые углеводороды и, в частности, в метан, под воздействием возрастающих температуры и давления. Важную роль в этом процессе играют естественные катализаторы - алюмосиликаты, входящие в состав различных, особенно глинистых пород, а также микроэлементы и их соединения.

Чем же отличается в таком случае образование метана от образова­ния нефти?

Во-первых, нефть образуется из органического вещества са­пропелевого типа - осадков морей и шельфа океанов, образованных из фито- и зоопланктона, обогащенных жировыми веществами. Исходным для образования метана является органическое вещество гумусового типа, состоящее из остатков растительных организмов. Это вещество при термокатализе образует, в основном, метан.

Во-вторых, главная зона нефтеобразования соответствует температурам горных пород от 60 до 150°С, которые встречаются на глубине 1,5...6 км. В главной зоне нефте­образования наряду с нефтью образуется и метан (в сравнительно малых количествах), а также его более тяжелые гомологи. Мощная зона интенсивного газообразования соответствует температурам 150...200°С и больше, она находится ниже главной зоны нефтеобразования. В главной зоне газообразования в жестких температурных условиях происходит глубокая термическая деструкция не только рассеянного органического вещества, но и углеводородов горючих сланцев и нефти. При этом образуется большое количество метана.

Радиационно-химический процесс образования метана протекает при воздействии радиоактивного излучения на различные углеродистые соединения.

Замечено, что черные тонкодисперсные глинистые осадки с повы­шенной концентрацией органического вещества, как правило, обогащены и ураном. Это связано с тем, что накопление органического вещества в осадках благоприятствует осаждению солей урана. Под воздействием радиоактивного излучения органическое вещество распадается с образованием метана, водорода и окиси углерода. Последняя сама распадается на углерод и кислород, после чего углерод соединяется с водородом, так­же образуя метан.

Механохимический процесс образования метана заключается в об­разовании углеводородов из органического вещества (углей) под воздей­ствием постоянных и переменных механических нагрузок. В этом случае на контактах зерен минеральных пород образуются высокие напряжения, энергия которых и участвует в преобразовании органического вещества.

Метаморфический процесс образования метана связан с преобра­зованием угля под воздействием высоких температур в углерод. Данный процесс есть часть общего процесса преобразования веществ при температуре свыше 500 °С. В таких условиях глины превращаются в кристаллические сланцы и гранит, известняк-в мрамор и т. п.

Космогенный процесс образования метана описывает «космическая» гипотеза образования нефти В. Д. Соколова.

Какое место занимает каждый из этих процессов в общем, процессе образования метана? Считается, что основная масса метана большинства газовых месторождений мира имеет термокаталитическое происхождение. Образуется он на глубине от 1 до 10 км. Большая доля метана имеет биохимическое происхождение. Основное его количество образуется на глубинах до 1...2 км.

Внутреннее строение Земли

К настоящему времени сформировались общие представления о строении Земли, так как самые глубокие скважины на Земле вскрыли только земную кору. Более подробно про сверхглубокое бурение будет рассказано в разделе, посвященном бурению скважин.

В твердом теле Земли выделяют три оболочки: центральную – ядро, промежуточную – мантию и наружную – земную кору. Распределение внутренних геосфер по глубинам представлено в табл.16.

Таблица 16 Внутренние геосферы Земли

В настоящее время имеются разнообразные представления о внутреннем строении и составе Земли (В.Гольдшмидта, Г.Вашингтона, А.Е.Ферсмана и др.). Наиболее совершенной моделью строения Земли признана модель Гутенберга-Буллена.

Ядро это наиболее плотная оболочка Земли. По современным данным различают внутреннее ядро (которое считается находящимся в твердом состоянии) и внешнее ядро (которое считается находиться в жидком состоянии). Считается, что ядро, в основном состоит из железа с примесью кислорода, серы, углерода и водорода, причем внутреннее ядро имеет железо-никелевый состав, что полностью отвечает составу ряда метеоритов.

Далее располагается мантия . Мантия разделяется на верхнюю и нижнюю. Считается, что верхняя мантия состоит из магнезиально-железистых минералов-силикатов типа оливина и пироксена. Нижняя мантия характеризуется однородным составом и состоит из вещества, богатого оксидами железа, магния. В настоящее время мантия оценивается как источник сейсмических и вулканических явлений, горообразовательных процессов, а также зона реализации магматизма.

Выше мантии находится земная кора. Граница между земной корой и мантией устанавливается по резкой смене скоростей сейсмических волн, она названа разделом Мохоровича, в честь югославского ученого А.Мохоровича, который впервые ее установивил.Мощность земной коры резко изменяется на материках и в океанах и делится на две основные части - континентальную и океаническую и две промежуточные-субконтинентальную и субокеаническую.

Такой характер планетарного рельефа связан с разным строением и составом земной: коры. Под материками толщина литосферы достигает 70 км (в среднем 35 км), а под океанами 10-15 км (в среднем 5-10 км).

Континентальная кора состоит из трех слоев осадочного, гранитогнейсового и базальтового. Океанская кора имеет двухслойное строение: под маломощным рыхлым осадочным слоем располагается базальтовый, который в свою очередь сменяется слоем, сложенным габбро с подчиненными ультрабазитами.

Субконтинентальная кора приурочена к островным дугам и имеет повышенную мощность. Субокеанская кора располагается под крупными океанскими впадинами, во внутриконтинентальных и окраинных морях (Охотское, Японское, Средиземное, Черное и др.) и в отличие от океанской обладает значительными мощностями осадочного слоя.

Строение земной коры

Земная кора является наиболее изученной из всех оболочек. Она сложена из горных пород. Горные породы - это минеральные соединения постоянного минералогического и химического состава, образующие самостоятельные геологические тела, слагающие земную кору. Горные породы по своему происхождению делятся на три группы: магматические, осадочные и метаморфические.

Магматические породы образовались в результате застывания и кристаллизации магмы на поверхности Земли в глубине земной поверхности или в ее недрах. Эти породы имеют, в основном кристаллическое строение. Животных и растительных остатков в них не содержится. Типичные представители магматических пород - базальты и граниты.

Осадочные породы образовались в результате осаждения органических и неорганических веществ на дне водных бассейнов и поверхности материков. Они делятся на обломочные породы, а также породы химического, органического и смешанного происхождения.

Обломочные породы образовались в результате отложения мелких кусочков разрушенных пород. Типичные представители: валуны, галечники, гравий, пески, песчаники, глины.

Породы химического происхождения образовались вследствие выпадения солей из водных растворов или в результате химических реакций в земной коре. Такими породами являются гипс, каменная соль, бурые железняки, кремнистые туфы.

Породы органического происхождения являются окаменелыми останками животных и растительных организмов. К ним относятся известняки, мел.

Породы смешанного происхождения сложены из материалов обломочного, химического, органического происхождения. Представители данных пород - мергели, глинистые и песчаные известняки.

Метаморфические породы образовались из магматических и осадочных пород под воздействием высоких температур и давлений в толще земной коры. К ним относятся сланцы, мрамор, яшмы.

Коренные породы Удмуртии выходят из-под почв и четвертичных отложений по берегам рек и ручьев, в оврагах, а также в различных выработках: карьерах, котлованах и т. д. Терригенные породы абсолютно преобладают. К ним относятся такие разности, как алевролиты, песчаники и значительно меньше - конгломераты, гравелиты, глины. Карбонатные породы, встречающиеся редко, включают известняки и.мергели. Все названные породы, как и любые другие, состоят из минералов, т. е. природных химических соединений. Так, известняки состоят из кальцита - соединения состава СаСО 3 . Зерна кальцита в известняках очень мелки и различимы только под микроскопом.

Мергели и глины, кроме кальцита, содержат в большом количестве микроскопически мелкие глинистые минералы. По этой причине после воздействия на мергель соляной кислотой на месте реакции образуются осветленные или более темные пятна - результат концентрации глинистых частиц. В известняках и мергелях порой встречаются гнезда и жилки кристаллического кальцита. Иногда можно видеть и друзы кальцита - сростки кристаллов данного минерала, приросших одним концом к горной породе.

Терригенные породы делятся на обломочные и глинистые. Большая часть коренной поверхности республики сложена обломочными породами. К ним относятся уже упомянутые алевролиты, песчаники, а также более редкие гравелиты, конгломераты.

Алевролиты состоят из обломочных зернышек таких минералов, как кварц (SiO 2), полевые шпаты (KAlSi 3 O 8 ; NaAlSi 3 O 8 ∙CaAl 2 Si 2 O 8), других пылеватых частиц диаметром не более 0,05 мм. Как правило, алевролиты сла о сцементированы, комковаты и по внешнему виду напоминапоминают глины. От глин они отличаются большим окаменением и меньшей пластичностью.

Песчаники - вторая распространенная коренная порода Удмуртии. Они состоят из обломочных частиц (песчинок) различного состава - зернышек кварца, полевых шпатов, обломков кремнистых и эффузивных (базальты) пород, вследствие чего данные песчаники называют полимиктовыми или полиминеральными. Размер песчаных частиц колеблется от 0,05 мм до 1 - 2 мм. Как правило, песчаники слабо сцементированы, легко разрыхляются и поэтому используются в строительных целях как обычные (современные речные) пески. В рыхлых песчаниках нередко встречаются прослои, линзы и конкреции известковых песчаников, обломочный материал которых сцементирован кальцитом. В отличие от алевролитов песчаникам свойственна как горизонтальная, так и косая слоистость. В песчаниках изредка отмечаются мелкие известковые раковины пресноводных двустворчатых моллюсков. Все вместе взятое (косая слоистость, редкие ископаемые моллюски) свидетельствуют о речном, или аллювиальном, происхождении полимиктовых песчаников. Цементация песчаников кальцитом связана с распадом бикарбоната кальция в подземных водах, циркулировавших по порам песков. Кальцит при этом выделялся как нерастворимый продукт реакции в результате улетучивания углекислого газа.

Реже терригенные горные породы представлены гравелитами и конгломератами. Это крепкие горные породы, состоящие из окатанных (круглых, овальных) или сглаженных обломков бурых мергелей, сцементированных кальцитом. Мергели - местного происхождения. В виде примеси в обломочном материале попадаются темные кремни и эффузивы (древние базальты), привнесенные пермскими реками с Урала. Размер обломков гравелитов колеблется от 1 (2) мм до 10 мм, соответственно в конгломератах от 10 мм до 100 мм и более.

В основном, месторождения нефти приурочены к осадочным породам, хотя существуют месторождения нефти, приуроченные либо к метаморфическим (Марокко, Венесуэла, США), либо к магматическим породам (Вьетнам, Казахстан).

13. Пласты-коллекторы. Пористость и проницаемость.

Коллектором называется горная порода, обладающая такими геолого-физическими свойствами, которые обеспечивают физическую подвижность нефти или газа в ее пустотном пространстве. Порода-коллектор может быть насыщена как нефтью или газом, так и водой.

Породы с такими геолого-физическими свойствами, при которых движение нефти или газа в них физически невозможно, называются неколлекторами.

ОСНОВЫ ПРОМЫСЛОВОЙ ГЕОЛОГИИ И РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ НЕФТИ И ГАЗА 1 страница

Нефтегазопромысловая геология (НГПГ) - отрасль геологии, занимающаяся детальным изучением месторождений и залежей нефти и газа в начальном (естественном) состоянии и в процессе разработки для определения их народнохозяйственного значения и рационального использования недр .

Основные цели НГПГ состоят в следующем:

Промыслово-геологическое моделирование залежей;

Структурирование запасов нефти, газа и конденсата;

Геологическое обоснование системы разработки нефтяных и газовых месторождений;

Геологическое обоснование мероприятий по повышению эффективности разработки и нефте-, газо- или конденсатоотдачи.

Задачи НГПГ состоят в решении различных вопросов, связанных: с получением информации об объекте исследований; с поисками закономерностей, объединяющих наблюденные разрозненные факты о строении и функционировании залежи в единое целое; в создании методов обработки, обобщения и анализа результатов наблюдений и исследований; в оценке эффективности этих методов в различных геологических условиях и т. д.

В данном методическом руководстве предлагаются 11 лабораторных работ, выполнение которых позволяет усвоить ряд методик сбора и обработки геолого-промысловой информации, разобраться во множестве ключевых понятий промысловой геологии, таких как: залежь нефти и газа, границы залежи, неоднородность продуктивных толщ, кондиционные пределы коллекторов, несовершенство скважин, пластовое давление, фильтрационные характеристики пласта (проницаемость, гидропроводность,

пьезопроводность), индикаторная диаграмма, кривая восстановления давления (КВД), динамика разработки, коэффициент нефтеотдачи.


Лабораторная работа № 1 Определение положения границ нефтяной залежи по данным

бурения скважин

Выявление внутреннего строения залежи по данным измерений, наблюдений и определений представляет собой задачу построения модели структуры залежи. Важный этап в решении этой задачи - проведение геологических границ. Форма и тип залежи зависит от характера ограничивающих ее геологических границ.

К геологическим границам относятся поверхности: структурные,

связанные с контактом пород различного возраста и литологии; стратиграфических несогласий; тектонических нарушений; а также поверхности, разделяющие породы-коллекторы (ПК) по характеру их насыщенности, то есть водонефтяные, газонефтяные и газоводяные контакты (ВНК, ГНК, ГВК). Большинство залежей нефти и газа связано с тектоническими структурами (складками, поднятиями, куполами и т.д.), форма которых определяет форму залежи.

Структурные формы, в том числе форму структурных поверхностей (кровли и подошвы залежей) исследуют по структурным картам.

Начальными данными для построения структурной карты являются план расположения скважин и величины абсолютных отметок картируемой поверхности в каждой скважине. Абсолютная отметка - это расстояние по вертикали от уровня моря до картируемой поверхности:

H=(A+Al)-L, (1.1)

где А - альтитуда устья скважины, L - глубина залегания картируемой поверхности в скважине, Д1 - удлинение скважины за счет искривления.

Способ треугольников - это традиционный способ построения структурных карт.

Границы залежей, связанные с неоднородностью коллекторов, проводят по линиям, вдоль которых проницаемые ПК продуктивного пласта в результате фациальной изменчивости теряют коллекторские свойства и переходят в непроницаемые, либо произошло выклинивание или размыв пласта. При небольшом количестве скважин положение линии замещения коллекторов, линий выклинивания или размыва проводятся условно на половине расстояния между парами скважин, в одной из которых пласт сложен ПК, а в другой - непроницаемыми породами или здесь пласт не отлагался или размыт.

Более верное положение линии фациального перехода коллекторов определяется на картах изменения параметров пластов: пористости,

проницаемости, амплитуды потенциала самопроизвольной поляризации

(СП) и т.д., по которым установлен кондиционный предел, т.е. значение параметра, при котором пласт утрачивает свои коллекторские свойства.

Положение ВНК по залежи обосновывается путем построения специальной схемы. В первую очередь рассматривают скважины, несущие информацию о положении ВНК. Это скважины, находящиеся в водонефтяной зоне, в которых ВНК можно определить по данным ГИС. Используются также скважины из чисто нефтяной и из водяной зон, в которых, соответственно, подошва и кровля пласта находятся в непосредственной близости от ВНК.

На схему наносят колонки выбранных скважин с указанием характера насыщенности пластов (нефть, газ или вода) по данным ГИС, интервалы перфорации и результаты опробования скважин. На основании этой информации выбирают и проводят линию, наиболее полно отвечающую положению ВНК.

На плане (карте) границами залежи являются контуры нефтегазоности. Различают внешний и внутренний контуры нефтегазоносности. Внешний контур - это линия пересечения ВНК (ГВК, ГНК) с кровлей пласта, а внутренний контур - это линия пересечения ВНК (ГВК, ГНК) с подошвой пласта. Внешний контур находят на структурной карте по кровле пласта, а внутренний - на структурной карте по подошве пласта. В пределах внутреннего контура расположена нефтяная или газовая части залежи, а между внутренним и внешним контурами - водонефтяная, или водогазовая.

При горизонтальном ВНК (ГНК, ГВК) положение линий контуров нефтегазоносности находят на структурных картах вблизи

соответствующей изогипсы, соответствующей принятому

гипсометрическому положению контакта. При горизонтальном положении контакта линии контуров не пересекают изогипсы.

Если продуктивный горизонт состоит из множества пластов, характеризующихся прерывистым литологически невыдержанным

строением, то положение контуров нефтеносности в целом для горизонта определяется при совмещении структурных карт по кровле каждого пласта (на эти карты наносят также границы замещения коллекторов и контур нефтеносности для данного пласта).

На совмещенной карте получают границу залежи сложной формы, проходящую на отдельных участках по линиям замещения коллекторов, а на других - по линии внешнего контура в пределах различных пластов.

Исходными данными для выполнения предлагаемой работы являются: таблица со сведениями об альтитудах устьев скважин, удлинениях, глубинах залегания кровли пласта, толщинах пласта, глубине ВНК; схема расположения скважин.



1.Определите абсолютные отметки залегания кровли и подошвы пласта.

2. Рассчитайте абсолютные отметки ВНК в скважинах и обоснуйте положение ВНК по залежи в целом.

Э.Определите на плане расположения скважин границы распространения коллекторов.

4. Постройте структурные карты по кровле и подошве пласта и дайте их анализ.

5. Покажите на указанных структурных картах положение внешнего и внутреннего контуров нефтеносности.

6.Охарактеризуйте тип залежи нефти и обоснуйте его положение в современных классификациях залежей нефти и газа.

ПРИМЕР. Определить границы залежи на данной схеме расположения скважин по данным бурения и геофизических исследований (таблица 1.1), глубинам отбивки ВНК.

Таблица 1.1

Кскв Аль­титу­да, м Удли­ нение, м Г лубина кровли, м Толщина, м Абс. отметка кровли, м Абс. отметка подошвы, м
125.7 0.4 2115.1 -1989 -1992
121.5 0.8 2120.3 -1998 -2002
120.5 2106.9 8.2 -1983.4 -1991.6
123.5 1.2 2129.7 11.8 -2005 -2016.8
122.3 0.2 2121.5 -1999 -2002
121.9 1.6 2110.5 12.6 -1987 -1999.6
125.5 0.6 2120.1 14.4 -1994 -2008.4
125.9 0.2 2129.7 15.4 -2003.6 -2019
124.3 0.8 2124.7 -1999.6 -2016.6
126.7 1.4 2142.1 18.8 -2014 -2032.8
0.5 3.5 -1994.5 -1998
120.2 0.7 -1986.1 -1991.1
0.5 -1993.5 -1999.5
121.5 0.6 4.5 -1995.9 -2000.4
0.7 4.3 -1991.3 -1995.6
0.8 5.1 -1996.2 -2001.3
0.9 5.5 -1996.1 -2001.6
1.5 4.1 -2000.5 -2004.6

Глубина отбивки ВНК по ГИС определена в трех скважинах: скв.2 (2120.3м), скв.7 (2124.4м) и скв.6 (2121.5м).

Ход выполнения задания:

По формуле (1.1) определяются абсолютные отметки кровли пласта (результаты расчета приведены в таблице 1.1). Эта же формула применима для определения абсолютной отметки ВНК, которая составляет во всех трех скважинах минус 1998м.

Если предположить, что поверхность ВНК плоская и горизонтальная, то данных по трем скважинам достаточно, чтобы произвести оконтуривание залежи, так как плоскость определяется тремя точками.

Абсолютные отметки подошвы пласта в данном случае проще определить, используя данные по толщине пласта (результаты расчета приведены в таблице 1.1). Структурные карты по кровле и подошве пласта строятся по абсолютным отметкам указанных поверхностей (Рис. 1.1 и 1.2).

На картах выявляется вытянутая в субширотном направлении антиклинальная структура, осложненная двумя куполами. Структура является ловушкой углеводородов при наличии других благоприятных условий.

Внешний контур нефтеносности проводится на структурной карте по кровле пласта, а внутренний контур нефтеносности - на структурной карте по подошве пласта по изолинии -1998м.

Контуры залежи незамкнутые. По изучаемой части залежи ее можно охарактеризовать как пластовую сводовую, так как она приурочена к сводовой части структуры, ПК имеют однородное строение и небольшую толщину.

Нефтяная зона ограничена внутренним контуром нефтеносности, а водонефтяная зона ограничена внутренним и внешним контурами нефтеносности.


Лабораторная работа № 2 Определение макронеоднородности продуктивного горизонта

Цель данной работы - знакомство с понятием геологической неоднородности на примере макронеоднородности, которая учитывается при выделении эксплуатационных объектов и выборе системы разработки. Развитие методов изучения геологической неоднородности и учета ее при подсчете запасов и разработке залежей - важнейшая задача промысловой геологии.

Под геологической неоднородностью понимают изменчивость природных характеристик нефтегазонасыщенных пород в пределах залежи. Г еологическая неоднородность оказывает огромное влияние на выбор систем разработки и на эффективность извлечения нефти из недр, на степень вовлечения объема залежи в процессе дренирования.

Различают два основных вида геологической неоднородности: макронеоднородность и микронеоднородность.

Макронеоднородность отражает морфологию залегания пород-коллекторов в объеме залежи, т.е. характеризует распределение в ней коллекторов и неколлекторов.

Для изучения макронеоднородности используются материалы ГИС по всем пробуренным скважинам. Надежную оценку макронеоднородности можно получить только при наличии квалифицированно выполненной детальной корреляции продуктивной части разрезов скважин.

Макронеоднородность изучают по вертикали (по толщине горизонта) и по простиранию пластов (по площади).

По толщине макронеоднородность проявляется в расчлененности продуктивного горизонта на отдельные пласты и прослои.

По простиранию макронеоднородность проявляется в изменчивости толщин пород-коллекторов вплоть до нуля, т.е. наличии зон отсутствия коллекторов (литологического замещения или выклинивания). При этом важное значение имеет характер зон распространения коллекторов.

Макронеоднородность отображается графическими построениями и количественными показателями.

Графически макронеоднородность по вертикали (по толщине объекта) отображается с помощью геологических профилей (Рис. 2.1.) и схем детальной корреляции. По площади она отображается с помощью карт распространения коллекторов каждого пласта (Рис.2.2.), на которых показываются границы площадей распространения коллектора и неколлектора, а также участки слияния соседних пластов.


Рис.2.2. Фрагмент карты распространения пород-коллекторов одного из пластов горизонта: 1 - ряды скважин (Н - нагнетательных; Д - добывающих), 2 - границы распространения пород-коллекторов, 3 - границы зон слияния, участки 4 - распространения пород-коллекторов, 5 - отсутствия пород-коллекторов, 6 - слияния пласта с вышележащим пластом, 7 - слияния пласта с нижележащим пластом.

Существуют следующие количественные показатели, характеризующие макронеоднородность:

1. Коэффициент расчлененности, показывающий среднее число пластов

(прослоев) коллекторов в пределах залежи, Кр = (X Щ)/ N (2.1), где n -

число прослоев коллекторов в i-й скважине; N - число скважин.

2. Коэффициент песчанистости, показывающий долю объема коллектора (или толщины пласта) в общем объеме (толщине) продуктивного горизонта:

Кпесч = [ X (Кф^ бщ)]i/ N (2.2), где h^ - эффективная толщина пласта в

скважине; N - число скважин. Коэффициент песчанистости является хорошим носителем информации еще по следующим соображениям: он связан корреляционными зависимостями со многими другими геолого­физическими параметрами и характеристиками эксплуатационных объектов: расчлененностью, прерывистостью пластов по площади, литологической их связанностью по разрезу и др.

В качестве показателя макронеоднородности, учитывающей и расчлененность, и песчанистость, применяют комплексный показатель -

Коэффициент макронеоднородности: К м = (X n i )/(X h i ) (2.3), где n -

i =1 i =1

количество проницаемых прослоев; h - толщина вскрытых скважиной проницаемых прослоев. Коэффициент макронеоднородности характеризует расчлененность объекта разработки на единицу толщины.

3. Коэффициент литологической связанности - коэффициент слияния, оценивающий степень слияния коллекторов двух пластов, К сл = S^/S^ где S CT - суммарная площадь участков слияния; Sj. - площадь распространения коллекторов в пределах залежи. Чем больше коэффициент литологической связанности, тем выше степень гидродинамической сообщаемости смежных пластов.

4. Коэффициент распространения коллекторов на площади залежи, характеризующий степень прерывистости их залегания по площади (замещения коллекторов непроницаемыми породами),

К расп = SA где S - суммарная площадь зон распространения коллекторов пласта;

5. Коэффициент сложности границ распространения коллекторов пласта, необходимый для изучения и оценки сложности строения прерывистых, фациально изменчивых пластов, К сл = L^/n, где - суммарная длина границ участков с распространением коллекторов; П - периметр залежи (длина внешнего контура нефтеносности). Установлено, что по неоднородным, прерывистым пластам по мере уплотнения сетки скважин коэффициент сложности постоянно снижается. Это указывает на то, что даже при плотной сетке добывающих скважин все детали изменчивости пластов еще остаются неизвестными.

6. Три коэффициента, характеризующие зоны распространения коллекторов с точки зрения условий вытеснения из них нефти:

Кспл = Ясил/Як; Кпл = S^S* Кл= S^S*

где К спл, Кпл, К л - соответственно коэффициенты сплошного распространения коллекторов, полулинз и линз; Я спл - площадь зон сплошного распространения, т.е. зон, получающих воздействие вытесняющего агента не менее чем с двух сторон; S ra - площадь полулинз, т.е. зон, получающих одностороннее воздействие; - площадь линз, не испытывающих воздействия; К спл + К пл + К п =1.

Изучение макронеоднородности позволяет решать следующие задачи при подсчете запасов и проектировании разработки: моделировать форму сложного геологического тела, служащего вместилищем нефти или газа; выявлять участки повышенной толщины коллекторов, возникающей в результате слияния прослоев (пластов), и соответственно возможные места перетока нефти и газа между пластами при разработке залежи; определять целесообразность объединения пластов в единый эксплуатационный объект; обосновывать эффективное расположение добывающих и нагнетательных скважин; прогнозировать и оценивать степень охвата залежи разработкой; подбирать аналогичные по показателям макронеоднородности залежи с целью переноса опыта разработки ранее освоенных объектов.

Исходными данными при выполнении задания являются таблица с данными о толщинах горизонта и пород-коллекторов, из которых он сложен, схема расположения скважин, сведения о залежи (глубина залегания залежи, литологический тип коллектора, проницаемость коллекторов, вязкость нефти, режим залежи, размеры залежи).

1. Построить карты изопахит для каждого пласта и горизонта в целом, указать на них границы распространения коллекторов и дать их анализ.

З.Определить коэффициенты, характеризующие макронеоднородность горизонта.

ПРИМЕР. Определите коэффициенты песчанистости, расчлененности, макронеоднородности по многопластовому горизонту.

Данные в таблице 2.1.


Таблица 2.1

Кскв Пласты Толщина ПК Толщина горизонта
А1/А2/А3 0/0/19
А1/А2/А3 0/0/7
А1/А2/А3 0/4/16
А1/А2/А3 0/3/15
А1/А2/А3 0/0/20
А1/А2/А3 1/5/17
А1/А2/А3 2/6/11
А1/А2/А3 0/3/15
А1/А2/А3 5/16/5
А1/А2/А3 5/11/20
А1/А2/А3 4/3/10
А1/А2/А3 5/4/14
А1/А2/А3 2/3/14
А1/А2/А3 0/312

Расчетные данные представлены в таблице 2.2

Таблица 2.2

Кскв Число прослоев Нэф горизонта Нобщ горизонта

По формулам 2.1, 2.2, 2.3 определяем, что коэффициент расчлененности Кр=32/14=2,29; коэффициент песчанистости Кпесч=280/362=0,773;

коэффициент макронеоднородности Км= 32/280=0,114.

Совместное использование Кр, Кпесч, Км позволяет составить представление о макронеоднородности разреза: чем больше Кр, Км и меньше Кпесч, тем выше макронеоднородность. К сравнительно однородным относятся пласты (горизонты) с Кпесч > 0,75 и Кр < 2,1. К неоднородным соответственно относятся пласты (горизонты) с Кпесч < 0,75 и Кр > 2,1. По этим критериям горизонт, рассмотренный в примере, можно охарактеризовать как слабо неоднородный (Кпесч=0,773, Кр=2,29)

Лабораторная работа № 3 Определение кондиционных пределов параметров продуктивных пластов

Правильный подсчет запасов нефти и газа предполагает раскрытие внутренней структуры подсчетного объекта, знание которой необходимо для организации эффективной разработки залежей, в частности для выбора системы разработки. Для выявления внутренней структуры залежи необходимо еще знать положение в плане границ между коллекторами и неколлекторами, проводимых по значениям фильтрационно-емкостных (или каких-либо других) свойств пород, называемым кондиционными .

Кондиционные пределы параметров продуктивных пластов - это граничные значения параметров, по которым породы продуктивного пласта разделяют на коллекторы и неколлекторы, а также на коллекторы с разными промысловыми характеристиками в целях более надежного выделения в общем объеме залежи ее эффективного объема в целом и объемов разной продуктивности , т.е. определение кондиций коллекторов означает определение критериев выделения в разрезе коллекторов и их классификацию по литологии, продуктивности и т.д.

Кондиции на запасы - это совокупность требований к геолого­физическим, технико-экономическим и горно-техническим параметрам залежи, обеспечивающим достижение модельного нефтеизвлечения при рентабельности процесса разработки с соблюдением законодательств по охране труда, недр и окружающей среды. Определение кондиций по запасам применяется для оценки промысловых возможностей залежи и классификации геологических запасов по их промышленной значимости.

Кондиции коллекторов обусловливаются большой группой факторов, определяющих фильтрационно-емкостные свойства пород (ФЕС). Основными параметрами, влияющими на ФЕС, являются пористость, проницаемость, нефте-, газо-, битумонасыщенность, дополняемые параметрами карбонатности, глинистости, остаточной воды, характера нефте-, газо-, битумонасыщения, гранулометрического состава, вещественно­генетической типизации, параметрами геофизических исследований скважин (ГИС) - параметром насыщения, параметром пористости и др., а также промысловыми показателями - продуктивностью или удельным дебитом. Методом обоснования кондиций является корреляционный анализ между указанными свойствами пород по данным лабораторного исследования керна, по данным ГИС и гидродинамических исследований.

Кондиции на запасы зависят от общественных потребностей в углеводородном сырье и от уровня технико-технологического развития нефте-, газо-, битумодобычи. Кондиции на запасы обосновывают с учетом удельных запасов, начального и конечного дебита скважин, коэффициента вытеснения, коэффициента извлечения нефти (КИН), системы разработки, предельной себестоимости. Методом обоснования кондиций являются технико-экономические расчеты по вариантам разработки объекта.

Выделение коллекторов.

Природный резервуар, вмещающий углеводороды, включает, по крайней мере, породы двух классов: коллекторы и неколлекторы. Эти классы отличаются структурой порового пространства, значениями петрофизических параметров, характером их распределения.

Границы классов - это границы качественного и количественного перехода от одних свойств к другим, не зависящие от применяемых технологий освоения продуктивных пластов. Однако следует учитывать, что при применении методов интенсивного воздействия на пласт, существенно влияющих на структуру порового пространства (расширение каналов фильтрации, растворение карбонатов при физико-химическом воздействии, создание трещин и др.), можно переводить коллекторы в высшие классы, а при применении методов кальмотации - в низшие.

Выше уже было отмечено, что основными параметрами, характеризующими коллекторы, являются пористость Кп, проницаемость Кпр, содержание остаточной воды Ков, для коллектора, вмещающего углеводороды - нефте-, газо-, битумонасыщенность Кн(г, б).

Зависимости между геологическими и промысловыми параметрами являются статистическими, сложными, включающими составляющие, характеризующие определенные классы пород или коллекторов. При обработке подобных зависимостей используется метод наименьших квадратов. Практика показала, что эти зависимости аппроксимируются параболой Y=a*X b .

Изменение характера зависимости контролируется изменением коэффициентов параболы для разных участков поля корреляции, а точки пересечения парабол указывают на положение границ классов.

Для нахождения этих границ часто строят поле корреляции в билогарифмических координатах (способ линеаризации), где парабола преобразуется в прямую: LgY=Lga+b*LgX. Точки пересечения прямых указывают на границы классов.

Аргумент и функцию следует выбирать по физическому смыслу, например в паре Кп-Кб: Кп - аргумент, а Кб - функция, в паре Кп-Кпр: Кп - аргумент, Кпр - функция.

В качестве основы определения границ классов рекомендуется поле корреляции Кпр=f (Кп).


Различают два кондиционных предела. Первый предел - это предел, выше которого порода может содержать у.в. Второй предел - это предел, выше которого порода способна отдавать у.в. Первый предел - это нижняя граница коллектора, второй предел - это граница продуктивного коллектора. Первый предел устанавливается по данным литолого-петрографических исследований керна и петрофизических свойств пород. Второй предел устанавливается по результатам исследований характеристик вытеснения на образцах керна, по кривым фазовой проницаемости, по зависимости остаточной воды от пористости и проницаемости. Второй предел должен подтверждаться результатами опробования скважин - сравнением проницаемости с продуктивностью. Зависимость продуктивности (или удельного дебита) от проницаемости с учетом минимальной величины дебита, ниже которого разработка не рентабельна, позволяет определить третий предел - технологический.

ГИС являются наиболее массовым видом исследований. По данным ГИС производится определение основных параметров пластов и их классификация.

Существует два пути обоснования кондиций по данным промысловой геофизики.

Нефть и природный газ. Нефть, её элементный состав. Краткая характеристика физических свойств нефти. Углеводородный газ. Компонентный состав и краткая характеристика физических свойств газа. Понятие о конденсате

Условия залегания нефти, природного газа и пластовой воды в земной коре. Породы-коллекторы. Литологические типы пород-коллекторов. Поровые пространства в горных породах, их виды, форма, размеры. Коллекторские свойства горных пород. Пористость, трещиноватость. Проницаемость. Карбонатность. Глинистость. Методы изучения коллекторских свойств. Нефтегазонасыщенность пород-коллекторов. Породы-покрышки.

Понятие о природных резервуарах и ловушках. Понятие о залежах и месторождениях нефти и газа. Водонефтяные, газонефтяные контакты. Контуры нефтегазоносности. Классификация залежей и месторождений

Происхождение нефти и газа. Миграция и аккумуляция углеводородов. Разрушение залежей.

Пластовые воды нефтяных и газовых месторождений, их промысловая классификация. Общие сведения о давлении и температуре в нефтяных и газовых пластах. Аномально высокие и аномально низкие пластовые давления. Карты изобар, их назначение.

Понятие о нефтегазоносных провинциях, областях и районах, зонах нефтегазонакопления. Основные нефтегазоносные провинции и области России. Крупнейшие и уникальные нефтяные и нефтегазовые месторождения России

Методические указания

При бурении нефтяных и газовых скважин и разработке нефтяных и газовых месторождений основополагаюшими являются знания по нефтяной геологии, а именно, необходимо знать состав и физические свойства нефти и газа, условия их залегания в земной коре. Всегда остается актуальным вопрос о происхождении нефти. Сегодня ученые пытаются выйти за рамки общепризнанной органической теории происхождения, чтобы совершать открытие новых месторождений. Однако для начала, изучите сущность органической и неорганической теорий происхождения нефти и газа и доказательства в пользу каждой из них.

Порода-коллектор-это порода, способная содержать в себе нефть и газ и отдавать их при перепаде давления. Породами - коллекторами могут быть пески и песчаники, алевриты и алевролиты (терригенные), известняки и доломиты (карбонатные).

Газ, нефть, воды в пределах ловушки распределяются под действием гра­витационных сил в зависимости от их плотности. Газ, как наиболее легкий флюид, располагается в верхней части ловушки, под ним залегает нефть, под нефтью - вода. ВНК- водонефтяной контакт, ГНК- газонефтяной контакт, ГВК- газоводяной контакт. Зарисуйте газонефтяную залежь и подпишите ГНК и ВНК. Рассмотрите и зарисуйте различные типы ловушек и залежей.

Изучите принципы районирования нефтегазоносных территорий. Основным является тектонический принцип. Большая часть нефтегазоносных провинций России находится в пределах платформенных территорий. С ними связаны провинции преимущественного палеозойского и мезозойского нефтегазонакопления. На территории России и сопредельных государств расположены две древние платформы - Русская и Сибирская. На Русской платформе выделяют Волго-Уральскую, Тимано-Печорскую, Прикаспийскую, Прибалтийскую нефтегазоносные провинции. На Сибирской платформе выделяют Лено-Тунгусскую, Лено-Вилюйскую, Енисейско-Анабарскую нефтегазоносные провинции. Выше перечислены провинции древних платформ, а к молодым платформам приурочены Западно-Сибирская и Северо-Кавказская нефтегазоносные провинции. Провинции складчатых территорий приурочены к межгорным впадинам, прогибам в основном альпийской складчатости (Дальневосточная). Провинции переходных территорий соответствуют предгорным прогибам - Предкавказская Предуральская, Предвехоянская нефтегазоносные провинции. В пределах провинций выделяют нефтегазоносные области, внутри областей – нефтегазоносные районы, внутри районов – зоны нефтегазонакопления, которые состоят из месторождений.

Литература1, стр.126-203

Вопросы для самоконтроля

1. Что такое нефть, какие химические элементы входят в ее состав?

2. Классификация нефти по товарным качествам.

3. Что такое плотность, вязкость нефти и чему она равна? Единицы измерения. От каких факторов зависит плотность нефти? Где плотность нефти больше: в пластовых или поверхностных условиях? Поясните почему?

4. Какие оптические свойства, тепловые и электрические нефти вы знаете?

5. Чему равны объемный и пересчетный коэффициенты, усадка нефти? Почему необходимо их применение в практике. Что такое давление насыщения, газовый фактор и газосодержание?

6. Какой химический состав имеют природные углеводородные газы? Расскажите о плотности и вязкости природных углеводородных газов.

7. Что понимают под «сухим» и «жирным» углеводородным газом?

8. Расскажите о сжимаемости и растворимости природных углеводных газов.

9. Что представляет собой конденсат? Какой его состав и плотность? Что представляют собой газогидраты?

10. Какой химический состав и свойства имеют пластовые воды нефтяных и газовых месторождений?

11. Что такое минерализация и как она изменяется с глубиной?

12. От чего зависит плотность и вязкость пластовых вод? От чего зависит сжимаемость пластовых вод? Каковы электрические свойства пластовых вод и от чего они зависят?

13. Назовите типы вод классификации Сулина, какие из них сопутствуют нефти?

14. Какие горные породы называются коллекторами? Назовите литологические типы пород-коллекторов.

15. Какие виды пустотного пространства бывают? Охарактеризуйте их.

16. Что понимается под пористостью пород-коллекторов? Приведите коэффициенты общей и открытой пористости.

17. Что такое проницаемость? Назовите размерность проницаемости. Закон Дарси.

18. Что понимается под нефтенасыщенностью (газонасыщенностью)?

19. Что называется породами-покрышками? Какие породы ими могут быть?

20. Природные резервуары и ловушки нефти и газа. Залежи нефти и газа. Приведите понятия.

21. Что называется природными резервуарами? Нарисуйте их типы.

22. Что называется ловушкой нефти и газа? Приведите рисунки ловушек различного типа.

23. Что такое залежь нефти и газа, месторождение нефти и газа? Нарисуйте

газонефтяную залежь, нефтяную залежь, газовую залежь?

24. Как в ловушке распределяются газ, нефть, вода? От какого фактора зависит

Нефть и природный газ

План изучения темы

  • 1. Нефть, ее элементный состав.
  • 2. Краткая характеристика физических свойств нефти.
  • 3. Углеводородный газ.
  • 4. Компонентный состав и краткая характеристика физических свойств газа.
  • 5. Понятие о газоконденсате.
  • 6. Происхождение нефти и газа.
  • 7. Нефть как источник загрязнения природной среды.

Нефть и природный газ - ценные полезные ископаемые. И.М.Губкин отмечал, что разгадка происхождения нефти имеет не только научно-технический интерес, но и первостепенное практическое значение, т.к. она позволяет получить надежные указания, в каких местах искать нефть, и как наиболее целесообразно организовать ее разведку.

Происхождение нефти - одна из наиболее сложных и до сих пор до конца не решенных проблем естествознания. В основу существующих гипотез положены представления об органическом и неорганическом происхождении нефти и газа.

Нефть представляет собой смесь углеводородов, содержащую кислородные, сернистые и азотные соединения. В зависимости от преобладания ряда углеводородов нефти могут быть: метановые, нафтеновые, ароматические.

Товарные качества нефти зависят от содержания парафина. Различают нефти: малопарафинистые не более 1 %, слабо парафинистые - от 1% до2; высокопарафинистые свыше 2%.

Основные физические свойства нефти характеризует плотность, объемный коэффициент, вязкость, сжимаемость, поверхностное натяжение и давления насыщения.

Углеводородный газ находится в недрах Земли в виде самостоятельных скоплений, образуя чисто газовые залежи или газовые шапки, а также в растворенной воде. Горючий газ представляет собой смесь предельных углеводородов метана, этана, пропана и бутана, нередко в составе газа присутствуют более тяжелые углеводороды пентан, гексан, гептан. Углеводородные газы обычно могут содержать углекислый газ, азот, сероводород и небольшие количества редких газов (гелия аргона, неона).

Природные углеводородные газы имеют следующие физические свойства, плотность, вязкость, коэффициент сжимаемости газа, растворимость газа в жидкости.

Что такое нефть, природный газ?

Какими основными свойствами обладают нефти, газы?

Какие существуют теории происхождения нефти?

Какие нефти называются парафинистыми?

Какими свойствами обладают нефти?

Основные:

Дополнительные: стр.93-99

Условия залегания нефти, природного газа и пластовой воды в земной коре

План изучения темы

  • 1. Понятие о породах - коллекторах. Группы пород - коллекторов.
  • 2. Поровые пространства в горных породах, их виды, форма и размеры.
  • 3. Коллекторские свойства горных пород.
  • 4. Гранулометрический состав.
  • 5. Пористость, трещиноватость.
  • 6. Проницаемость.
  • 7. Карбонатность.
  • 8. Методы изучения коллекторских свойств.
  • 9. Нефтегазонасыщенность пород - коллекторов.
  • 10. Породы - покрышки. Понятие о природных резервуарах и ловушках. Водонефтяные газонефтяные контакты. Контуры нефтегазоносности.
  • 11. Понятие о залежах и месторождениях нефти и газа.
  • 12. Разрушение залежей.
  • 13. Пластовые воды, их промысловая классификация. Подвижная и связанная вода.
  • 14. Общие сведения о давлении и температуре в нефтяных и газовых пластах. Карты изобар, их назначение.

Краткое изложение теоретических вопросов.

Природный резервуар - естественное вместилище для нефти, газа и воды, внутри которого они могут циркулировать и форма, которого обусловлена соотношением коллектора с вмещающими его (коллектор) плохо проницаемыми породами. Выделяют три основных типа природных резервуаров: пластовые, массивные, литологически ограниченные со всех сторон.

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их в промышленных количествах при разработке, называются коллекторами. Коллекторы характеризуются емкостными и фильтрационными свойствами.

Покрышками называют плохо проницаемые горные породы, перекрывающие и экранирующие скопление нефти и газа. Наличие покрышек - важнейшее условие сохранности скоплений нефти и газа.

Ловушка - часть природного резервуара, в котором благодаря структурному порогу, стратиграфическому экранированию, литологическому ограничению возможно образование скоплений нефти и газа. Любая ловушка представляет собой объемную трехмерную форму, в которой в силу емкостных, фильтрационных и экранирующих свойств накапливаются и сохраняются углеводороды.

Миграцией нефти и газа называются различные перемещения этих флюидов в толще горных пород. Различают миграцию первичную и вторичную.

Под залежью нефти и газа понимаются локальные промышленные скопления этих полезных ископаемых в проницаемых коллекторах - ловушек различного типа. Пространственно ограниченный участок недр, содержащий залежь или несколько залежей нефти и газа, расположенных на одной площади, называется месторождением.

Вопросы для самоконтроля по теме:

Какие существуют виды природных резервуаров?

Основные свойства пород - коллекторов?

Что такое ловушка?

Виды ловушек нефти и газа?

Виды миграции нефти и газа?

Виды месторождений нефти и газа?

Нефтегазоносные провинции

План изучения темы

  • 1. Районирование нефтегазоносных территорий России, перспективность их развития;
  • 2. Понятие о нефтегазоносных провинциях, областях и районах, зонах нефтегазонакопления.
  • 3. Основные нефтегазоносные провинции и области России.
  • 4. Крупнейшие и уникальные нефтяные и нефтегазовые месторождения России.
  • 5. Характеристика нефтегазоносных провинций, имеющих развитую нефтяную промышленность (Западно-Сибирской, Волго-Уральской, Тимано-Печорской, Северо-Кавказской, Восточно-Сибирской).
  • 6. Основные черты геологического строения и нефтегазоносность.

Краткое изложение теоретических вопросов.

На востоке европейской части РФ располагаются обширные по территории Волго - Уральская, Прикаспийская нефтегазоносные провинции.

Волго - Уральская нефтегазоносная провинция прочно вошла в историю нефтегазодобывающей промышленности страны под названием Второго Баку.

Западно - Сибирская нефтегазоносная провинция соответствует эпипалеозойской платформе, занимает значительную часть территории громадной Западно - Сибирской низменности.

Прикаспийская нефтегазоносная провинция, расположена на юго - востоке европейской части РФ

Необходимо рассмотреть их основные черты геологического строения, нефтегазоность, месторождения нефти и газа.

Вопросы для самоконтроля по теме:

  • 1. Общая характеристика Волго - Уральской нефтегазоносной провинции?
  • 2. Общая характеристика Западно - Сибирской нефтегазоносной провинции?
  • 3. Общая характеристика Прикаспийской нефтегазоносной провинции?
  • 4. Основные черты геологического строения провинций?

Основные и дополнительные источники по теме

Основные: стр.92 -110; 119 - 132; 215 - 225

Дополнительные: стр.105- 122

Режимы залежей нефти и газа

План изучения темы

  • 1. Источники энергии в пластах, краткую характеристику режимов работы нефтяных и газовых залежей
  • 2. Природные режимы нефтяных и газовых залежей, геологические факторы их формирования и проявления.
  • 3. Давление насыщения и его влияние на режим работы залежей.
  • 4. Краткая характеристика водонапорного, упруговодонапорного, газонапорного (режима газовой шапки), растворенного газа и гравитационного режимов.
  • 5. Характеристика природных режимов газовых и газоконденсатных залежей.
  • 6. Определение режимов работы залежей в процессе опытно-промышленной эксплуатации.

Краткое изложение теоретических вопросов.

Пластовая энергия в залежах нефти и газа может быть следующая: напор краевых вод; упругие силы нефти, газа и воды; расширение газа растворенного в нефти; давление сжатого газа; сила тяжести. Проявление пластовой энергии обуславливается характером подземного резервуара, типом залежи и формой залежи; коллекторскими свойствами пласта внутри залежи и вне ее, составом и соотношением флюидов в залежи, удаленностью от области питания пластовых вод и условиями разработки.

Режимом залежи называется характер проявления пластовой энергии, двигающей нефть и газ по пласту к забоям скважин и зависящий от природных условий и мероприятий по воздействию на пласт.

В зависимости от источника пластовой энергии, обеспечивающей передвижение нефти из пласта в скважину, существуют следующие режимы нефтяных залежей: водонапорный, упруговодонапорный режимы; режим растворенного газа; газонапорный и гравитационный режимы. При одновременном проявлении энергии нескольких видов, принято говорить о смешанном или комбинированном режиме

В разработке газовых месторождений используют также водонапорный, газовой, смешанный режимы. Водонапорный режим встречается крайне редко.

Технология вскрытия продуктивных горизонтов обуславливает повышение производительности скважин улучшает приток нефти и газа из слабопроницаемых пропластков, что в конечном счете способствует увеличению нефтеотдачи пластов.

Методы вскрытия пластов в зависимости от пластового давления и степени насыщенности пласта нефтью, степени дренирования, положения газо - водонефтяного контакта и глубины залегания пласта и других факторов.

Конструкцию забоев скважин выбирают с учетом литологических и физических свойств и местоположения скважин на залежи, поэтому забои скважин могут быть открытыми или с обсаженными стволами.

Вопросы для самоконтроля

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет очного обучения института Нефти, газа и энергетики.

Кафедра Нефтегазового промысла

КОНСПЕКТ ЛЕКЦИЙ

По дисциплине:

« Геология нефти и газа »

для студентов всех форм обучения специальностей:

130501 Проектирование, сооружение и эксплуатация нефтегазопроводов и нефтегазохранилищ;

130503 Разработка и эксплуатация нефтяных и газовых месторождений;

130504 Бурение нефтяных и газовых скважин.

бакалавров по направлению 131000 «Нефтегазовое дело»

Составитель: старший преподаватель

Шостак А.В.

КРАСНОДАР 2012

ЛЕКЦИЯ 1- ВВЕДЕНИЕ………………………………………………………………………… 3

ЛЕКЦИЯ 2- ПРИРОДНЫЕ ГОРЮЧИЕ ИСКОПАЕМЫЕ………………………………….. 12

ЛЕКЦИЯ 3- ОСОБЕННОСТИ НАКОПЛЕНИЯ И ПРЕОБРАЗОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПРИ ЛИТОГЕНЕЗЕ……………… ………………….19

ЛЕКЦИЯ 4 - СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ И ГАЗА…. 25

ЛЕКЦИЯ 5 - ХАРАКТЕР ИЗМЕНЕНИЯ СОСТАВА И ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ НЕФТИ И ГАЗА В ЗАВИСИМОСТИ ОТ ВЛИЯНИЯ РАЗЛИЧНЫХ ПРИРОДНЫХ ФАКТОРОВ…………………………………………………………………….. 45

ЛЕКЦИЯ 6 - ПРОБЛЕМЫ ПРОИСХОЖДЕНИЯ НЕФТИ И ГАЗА………………………. 56

ЛЕКЦИЯ 7 - МИГРАЦИЯ УГЛЕВОДОРОДОВ……………………………………………… 62

ЛЕКЦИЯ 8 - ФОРМИРОВАНИЕ ЗАЛЕЖЕЙ………………………………………………… 75

ЛЕКЦИЯ 9 - ЗОНАЛЬНОСТЬ ПРОЦЕССОВ НЕФТЕОБРАЗОВАНИЯ…………………. 81

ЛЕКЦИЯ 10- ЗАКОНОМЕРНОСТИ ПРОСТРАНСТВЕННОГО РАЗМЕЩЕНИЯ СКОПЛЕНИЯ НЕФТИ И ГАЗА В ЗЕМНОЙ КОРЕ…………………………………………101

ЛЕКЦИЯ 11 - МЕСТОРОЖДЕНИЯ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ…………………………………………………….108

СПИСОК ЛИТЕРАТУРЫ……………………………………………………………………….112

Лекция 1 введение

Среди важнейших видов промышленной продукции одно из главных мест занимают нефть, газ и продукты их переработки.

До начала XVIII в. нефть, в основном, добывали из копанок, которые обсаживали плетнем. По мере накопления нефть вычерпывали и в кожаных мешках вывозили потребителям.

Колодцы крепились деревянным срубом, окончательный диаметр обсаженного колодца составлял обычно от 0,6 до 0,9 м с некоторым увеличением книзу для улучшения притока нефти к его забойной части.

Подъем нефти из колодца производился при помощи ручного ворота (позднее конного привода) и веревки, к которой привязывался бурдюк (ведро из кожи).

К 70-м годам XIX в. основная часть нефти в России и в мире добывается из нефтяных скважин. Так, в 1878 г. в Баку их насчитывается 301, дебит которых во много раз превосходит дебит из колодцев. Нефть из скважин добывали желонкой - металлическим сосудом (труба) высотой до 6 м, в дно которого вмонтирован обратный клапан, открывающийся при погружении желонки в жидкость и закрывающийся при ее движении вверх. Подъем желонки (тартание) велся вручную, затем на конной тяге (начало 70-х годов XIX в.) и с помощью паровой машины (80-е годы).

Первые глубинные насосы были применены в Баку в 1876 г., а первый глубинный штанговый насос – в Грозном в 1895 г. Однако тартальный способ длительное время оставался главным. Например, в 1913 г. в России 95% нефти добыто желонированием.

Целью изучения дисциплины «Геология нефти и газа является» создание базы понятий и определений, образующих фундаментальную науку - основами знаний о свойствах и составе углеводородов, их классификации, о происхождении углеводородов, о процессах формирования и закономерностях размещения месторождений нефти и газа.

Геология нефти и газа – отрасль геологии, изучающая условия образования, размещения и миграции нефти и газа в литосфере. Становлении Геологии нефти и газа как науки произошло в начале ХХ века. Ее основоположником является Губкин Иван Михайлович.