Преобразование графиков y=f(kx)

Разберем определение подробнее:

- Что значит «…зависимость переменной \(y\) от переменной \(x\)…»?

Наглядный пример: предположим, вы пришли в магазин купить конфеты, которые продаются вразвес и стоят по \(100\) рублей килограмм. Вопрос – сколько денег вы заплатите? Ответ: смотря сколько конфет купим! Действительно, купим два килограмма – заплатим \(200\) рублей, купим четыре с половиной – заплатим \(450\) рублей. То есть, цена покупки зависит от количества килограмм. Или, иначе говоря, цена покупки есть функция от количества купленных килограмм.

И если количество килограмм обозначить за \(x\), а цену покупки - за \(y\), то можно записать: \(y=100x\). Фактически, эта запись и есть функция. При этом понятно, что \(x\) изменяется по нашему желанию. Поэтому:

\(x\) называется независимой (свободной) переменной или аргументом функции .

Игрек же меняется автоматически, не сам по себе, а потому что изменился \(x\). Поэтому:

\(y\) называется зависимой переменной или функцией икса.

Эту связь между иксом и игреком можно пояснить такой аналогией: игрек – это телевизор, а икс – пульт от него. И если вы хотите, например, увеличить звук - вы не лезете внутрь телевизора и не пытаетесь вручную поменять напряжение в его резисторах, а просто нажимаете кнопку на пульте – и звук меняется. То есть звук поменялся не сам по себе, а потому что вы нажали кнопку. При этом с самим телевизором вы ничего не делали.


- Что значит «…каждому значению \(x\) соответствует только одно значение \(y\)»?
Если мы в полученную выше функцию \(y=100x\) поставим вместо икса, например, тройку, то получим, что игрек равен \(100·3=300\). И сколько бы раз мы не подставляли вместо икса тройку – мы всегда будем получать, что игрек равен \(300\). Мы никак не сможем получить другое значение игрека, если будем подставлять один и тот же икс. В этом и заключается смысл записи «каждому значению икса – только одно значение игрека».

Отметим, что игрек может быть одинаков для нескольких иксов. Например, функция \(y=x^2-6x+9\) имеет одинаковые значения игрека для икса равного \(1\) и для икса равного \(5\).

\(x=1\) \(y=1^2-6·1+9=4\)
\(x=5\) \(y=5^2-6·5+9=4\)

Однако это никак не противоречит сказанному выше: сколько бы мы не подставляли вместо икса \(1\) или \(5\) – мы всегда будем получать только «игрек равен \(4\)».

Вообще понятие функции гораздо шире рассмотренного выше, потому что функцией можно назвать не только «вычисления по формуле», но и любую зависимость элементов. При этом обязательно должно выполняться требование «одному иксу – один игрек». Для ясности приведем еще несколько примеров из жизни.

Например, зависимость типа «человек» - «рост человека» вполне можно считать функцией, потому что для каждого «икса» (то есть каждого отдельного человека) есть свой «игрек» (рост этого человека). Причем значение игрека (роста) определяется тем, какой икс (то есть какого именно человека) мы взяли, и это значение - только одно.

А вот зависимость типа «человек» - «хобби человека» уже не функция! Потому что требование «одному иксу – один игрек» здесь не выполняется, ведь у человека (икса) может быть и два, и три, и десять разных хобби (игреков).

Еще пример: вы шли по улице и нашли \(100\) рублей. Значит ли это, что пройдя по этой улице \(10\) раз, вы найдете \(1000\) рублей? Нет, не значит, потому что здесь нет зависимости между прогулкой и найденной суммой. Это случайность, а не функция.

Способы задания функции

Функция может задаваться:
- аналитически (в виде «формулы»):
например , \(y=100x\) или \(y=x^2-6x+9\)

- таблично (таблица значений «икса» и соответствующих ему значений «игрека»):


- графически (в виде графика):
например ,

Зачастую одну и ту же функцию можно задать разными способами. Например, при мы как раз функцию, заданную аналитически, представляем в графическом виде.

Обратите внимание: на график функции требование «одному иксу – один игрек» также распространяется!

Виды функций

В школьном курсе подробно изучаются следующие виды функций:

- (имеет график - прямая) - все функции, приводимые к виду \(y=kx+b\), где \(k\) и \(b\) – числа. В этих функциях икс только в первой степени и нет переменных в знаменателях.


- (график - парабола) – функция имеет вид \(y=ax^2+bx+c\). Здесь обязательно есть икс в квадрате. А вот икс в первой степени или свободные члены \(c\) – могут отсутствовать.

Обратной пропорциональности (график - гипербола) – задается формулой \(y=\) \(\frac{k}{x}\) , причем \(k≠0\).

\(y=\)\(\frac{3}{x}\)


В старших классах также изучается степенная, показательная, логарифмическая и тригонометрические функции.

Описание видеоурока

Функцией называется зависимость переменной игрек от переменной икс, при которой каждому значению переменной икс соответствует единственное значение переменной игрек.

Икс называется независимой переменной или аргументом. Игрек называется зависимой переменной, значением функции или просто функцией.

Если зависимость переменной игрек от переменной икс является функцией, то коротко записывают так: игрек равно эф от икс. Этим символом обозначают также значение функции, соответствующее значению аргумента икс.

Пусть функция задана формулой игрек равно три икс квадрат минус пять. Тогда можно записать, что эф от икс равно три икс квадрат минус пять. Найдем значения функции эф для значений икс, равных двум и минус пяти. Они будут равны семи и семидесяти.

Заметим, что в записи игрек равно эф от икс вместо эф можно употреблять и другие буквы: же, фи и так далее.

Все значения икс образуют область определения функции. Все значения, которые принимает игрек, образуют область значений функции.

Функция считается заданной, если указана её область определения и правило, согласно которому каждому значению икс поставлено в соответствие единственное значение игрек.

Если функция игрек равно эф от икс задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений переменной икс, при которых выражение эф от икс имеет смысл…

Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.

На рисунке изображен график функции игрек равно эф от икс, областью определения которой является отрезок от единицы до пяти. С помощью графика можно найти, например, что функция от числа один равна минус трем, функция от двух равна двум, функция от числа четыре равна минус двум, функция от числа пять равна минус четырем. Наименьшее значение функции равно минус четырем, а наибольшее - двум. При этом любое число от минус четырех до двух, включая эти числа, является значением данной функции. Таким образом, областью значений функции игрек равно эф от икс является отрезок от минус четырех до двух.

Ранее нами уже были изучены некоторые виды функций:

  • Линейная функция, задаваемая формулой игрек равно ка икс плюс бэ, где ка и бэ - некоторые числа;
  • Прямая пропорциональность - частный случай линейной функции, она задается формулой игрек равно ка икс, где ка не равно нулю;
  • Обратная пропорциональность - функция игрек равно ка деленное на икс, где ка не равно нулю.

Графиком функции игрек равно ка икс плюс бэ является прямая. Область определения этой функции - множество всех чисел. Областью значений этой функции при ка не равном нулю является множество всех чисел, а при ка равном нулю ее область значений состоит из одного числа бэ.

График функции игрек равно ка деленное на икс называется гиперболой.

На рисунке изображен график функции игрек равно ка деленное на икс, для ка большего нуля. Областью определения этой функции является множество всех чисел, кроме нуля. Это множество является и областью ее значений…

Функциями описываются многие реальные процессы и закономерности. Например, прямой пропорциональностью является зависимость массы тела от его объема при постоянной плотности; зависимость длины окружности от ее радиуса. Обратной пропорциональностью является зависимость силы тока на участке цепи от сопротивления проводника при постоянном напряжении; зависимость времени, которое затрачивает равномерно движущееся тело на прохождение заданного пути, от скорости движения.

Изучались также функции, заданные формулами игрек равно икс квадрат, игрек равно икс куб, игрек равно корень квадратный из икс.

Рассмотрим функцию, заданную формулой игрек равно модуль икс.

Так как выражение модуль икс имеет смысл при любом икс, то областью определения этой функции является множество всех чисел. По определению модуль икс равен икс, если икс больше либо равен нулю, и минус икс, если икс меньше нуля. Поэтому функцию игрек равно модуль икс можно задать следующей системой.

График рассматриваемой функции в промежутке от нуля до плюс бесконечности, включая ноль, совпадает с графиком функции игрек равно икс, а в промежутке от минус бесконечности до нуля - с графиком функции игрек равно минус икс. График функции игрек равно модуль икс состоит из двух лучей, которые исходят из начала координат и являются биссектрисами первого и второго координатных углов.

Свойства функций играют важную роль при их изучении. Они позволяют делать определенные выводы о функциях. Изучение данной темы крайне важно для обучающихся, особенно старших классов. Это связано с тем,что задания по данной теме довольно часто встречаются в КИМ государственной итоговой аттестации.

Видеоурок по теме «Свойства функции» разработан автором для облегчения работы учителя и его подготовки к урокам. Если использовать данный материал на уроках, то появится больше свободного времени, которое можно посвятить индивидуальному обучению или другим направлениям обучения математики в школе.

Длительность урока составляет 8:23 минут. Примерно столько же времени требуется учителю, чтобы объяснить материал на уроке, который длится 40-45 минут. При этому учитель успеет актуализировать знания обучающихся, повторить необходимый материал, просмотреть видеоурок, а затем еще и закрепить материал.

Рассмотрение материала начинается непосредственно с первого свойства, которое называется монотонность. Это понятие подробно расписывается на математическом языке, что способствует развитию математической грамотности обучающихся, а также словесно поясняется каждая запись на экране. Далее автор демонстрирует на рисунке, как выглядит монотонная функция для случаев возрастания и убывания. После этого дается определение монотонной функции. Здесь же дается правило для запоминания, которое связано с монотонностью функции. Далее предлагается рассмотреть эту теорию на примере. На рисунке изображен график, на экране последовательно выделяются промежутки возрастания и убывания. Показана и математическая запись этих промежутков.

Согласно условию другого примера, необходимо исследовать функцию на монотонность. Чтобы определить монотонность функции, автор воспользовался определением возрастающей и убывающей функции. В результате получается, что функция убывает на всей области определения.

Затем на экране демонстрируются примеры возрастающих функций на всей области определения.

Далее внимание обучающихся обращается ко второму свойству, которое называется ограниченностью. Рассмотрение этого свойства строится по аналогии с первым свойством. Рассматривается понятие ограниченности, все это иллюстрируется на рисунке, как ограниченность снизу, так и ограниченность сверху. Затем на экране появляется пример ограниченной функции.

Важными понятиями в пункте ограниченность являются наибольшее и наименьшее значение функции. В качестве иллюстрации показан рисунок и идет подробное описание этих понятий.

После примера рассматривается третье свойство, которое называется выпуклостью. Это понятие иллюстрируется с помощью рисунка. На данном свойстве автор не останавливается так же подробно, как на предыдущих. Он сразу переходит к четвертому свойству - непрерывности. Здесь вводится понятие непрерывной функции. После этого демонстрируется это свойство на рисунке с подробными пояснениями.

Далее рассматривается свойство четности и нечетности. И тут же объясняется, когда функция четная и нечетная. Объяснения сопровождаются иллюстрациями и подробными описаниями. Это показано на примерах двух функций.

И, наконец, рассматривается шестое свойство - периодичность. На нем автор не останавливается, отмечая, что примеры периодичных функций будут изучены в дальнейшем на уроках алгебры.

ТЕКСТОВАЯ РАСШИФРОВКА:

Первое свойство, которое мы рассмотрим -монотонность.

Внимание: во всех определениях рассматривается числовое множество икс большое - подмножество области определения функции.

Функция игрек равно эф от икс возрастает на множестве икс большое, которое является подмножеством области определения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе больше эф от икс первое. Другими словами - большему значению аргумента соответствует большее значение функции.

Функция игрек равно эф от икс убывает на промежутке икс большое которое является подмножеством областиопределения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе меньше эф от икс первое. Другими словами - большему значению аргумента соответствует меньшее значение функции.

Функция игрек равно эф от икс называется монотонной на множестве икс большое, если она на этом промежутке или убывает или возрастает.

Запомни: если функция определена и непрерывна в концах интервала возрастания или убывания, то эти точки включаются в промежуток возрастания или убывания.

Например, функция, график которой изображен на рисунке, на промежутках

от минус бесконечности до минус пяти и от трех до плюс бесконечностивозрастает, а на промежутке от минус пяти до трех убывает. Пример. Исследовать функцию на монотонность: игрек равен шесть минус два икс.

Введем обозначение: эф от икс равен шесть минус два икс.

Если икс первое меньше икс второе, то используя свойства числовых неравенств, имеем

Значит, заданная функция убывает на всей числовой прямой.

Существуют функции, являющиеся возрастающими на всей области определения, например, игрек равен ка икс плюс вэ при ка больше нуля, игрек равен икс в кубе.

Второе свойство - ограниченность.

Если все значения функции игрек равно эф от икс на множестве икс большое больше некоторого числа эм малое, то функцию игрек равно эф от икс называют ограниченной снизу на множестве икс большое из области определения.

Если все значения функции игрек равно эф от икс на множестве икс большое меньше некоторого числа эм большое, то функцию игрек равно эф от икс называют ограниченной сверху на множестве икс большое из области определения.

Запомни: если функция ограничена и сверху и снизу на всей области определения, то ее называют ограниченной.

По графику функции легко можно определить ее ограниченность.

Наибольшее значение функции обозначают игрек с индексом наибольшее. .

Игрик является наибольшим если:

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм большое;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс меньше или равно эф от икс нулевое, то число эм большое называют наибольшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции.

Наименьшее значение функции обозначают игрек с индексом наименьшее

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс больше или равно эф от икс нулевое,то число эм называют наименьшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции

Полезно запомнить:

Если у функции существует наименьшее значение., то она ограничена снизу.

Если у функции существует наибольшее значение, то она ограничена сверху.

Рассмотрим пример. Найти наименьшее значение функции

Функция, график которой изображен на рисунке, ограничена снизу, наименьшее значение функции равно нулю, а наибольшего не существует, функция сверху неограниченна.

Третье свойство: выпуклость вверх, выпуклость вниз.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать ниже проведенного отрезка, то такая функция выпукла вниз на промежутке икс большое из области определения.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать выше проведенного отрезка, то такая функция выпукла вверх на промежутке икс большое из области определения.

четвертое свойство: непрерывность.

Функция называется непрерывной на промежутке, если она определена на этом промежутке и непрерывна в каждой точке этого промежутка.

Непрерывность функции на промежутке Х означает, что график функции на всей области определения сплошной, т.е. не имеет проколов и скачков.

пятое свойство: четность, нечетность.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= f(х), то такая функция четная.

График четной функции симметричен относительно оси ординат.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= -f(х), то такая функция нечетная.

График нечетной функции симметричен относительно начала координат.

Так же существуют функции, которые не являются ни четными, ни нечетными

шестое свойство: периодичность

примеры периодических функций будем рассматривать в дальнейшем

Если существует такое отличное от нуля число тэ большое, что для любого икс из области определения функции верно равенство эф от икс плюс тэ большое равно эф от икс и равно эф от икс минус тэ большое, то функция игрек равно эф от икс -периодическая. Число тэ большое - период функции игрек равно эф от икс

все тригонометрические функции периодические.

>>Математика:Что означает в математике запись у = f(x)

Что означает в математике запись у = f(x)

Изучая какой-либо реальный процесс, обычно обращают внимание на две величины, участвующие в процессе (в более сложных процессах участвуют не две величины, а три, четыре и т.д., но мы пока такие процессы не рассматриваем): одна из них меняется как бы сама по себе, независимо ни от чего (такую переменную мы обозначили буквой х), а другая величина принимает значения, которые зависят от выбранных значений переменной х (такую зависимую переменную мы обозначили буквой у). Математической моделью реального процесса как раз и является запись на математическом языке зависимости у от х, т.е. связи между переменными х и у. Еще раз напомним, что к настоящему моменту мы изучили следующие математические модели: у = b, у = kx, y = kx + m, у = х 2 .

Есть ли у этих математических моделей что-либо общее? Есть! Их структура одинакова: у = f(x).

Эту запись следует понимать так: имеется выражение f(x) с переменной х, с помощью которого находятся значения переменной у.

Математики предпочитают запись у = f(x) не случайно. Пусть, например, f(x) = х 2 , т. е. речь идет о функции у = х 2 . Пусть нам надо выделить несколько значений аргумента и соответствующих значений функции. До сих пор мы писали так:

если х = 1, то у = I 2 = 1;
если х = - 3, то у = (- З) 2 = 9 и т. д.

Если же использовать обозначение f(x) = х 2 , то запись становится более экономной:

f(1) = 1 2 =1;
f(-3) = (-3) 2 = 9.

Итак, мы познакомились еще с одним фрагментом математического языка : фраза «значение функции у = х 2 в точке х = 2 равно 4» записывается короче:

«если у = f(x), где f(x) = x 2 , то f(2) = 4».

А вот образец обратного перевода:

Если у = f(x), где f(x) = x 2 , то f(- 3) = 9. По-другому - значение функции у = х 2 в точке х = - 3 равно 9.

П р и м е р 1. Дана функция у = f(x), где f(x) = х 3 . Вычислить:

а) f(1); б) f(- 4); в) f(о); г) f(2а);
д) f(а-1); е) f(3х); ж) f(-х).

Решение. Во всех случаях план действий один и тот же: нужно в выражении f(x) подставить вместо х то значение аргумента, которое указано в скобках, и выполнить соответствующие вычисления и преобразования. Имеем:

Замечание. Разумеется, вместо буквы f можно использовать любую другую букву (в основном, из латинского алфавита): g(x), h (х), s (х) и т. д.

Пример 2. Даны две функции: у = f(x), где f(x) = х 2 , и у = g (х), где g (х) = х 3 . Доказать, что:

а) f(-x) = f(x); b) g(-x)= -g(x).

Р е ш е н и е. а) Так как f(x) = х 2 , то f(- х) = (- х) 2 = х 2 . Итак, f(x) = х 2 , f(- х) = х 2 , значит, f(- x) =f (x)

б) Так как g{x) = х 3 , то g(- x) = -x 3 , т.e. g(-x) = -g(x).

Использование математической модели вида у = f(x) оказывается удобным во многих случаях, в частности, тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной.

Опишем с помощью построенного на рисунке 68 графика некоторые свойства функции у - f(x) - такое описание свойств обычно называют чтением графика.

Чтение графика - это своеобразный переход от геометрической модели (от графической модели) к словесной модели (к описанию свойств функции). А
построение графика - это переход от аналитической модели (она представлена в условии примера 4) к геометрической модели.

Итак, приступаем к чтению графика функции у = f(x) (см. рис. 68).

1. Независимая переменная х пробегает все значения от - 4 до 4. Иными словами, для каждого значения х из отрезка [- 4, 4] можно вычислить значение функции f(x). Говорят так: [-4, 4] - область определения функции.

Почему при решении примера 4 мы сказали, что найти f(5) нельзя? Да потому, что значение х = 5 не принадлежит области определения функции.

2. y наим = -2 (этого значения функция достигает при х = -4); У нанб. = 2 (этого значения функция достигает в любой точке полуинтервала (0, 4].

3. у = 0, если 1 = -2 и если х = 0; в этих точках график функции y = f(x) пересекает ось х.

4. у > 0, если х є (-2, 0) или если x є (0, 4]; на этих промежутках график функции y = f(x) расположен выше оси х.

5. у < 0, если же [- 4, - 2); на этом промежутке график функции у = f(x) расположен ниже оси х.

6. Функция возрастает на отрезке [-4, -1], убывает на отрезке [-1, 0] и постоянна (ни возрастает, ни убывает) на полуинтервале (0,4].

По мере того как мы с вами будем изучать новые свойства функций, процесс чтения графика будет становиться более насыщенным, содержательным и интересным.

Обсудим одно из таких новых свойств. График функции, рассмотренной в примере 4, состоит из трех ветвей (из трех «кусочков»). Первая и вторая ветви (отрезок прямой у = х + 2 и часть параболы) «состыкованы» удачно: отрезок заканчивается в к точке (-1; 1), а участок параболы начинается в той же точке. А вот вторая и третья ветви менее удачно «состыкованы»: третья ветвь («кусочек» горизонтальной прямой) начинается не в точке (0; 0), а в точке (0; 4). Математики говорят так: «функция у = f(x) претерпевает разрыв при х = 0 (или в точке х = 0)». Если же функция не имеет точек разрыва, то ее называют непрерывной. Так, все функции, с которыми мы познакомились в предыдущих параграфах (у = b, y = kx, y = kx + m, y = x2) - непрерывные.

Пример 5 . Дана функция . Требуется построить и прочитать ее график.

Решение. Как видите, здесь функция задана достаточно сложным выражением. Но математика - единая и цельная наука, ее разделы тесно связаны друг с другом. Воспользуемся тем, что мы изучали в главе 5, и сократим алгебраическую дробь

справедливо лишь при ограничении Следовательно, мы можем переформулировать задачу так: вместо функции у = х 2
будем рассматривать функцию у = х 2 , где Построим на координатной плоскости хОу параболу у = х 2 .
Прямая х = 2 пересекает ее в точке (2; 4). Но по условию , значит, точку (2; 4) параболы мы должны исключить из рассмотрения, для чего на чертеже отметим эту точку светлым кружком.

Таким образом, график функции построен - это парабола у = х 2 с «выколотой» точкой (2; 4) (рис. 69).


Перейдем к описанию свойств функции у = f (x), т. е. к чтению ее графика:

1. Независимая переменная х принимает любые значения, кроме х = 2. Значит, область определения функции состоит из двух открытых лучей (- 0 о, 2) и

2. у наим = 0 (достигается при х = 0), у наиб _ не существует.

3. Функция не является непрерывной, она претерпевает разрыв при х = 2 (в точке х = 2).

4. у = 0, если х = 0.

5. у > 0, если х є (-оо, 0), если х є (0, 2) и если х є (B,+оо).
6. Функция убывает на луче (- со, 0], возрастает на полуинтервале .

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Тема нашего урока: «Преобразование графиков игрек равно эф от ка икс».

Прежде чем приступить к изучению темы, выполните упражнения. Зная графики функций игрек равно синус икс и игрек равно косинус икс, построить графики функции: игрек равно синус икс плюс два. Игрек равно два косинус икс. Игрек равно минус три синус икс.

Сегодня на уроке мы с вами познакомимся еще с одним видом преобразований графиков игрек равно эф от ка икс. Сначала рассмотрим преобразование при ка больше нуля.

Зная график функции игрек равно синус икс, давайте построим график функции игрек равно синус икс на два.

Если икс равно пи, то игрек равно синус пи на два и равен единице. Заметим, что одна вторая находится в промежутке от нуля до единицы.

Абсциссы точек графика функции игрек равно эф от ка икс получаются делением абсцисс соответствующих точек графика функции игрек равно эф от икс на число ка. Если ка находится в промежутке от нуля до единицы, то такое преобразование называют растяжением от оси игрек с коэффициентом ка.

Зная график функции игрек равно синус икс, давайте построим график функции игрек равно синус два икс. Заметим, что если икс равен пи на два, то игрек равно нулю. Если ка больше единицы, то такое преобразование называют сжатием к оси игрек с коэффициентом ка.

Рассмотрим преобразование графиков при ка меньше нуля. Построим график функции игрек равно синус минус икс. Получим, что график функции игрек равно эф от минус икс можно получить из графика функции игрек равно эф от икс с помощью преобразования симметрии относительно оси игрек.

Однако так будет не всегда. Для построения графика игрек равно эф от минус икс есть специальный алгоритм. Рассмотрим его:

Для построения графика функции игрек равно эф от минус икс надо: первое: построить график функции игрек равно эф от икс. Второе: исследовать функцию на четность и если функция четная, то график функции игрек равно эф от минус икс совпадает с графиком функции игрек равно эф от икс. Если функция нечетная, то вместо графика функции игрек равно эф от минус икс можно построить график функции игрек равно минус эф от икс.

В нашем примере была нечетная функция игрек равно синус икс, поэтому график функции построился с помощью преобразования симметрии относительно оси игрек.

Построим график функции игрек равно косинус минус два икс.

Решение. Построим график функции игрек равно косинус икс. Построим график функции игрек равно косинус два икс. Так как косинус – четная функция, то график функции игрек равно косинус минус два икс совпадает с графиком функции игрек равно косинус два икс.

Составим алгоритм построения графика функции игрек равно эф от ка икс при ка меньше нуля. Для этого надо: первое – построить график функции игрек равно эф от икс, второе – осуществить сжатие к (растяжение от) оси игрек с коэффициентом модуль ка. Третье – растянутый график подвергнуть преобразованию относительно оси игрек, если функция нечетная; и оставить без изменения, если функция четная.

Рассмотрим пример. Построить график функции игрек равно два синус икс минус пи на два. Решение. Построим график функции игрек равно синус икс. Сместим график функции вправо на пи на два и получим график функции игрек равно синус икс минус пи на два. Растянем график функции от оси икс в два раза и получим график функции игрек равно два синус икс минус пи на два.

Рассмотрим еще один пример. Построить график функции игрек равно минус три косинус два икс плюс пи на три.

Решение. Построим график функции игрек равно косинус икс. С помощью сжатия к оси игрек, построим график функции игрек равно косинус два икс. Сдвинем полученный график вправо на пи на три, получим график функции игрек равно косинус два икс плюс пи на три. Растянем график функции от оси икс в три раза и получим график функции игрек равно три косинус два икс плюс пи на три. Отобразим полученный график относительно оси икс и получим график функции игрек равно минус три косинус два икс плюс пи на три.

На прошлом уроке, мы с вами записывали в какую точку отобразиться точка с координатами икс игрек при различных преобразованиях. Повторим это и добавим преобразование, которое мы с вами изучали сегодня.

Преобразование эф от икс плюс а отобразит нашу точку в точку с координатами икс минус а, игрек. То есть произойдет смещение графика функции по оси икс влево, если а больше нуля и вправо, если а меньше нуля.

Преобразование эф от икс плюс бэ отобразит нашу точку в точку с координатами икс, игрек плюс бэ. То есть произойдет смещение графика функции по оси игрек вверх, если бэ больше нуля и вниз, если бэ меньше нуля.

Преобразование эм умножить на эф от икс отобразит нашу точку в точку с координатами икс, эм игрек. То есть ордината каждой точки увеличится в эм раз.

Преобразование эф от ка икс отобразит нашу точку в точку с координатами икс деленное на ка, игрек. То есть абсцисса каждой точки уменьшиться в ка раз.