Согласно специальной теории относительности масса и энергия. Сокращение линейных размеров. Релятивистское замедление времени

Определение 1

СТО (специальная теория относительности) – это современная физическая теория пространства и времени.

Теория относительности совместно с такой наукой как квантовая механика, является теоретической базой для развития современной физики и техники. СТО также носит название релятивистской теории; явления же, специфику которых рассматривает эта теория, называют релятивистскими эффектами. Создателем теории относительности является Альберт Эйнштейн.

Классическая механика Ньютона дает отличное описание движения макротел, движение которых происходит на малых скоростях (v < < c) . Нерелятивистская физика принимала как очевидность существование единого мирового времени t , одинакового для всех систем отсчета. Основой классической механики является механический принцип относительности.

Определение 2

Механический принцип относительности (называемый также принципом относительности Галилея): законы динамики едины для всех инерциальных систем отсчета.

Иносказательно можно также назвать законы динамики инвариантными или неизменными относительно преобразований Галилея, позволяющих рассчитать координаты совершающего движение тела в одной инерциальной системе (K) при заданных координатах этого тела в другой инерциальной системе (K ") . В частности, когда система K " совершает движение при скорости v вдоль положительного направления оси x системы K (рис. 4 . 1 . 1), преобразования Галилея выглядят следующим образом:

x = x " + v t , y = y " , z = z " , t = t " .

При этом изначально существует предположение о совпадении осей координат обеих систем в начальный момент.

Рисунок 4 . 1 . 1 . Две инерциальные системы отсчета K и K " .

Следствием преобразований Галилея является классический закон преобразования скоростей при переходе из одной системы отсчета в другую:

v x = v x " + v , v y = v y " , v z = v z "

Тело во всех инерциальных системах при этом имеет одинаковые ускорения:

a x = a x " , a y = a y " , a z = a z " или a → = a " →

Из сказанного можно заключить, что уравнение движения, являющееся одной из основ классической механики (второй закон Ньютона), m a → = F → сохраняет свой вид при переходе из одной инерциальной системы в другую.

К концу XIX века уже имелся некий багаж опытных фактов, явно противоречащих законам классической механики. Вызвало большое затруднение применение механики Ньютона для объяснения распространения света. В определенный момент сформировалось предположение, что свет распространяется в особой среде – эфире; это предположение опровергли многие эксперименты. В 1881 году физик из Америки А. Майкельсон (в 1887 году к нему присоединился физик Э.Морли) начал предпринимать попытки обнаружить движение Земли относительно эфира («эфирный ветер») при помощи интерференционного опыта. Упрощенно схема опыта Майкельсона–Морли отображена на рис. 4 . 1 . 2 .

Рисунок 4 . 1 . 2 . Упрощенная схема интерференционного опыта Майкельсона–Морли. v → – орбитальная скорость Земли.

В ходе опыта одно из плеч интерферометра Майкельсона было установлено параллельно направлению орбитальной скорости Земли (v = 30 к м / с) , после чего прибор поворачивался на 90 ° . Второе плечо при этом получало ориентацию по направлению орбитальной скорости. Произведенные подсчеты давали понять, что в случае существования неподвижного эфира при повороте прибора интерференционные полосы сместились бы на расстояние, пропорциональное v c 2 .

Опыт Майкельсона–Морли, в последующем повторяемый множество раз, давал однозначный отрицательный результат. В результате анализа результатов опыта Майкельсона–Морли, а также некоторых других экспериментов стало возможным утверждать ошибочность представления об эфире как среде, в которой распространяются световые волны. Т.е., для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не влияет на оптические явления на Земле.

Значимое влияние на развитие представлений о пространстве и времени оказала теория Максвелла. В начале XX века данная теория являлась общепризнанной. Теория Максвелла предсказывала электромагнитные волны, которые распространялись с конечной скоростью, и эта гипотеза получила практическое применение в 1895 году, когда А. С. Попов изобрел радио. Но также теория Максвелла гласит, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета обладает одним и тем же значением, равным скорости света в вакууме.

Данное утверждение означает, что уравнения, которые описывают распространение электромагнитных волн, являются неинвариантными относительно преобразований Галилея. Когда электромагнитная волна (в частности, свет) получает распространение в системе отсчета K " (рис. 4 . 1 . 1) в положительном направлении оси x " , в системе K свет должен в соответствии с кинематикой Галилея распространяться со скоростью c + v , а не c .

Таким образом, на границе XIX и XX веков в развитии физики возник серьезный кризис. Выход нашел А.Эйнштейн, отказавшись, как это часто случается в случае величайших открытий, от классического видения. В данном случае, речь шла о классических представлениях о пространстве и времени. Важнейшим шагом здесь стал иной взгляд на понятие абсолютного времени, которое использовалось в классической физике. Привычные представления, казавшиеся логичными и очевидными, по факту показали свою несостоятельность. Множество понятий и величин, в нерелятивистской физике считавшихся абсолютными или не имеющими зависимости от системы отсчета, в теории относительности оказались переведенными в разряд относительных.

Основой специальной теории относительности являются принципы или постулаты, которые Эйнштейн сформулировал в 1905 году.

Определение 3

Принципы СТО :

  1. Принцип относительности: все законы природы инвариантны относительно перехода от одной инерциальной системы отсчета к другой. Данный принцип означает единство формы физических законов (не только механических) во всех инерциальных системах.
    Т.е. принцип относительности классической механики является обобщенным для всех процессов природы, в частности, электромагнитных. Такой обобщенный принцип носит название принципа относительности Эйнштейна.
  2. Принцип постоянства скорости света: скорость света в вакууме не имеет зависимости от того, с какой скоростью движется источник света или наблюдатель, и является одинаковой во всех инерциальных системах отсчета. Скорость света в теории относительности находится на особом положении. Скорость света есть предельная скорость, с которой передаются взаимодействия и сигналы из одной точки пространства в другую.

Указанные принципы необходимо расценивать в качестве обобщения всей совокупности экспериментальных фактов. Выводы и следствия из теории, основанной на данных принципах, получили подтверждение в ходе огромного количества опытных проверок. Специальная теория относительности дала возможность найти ответы на все вопросы «доэйнштейновской» физики и дать объяснение противоречивым результатам уже имеющихся тогда опытов в области электродинамики и оптики. Впоследствии теория относительности получила подкрепление в виде экспериментальных данных, которые были получены в процессе изучения движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.

Постулаты теории относительности явно противоречат классическим представлениям. Проведем такой мысленный эксперимент: в момент времени t = 0 , в который существует совпадение координатных осей двух инерциальных систем K и K " , в общем начале координат произошла кратковременная вспышка света. За время t системы будут смещены относительно друг друга на расстояние v t , а сферический волновой фронт в каждой системе будет обладать радиусом c t (рис. 4 . 1 . 3), поскольку системы являются равноправными, и в каждой из них скорость света равна c .

Рисунок 4 . 1 . 3 . Кажущееся противоречие постулатов СТО.

С позиции наблюдателя в системе K центр сферы расположен в точке O , а с позиции наблюдателя в системе K " центр размещается в O " . Таким образом, получается, что центр сферического фронта одномоментно расположен в двух разных точках!

Причиной подобного недоразумения является не противоречие между двумя постулатами теории относительности, а допущение факта, что положение фронтов сферических волн для обеих систем имеет отношение к одному и тому же моменту времени. Такое допущение содержится в формулах преобразования Галилея, в соответствии с которыми время в обеих системах течет одинаково: t = t " . Таким образом, принципы Эйнштейна противоречат не друг другу, а формулам преобразования Галилея, и в таком случае на смену галилеевых преобразований теория относительности записала иные формулы преобразования при переходе из одной инерциальной системы в другую, получившие название преобразований Лоренца. Преобразования Лоренца при скоростях движения, приближенных к скорости света, дают возможность дать объяснение всем релятивистским эффектам, а при малых скоростях (υ < < c) переходят в формулы преобразования Галилея. Итак, новая теория (специальная теория относительности или СТО) не отвергает прежнюю классическую механику Ньютона, а лишь уточняет пределы ее применения. Эта взаимосвязь между прежней и новой, более общей теорией, частью которой является прежняя в качестве предельного случая, получила название принципа соответствия.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Введение

2. Общая теория относительности Эйнштейна

Заключение

Список использованных источников


Введение

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Впервые принцип относительности был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона.

Принцип относительности означает, что во всех инерциальных системах все механические процессы происходят одинаковым образом.

Когда в естествознании господствовала механистическая картина мира, принцип относительности не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Для физиков стала очевидной недостаточность классической механики для описания явлений природы. Возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

Описывая ход своих рассуждений, Альберт Эйнштейн указывает на два аргумента, которые свидетельствовали в пользу всеобщности принципа относительности:

Этот принцип с большой точностью выполняется в механике, и поэтому можно надеяться, что он окажется правильным и в электродинамике.

Если инерциальные системы неравноценны для описания явлений природы, то разумно предположить, что законы природы проще всего описываются лишь в одной инерциальной системе.

Например, рассматривается движение Земли вокруг Солнца со скоростью 30 километров в секунду. Если бы принцип относительности в данном случае не выполнялся, то законы движения тел зависели бы от направления и пространственной ориентировки Земли. Ничего подобного, т.е. физической неравноценности различных направлений, не обнаружено. Однако здесь возникает кажущаяся несовместимость принципа относительности с хорошо установленным принципом постоянства скорости света в пустоте (300 000 км/с).

Возникает дилемма: отказ либо от принципа постоянства скорости света, либо от принципа относительности. Первый принцип установлен настолько точно и однозначно, что отказ от него был бы явно неоправданным; не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов. В действительности, как показал Эйнштейн:

«Закон распространения света и принцип относительности совместимы».

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась «на две ничем не оправданные гипотезы»: промежуток времени между двумя событиями не зависит от состояния движения тела отсчета и пространственное расстояние между двумя точками твердого тела не зависит от состояния движения тела отсчета. В ходе разработки своей теории ему пришлось отказаться: от галилеевских преобразований и принять преобразования Лоренца; от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Новые понятия и принципы теории относительности существенно изменили физические и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет.

Все вышесказанное обосновывает актуальность выбранной темы.

Цель данной работы всестороннее изучение и анализ создания специальной и общей теорий относительности Альбертом Эйнштейном.

Работа состоит из введения, двух частей, заключения и списка использованной литературы. Общий объем работы 16 страниц.

1. Специальная теория относительности Эйнштейна

В 1905 году Альберт Эйнштейн, исходя из невозможности обнаружить абсолютное движение, сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Глубокий анализ этих постулатов показывает, что они противоречат представлениям о пространстве и времени, принятым в механике Ньютона и отраженным в преобразованиях Галилея. Действительно, согласно принципу 1 все законы природы, в том числе законы механики и электродинамики, должны быть инвариантны по отношению к одним и тем же преобразованиям координат и времени, осуществляемым при переходе от одной системы отсчета к другой. Уравнения Ньютона этому требованию удовлетворяют, а вот уравнения электродинамики Максвелла – нет, т.е. оказываются не инвариантными. Это обстоятельство привело Эйнштейна к выводу о том, что уравнения Ньютона нуждаются в уточнении, в результате которого как уравнения механики, так и уравнения электродинамики оказались бы инвариантными по отношению к одним и тем же преобразованиям. Необходимое видоизменение законов механики и было осуществлено Эйнштейном. В результате возникла механика, согласующаяся с принципом относительности Эйнштейна – релятивистская механика.

Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной. Все движущиеся тела на Земле по отношению к скорости света имеют скорость, равную нулю. И в самом деле, скорость звука всего лишь 340 м/с. Это неподвижность по сравнению со скоростью света.

Из этих двух принципов - постоянства скорости света и расширенного принципа относительности Галилея - математически следуют все положения специальной теории относительности. Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где /" - длина тела в движущейся системе со скоростью V по отношению к неподвижной системе; / - длина тела в покоящейся системе.

Для промежутка же времени, длительности какого-либо процесса - наоборот. Время будет как бы растягиваться, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:


Напомним, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Рис.1. Эксперимент «Поезд Эйнштейна»

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (рис.1).

Специальная теория относительности (СТО) – физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности СТО проявляются при больших (сравнимых со скоростью света) скоростях. Законы классической механики в этом случае не работают. Причина этого заключается в том, что передача взаимодействий происходит не мгновенно, а с конечной скоростью (скоростью света).

Классическая механика является частным случаем СТО при небольших скоростях. Явления, описываемые СТО и противоречащие законам классической физики, называют релятивистскими . Согласно СТО одновременность событий, расстояния и промежутки времени являются относительными.

В любых инерциальных системах отсчета при одинаковых условиях все механические явления протекают одинаково (принцип относительности Галилея). В классической механике измерение времени и расстояний в двух системах отсчета и сравнение этих величин считаются очевидными. В СТО это не так.

События являются одновременными , если они происходят при одинаковых показаниях синхронизированных часов. Два события, одновременные в одной инерциальной системе отсчета, не являются одновременными в другой инерциальной системе отсчета.

В 1905 г. Эйнштейн создал специальную теорию относительности (СТО). В основе его теории относительности лежат два постулата:

  • Любые физические явления во всех инерциальных системах отсчета при одинаковых условиях протекают одинаково (принцип относительности Эйнштейна).
  • Скорость света в вакууме во всех инерциальных системах отсчета одинакова и не зависит от скорости источника и приемника света (принцип постоянства скорости света).

Первый постулат распространяет принцип относительности на все явления, включая электромагнитные. Проблема применимости принципа относительности возникла с открытием электромагнитных волн и электромагнитной природы света. Постоянство скорости света приводит к несоответствию с законом сложения скоростей классической механики. По мысли Эйнштейна, изменения характера взаимодействия при смене системы отсчета не должно происходить. Первый постулат Эйнштейна непосредственно вытекает из опыта Майкельсона–Морли, доказавшего отсутствие в природе абсолютной системы отсчета. В этом опыте измерялась скорость света в зависимости от скорости движения приемника света. Из результатов этого опыта следует и второй постулат Эйнштейна о постоянстве скорости света в вакууме, который вступает в противоречие с первым постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и правило сложения скоростей. Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

Следствия из постулатов СТО

Если проводить сравнение расстояний и показаний часов в разных системах отсчета с помощью световых сигналов, то можно показать, что расстояние между двумя точками и длительность интервала времени между двумя событиями зависят от выбора системы отсчета.

Относительность расстояний:

где ​\(I_0 \) ​ – длина тела в системе отсчета, относительно которой тело покоится, ​\(l \) ​ – длина тела в системе отсчета, относительно которой тело движется, ​\(v \) ​ – скорость тела.

Это означает, что линейный размер движущегося относительно инерциальной системы отсчета уменьшается в направлении движения.

Относительность промежутков времени:

где ​\(\tau_0 \) ​ – промежуток времени между двумя событиями, происходящими в одной точке инерциальной системы отсчета, ​\(\tau \) ​ – промежуток времени между этими же событиями в движущейся со скоростью ​\(v \) ​ системе отсчета.

Это означает, что часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).

Закон сложения скоростей в СТО записывается так:

где ​\(v \) ​ – скорость тела относительно неподвижной системы отсчета, ​\(v’ \) ​ – скорость тела относительно подвижной системы отсчета, ​\(u \) ​ – скорость подвижной системы отсчета относительно неподвижной, ​\(c \) ​ – скорость света.

При скоростях движения, много меньших скорости света, релятивистский закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчета (принцип соответствия).

Для описания процессов в микромире классический закон сложения неприменим, а релятивистский закон сложения скоростей работает.

Полная энергия

Полная энергия ​\(E \) ​ тела в состоянии движения называется релятивистской энергией тела:

Полная энергия, масса и импульс тела связаны друг с другом – они не могут меняться независимо.

Закон пропорциональности массы и энергии – один из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами.

Важно!
Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи.

Энергия покоя

Наименьшей энергией ​\(E_0 \) ​ тело обладает в системе отсчета, относительно которой оно покоится. Эта энергия называется энергией покоя :

Энергия покоя является внутренней энергией тела.

В СТО масса системы взаимодействующих тел не равна сумме масс тел, входящих в систему. Разность суммы масс свободных тел и массы системы взаимодействующих тел называется дефектом масс – ​\(\Delta m \) ​. Дефект масс положителен, если тела притягиваются друг к другу. Изменение собственной энергии системы, т. е. при любых взаимодействиях этих тел внутри нее, равно произведению дефекта масс на квадрат скорости света в вакууме:

Экспериментальное подтверждение связи массы с энергией было получено при сравнении энергии, высвобождающейся при радиоактивном распаде, с разностью масс исходного ядра и конечных продуктов.

Это утверждение имеет разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на \(\Delta m \) , то при этом должна выделиться энергия ​\(\Delta E=\Delta m\cdot c^2 \) ​.

Кинетическая энергия тела (частицы) равна:

Важно!
В классической механике энергия покоя равна нулю.

Релятивистский импульс

Релятивистским импульсом тела называется физическая величина, равная:

где ​\(E \) ​ – релятивистская энергия тела.

Для тела массой ​\(m \) ​ можно использовать формулу:

В экспериментах по исследованию взаимодействий элементарных частиц, движущихся со скоростями, близкими к скорости света, подтвердилось предсказание теории относительности о сохранении релятивистского импульса при любых взаимодействиях.

Важно!
Закон сохранения релятивистского импульса является фундаментальным законом природы.

Классический закон сохранения импульса является частным случаем универсального закона сохранения релятивистского импульса.

Полная энергия ​\(E \) ​ релятивистской частицы, энергия покоя ​\(E_0 \) ​ и импульс ​\(p \) ​ связаны соотношением:

Из него следует, что для частиц с массой покоя, равной нулю, ​\(E_0 \) ​ = 0 и ​\(E=pc \) ​.

Был этот мир глубокой тьмой окутан.
Да будет свет! И вот явился Ньютон.
Эпиграмма XVIII в.

Но сатана недолго ждал реванша.
Пришел Эйнштейн - и стало все, как раньше.
Эпиграмма XX в.

Постулаты теории относительности

Постулат (аксиома) - фундаментальное утверждение, лежащее в основе теории и принимаемое без доказательств.

Первый постулат: все законы физики, описывающие любые физические явления, должны во всех инерциальных системах отсчета иметь одинаковый вид.

Этот же постулат можно сформулировать иначе: в любых инерциальных системах отсчета все физические явления при одинаковых начальных условиях протекают одинаково.

Второй постулат: во всех инерциальных системах отсчета скорость света в вакууме одинакова и не зависит от скорости движения как источника, так и приемника света. Эта скорость является предельной скоростью всех процессов и движений, сопровождаемых переносом энергии.

Закон взаимосвязи массы и энергии

Релятивистская механика - раздел механики, изучающий законы движения тел со скоростями, близкими к скорости света.

Любое тело, благодаря факту своего существования, обладает энергией, которая пропорциональна массе покоя.

Что такое теория относительности (видео)

Следствия теории относительности

Относительность одновременности. Одновременность двух событий относительна. Если события, происшедшие в разных точках, одновременны в одной инерциальной системе отсчета, то они могут быть не одновременными в других инерциальных системах отсчета.

Сокращение длины. Длина тела, измеренная в системе отсчета K", в которой оно покоится, больше длины в системе отсчета K, относительно которой K" движется со скоростью v вдоль оси Ох:

Замедление времени. Промежуток времени, измеренный часами, неподвижными в инерциальной системе отсчета K", меньше промежутка времени, измеренного в инерциальной системе отсчета K, относительно которой K" движется со скоростью v:

Теория относительности

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Относительность

Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости. Если скорость света постоянная величина, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него.

Требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом. А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света – это разойтись также и в оценке времени. Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.

Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел – координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.

Другое известное следствие теории относительности – эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = mс2 (где Е– энергия, m – масса тела, с – скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.

Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света. Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную. По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.

Искривленное пространство

Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше. В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией.

Так как геодезическая линия – кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели. Но вам придется покрыть всего 5802 километра, если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку. Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив. Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.

Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.

Согласно общей теории относительности гравитационные поля должны искривлять свет. Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила. Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается.

Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля.

В достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.

Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес. То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол. Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле. Эйнштейн понял, что, подобно тому как, находясь в вагоне поезда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.

Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, какое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в закон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же.

Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это беспрецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.

Замедление времени

Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени.

Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.

Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.

Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.

Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.

В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, да-же если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!

Гравитация изменяет течение времени. Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект.

Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой – у моря, первый будет стареть быстрее второго. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени – для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.

C появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!

Появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят.

Время возле черной дыры

Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться. Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00. Что зарегистрирует экипаж на борту космического судна?

Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект. Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля. Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются. Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.

Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени. С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта. Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть. В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, – черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.

Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.

При движении с околосветовыми скоростями видоизменяются законы динамики . Второй закон Ньютона , связывающий силу и ускорение , должен быть модифицирован при скоростях тел, близких к скорости света . Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости (см. Экспериментальные основания СТО). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности - нужно лишь уметь слушать» .

Фундаментальность специальной теории относительности для физических теорий, построенных на её основе, привела в настоящее время к тому, что сам термин «специальная теория относительности» практически не используется в современных научных статьях, обычно говорят лишь о релятивистской инвариантности отдельной теории.

Основные понятия и постулаты СТО

Специальная теория относительности, как и любая другая физическая теория , может быть сформулирована на базе из основных понятий и постулатов (аксиом) плюс правила соответствия её физическим объектам.

Основные понятия

Синхронизация времени

В СТО постулируется возможность определения единого времени в рамках данной инерциальной системы отсчёта . Для этого вводится процедура синхронизации двух часов, находящихся в различных точках ИСО . Пусть от первых часов в момент времени ко вторым посылается сигнал (не обязательно световой) с постоянной скоростью . Сразу по достижении вторых часов (по их показаниям в момент времени ) сигнал отправляется обратно с той же постоянной скоростью и достигает первых часов в момент времени . Часы считаются синхронизированными, если выполняется соотношение .

Предполагается, что такая процедура в данной инерциальной системе отсчёта может быть проведена для любых неподвижных относительно друг друга часов, так что справедливо свойство транзитивности : если часы A синхронизованы с часами B , а часы B синхронизованы с часами C , то часы A и C также окажутся синхронизованными.

Согласование единиц измерения

Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть скорость системы S2 относительно системы S1 равна , скорость системы S3 относительно S2 равна , а относительно S1, соответственно, . Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство :

Доказательство

Преобразования (S2, S1) (S3, S2) имеют вид:

где , и т.д. Подстановка из первой системы во вторую, даёт:

Второе равенство является записью преобразований между системами S3 и S1. Если приравнять коэффициенты при в первом уравнении системы и при во втором, то:

Разделив одно уравнение на другое, несложно получить искомое соотношение.

Так как относительные скорости систем отсчёта и произвольные и независимые величины, то это равенство будет выполняться только в случае, когда отношение равно некоторой константе , единой для всех инерциальных систем отсчёта , и, следовательно, .

Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию .

Доказательство

Постулат постоянства скорости света

Исторически важную роль при построении СТО сыграл второй постулат Эйнштейна, утверждающий, что скорость света не зависит от скорости движения источника и одинакова во всех инерциальных системах отсчёта . Именно при помощи этого постулата и принципа относительности Альберт Эйнштейн в 1905 г. получил преобразования Лоренца с фундаментальной константой , имеющей смысл скорости света . С точки зрения описанного выше аксиоматического построения СТО второй постулат Эйнштейна оказывается теоремой теории и непосредственно следует из преобразований Лоренца (см. релятивистское сложение скоростей). Тем не менее, в силу его исторической важности, такой вывод преобразований Лоренца широко используется в учебной литературе .

Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа , возникающая в преобразованиях Лоренца , имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт связан с безмассовостью электромагнитных полей. Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость и скорость света . Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия . Чтобы измерить фундаментальную скорость , нет необходимости проводить электродинамические эксперименты. Достаточно, воспользовавшись, например, релятивистским правилом сложения скоростей по значениям скорости некоторого объекта относительно двух ИСО , получить значение фундаментальной скорости .

Непротиворечивость теории относительности

Теория относительности является логически непротиворечивой теорией. Это означает, что из её исходных положений нельзя логически вывести некоторое утверждение одновременно с его отрицанием. Поэтому множество так называемых парадоксов (подобных парадоксу близнецов) являются кажущимися. Они возникают в результате некорректного применения теории к тем или иным задачам, а не в силу логической противоречивости СТО.

Справедливость теории относительности, как и любой другой физической теории, в конечном счёте, проверяется эмпирически. Кроме этого, логическая непротиворечивость СТО может быть доказана аксиоматически. Например, в рамках группового подхода показывается, что преобразования Лоренца могут быть получены на основе подмножества аксиом классической механики . Этот факт сводит доказательство непротиворечивости СТО к доказательству непротиворечивости классической механики. Действительно, если следствия из более широкой системы аксиом являются непротиворечивыми, то они тем более будут непротиворечивыми при использовании только части аксиом . С точки зрения логики противоречия могут возникать, когда к уже существующим аксиомам добавляется новая аксиома, не согласующаяся с исходными. В аксиоматическом построении СТО, описанном выше, этого не происходит, поэтому СТО является непротиворечивой теорией .

Геометрический подход

Возможны другие подходы к построению специальной теории относительности. Следуя Минковскому и более ранней работе Пуанкаре, можно постулировать существование единого метрического четырёхмерного пространства-времени с 4-координатами . В простейшем случае плоского пространства метрика , определяющая расстояние между двумя бесконечно близкими точками, может быть евклидовой или псевдоевклидовой (см. ниже). Последний случай соответствует специальной теории относительности. Преобразования Лоренца при этом являются поворотами в таком пространстве, которые оставляют неизменным расстояние между двумя точками.

Возможен ещё один подход, в котором постулируется геометрическая структура пространства скоростей. Каждая точка такого пространства соответствует некоторой инерциальной системе отсчёта , а расстояние между двумя точками - модулю относительной скорости между ИСО. В силу принципа относительности все точки такого пространства должны быть равноправными, а, следовательно, пространство скоростей является однородным и изотропным . Если его свойства задаются римановой геометрией , то существует три и только три возможности: плоское пространство, пространство постоянной положительной и отрицательной кривизны. Первый случай соответствует классическому правилу сложения скоростей. Пространство постоянной отрицательной кривизны (пространство Лобачевского) соответствует релятивистскому правилу сложения скоростей и специальной теории относительности.

Различная запись преобразования Лоренца

Пусть координатные оси двух инерциальных систем отсчёта S и S" параллельны друг другу, (t, x,y, z) - время и координаты некоторого события , наблюдаемого относительно системы S, а (t",x",y",z") - время и координаты того же события относительно системы S". Если система S" движется равномерно и прямолинейно со скоростью v относительно S, то справедливы преобразования Лоренца :

где - скорость света. При скоростях много меньше скорости света () преобразования Лоренца переходят в преобразования Галилея :

Подобный предельный переход является отражением принципа соответствия , согласно которому более общая теория (СТО) имеет своим предельным случаем менее общую теорию (в данном случае - классическую механику).

Преобразования Лоренца можно записать в векторном виде , когда скорость систем отсчёта направлена в произвольном направлении (не обязательно вдоль оси ):

где - фактор Лоренца, и - радиус-векторы события относительно систем S и S".

Следствия преобразований Лоренца

Сложение скоростей

Непосредственным следствием преобразований Лоренца является релятивистское правило сложения скоростей. Если некоторый объект имеет компоненты скорости относительно системы S и - относительно S", то между ними существует следующая связь:

В этих соотношениях относительная скорость движения систем отсчёта v направлена вдоль оси x. Релятивистское сложение скоростей, как и преобразования Лоренца, при малых скоростях () переходит в классический закон сложения скоростей.

Если объект движется со скоростью света вдоль оси x относительно системы S, то такая же скорость у него будет и относительно S": . Это означает, что скорость является инвариантной (одинаковой) во всех ИСО.

Замедление времени

Если часы неподвижны в системе , то для двух последовательных событий имеет место . Такие часы перемещаются относительно системы по закону , поэтому интервалы времени связаны следующим образом:

Важно понимать, что в этой формуле интервал времени измеряется одними движущимися часами . Он сравнивается с показаниями нескольких различных, синхронно идущих часов, расположенных в системе , мимо которых движутся часы . В результате такого сравнения оказывается, что движущиеся часы идут медленнее неподвижных часов. С этим эффектом связан так называемый парадокс близнецов .

Если часы движутся с переменной скоростью относительно инерциальной системы отсчёта, то время, измеряемое этими часами (т.н. собственное время), не зависит от ускорения, и может быть вычислено по следующей формуле:

где при помощи интегрирования суммируются интервалы времени в локально инерциальных системах отсчёта (т.н. мгновенно сопутствующих ИСО).

Относительность одновременности

Если два разнесённых в пространстве события (например, вспышки света) происходят одновременно в движущейся системе отсчёта , то они будут неодновременны относительно «неподвижной» системы . При из преобразований Лоренца следует

Если , то и . Это означает, что, с точки зрения неподвижного наблюдателя, левое событие происходит раньше правого . Относительность одновременности приводит к невозможности синхронизации часов в различных инерциальных системах отсчёта во всём пространстве.

С точки зрения системы S

С точки зрения системы S"

Пусть в двух системах отсчёта вдоль оси x расположены синхронизированные в каждой системе часы, и в момент совпадения «центральных» часов (на рисунке ниже) они показывают одинаковое время.

Левый рисунок показывает, как эта ситуация выглядит с точки зрения наблюдателя в системе S. Часы в движущейся системе отсчёта показывают различное время. Находящиеся по ходу движения часы отстают, а находящиеся против хода движения опережают «центральные» часы. Аналогична ситуация для наблюдателей в S" (правый рисунок).

Сокращение линейных размеров

Если длину (форму) движущегося объекта определять при помощи одновременной фиксации координат его поверхности, то из преобразований Лоренца следует, что линейные размеры такого тела относительно «неподвижной» системы отсчёта сокращаются:

,

где - длина вдоль направления движения относительно неподвижной системы отсчёта, а - длина в движущейся системе отсчёта, связанной с телом (т.н. собственная длина тела). При этом сокращаются продольные размеры тела (то есть измеряемые вдоль направления движения). Поперечные размеры не изменяются.

Такое сокращение размеров ещё называют лоренцевым сокращением . При визуальном наблюдении движущихся тел дополнительно к лоренцевому сокращению необходимо учитывать время распространения светового сигнала от поверхности тела. В результате быстро движущееся тело выглядит повёрнутым, но не сжатым в направлении движения.

Эффект Доплера

Пусть источник, движущийся со скоростью v, излучает со скоростью света периодический сигнал, имеющий частоту . Эта частота измеряется наблюдателем, связанным с источником (т.н. собственная частота). Если этот же сигнал регистрируется «неподвижным» наблюдателем, то его частота будет отличаться от собственной частоты:

где - угол между направлением на источник и его скоростью.

Различают продольный и поперечный эффект Доплера . В первом случае , то есть источник и приёмник находятся на одной прямой. Если источник движется от приёмника, то его частота уменьшается (красное смещение), а если приближается, то частота увеличивается (синее смещение):

Поперечный эффект возникает, когда , то есть направление на источник перпендикулярно его скорости (например, источник «пролетает над» приёмником). В этом случае непосредственно проявляется эффект замедления времени:

Аналога поперечного эффекта в классической физике нет, и это чисто релятивистский эффект. В отличие от этого, продольный эффект Доплера обусловлен как классической составляющей, так и релятивистским эффектом замедления времени.

Аберрация

остаётся справедливым также и в теории относительности. Однако производная по времени берётся от релятивистского импульса, а не от классического. Это приводит к тому, что связь силы и ускорения существенно отличается от классической:

Первое слагаемое содержит «релятивистскую массу», равную отношению силы к ускорению, если сила действует перпендикулярно скорости. В ранних работах по теории относительности её называли «поперечной массой». Именно её «рост» наблюдается в экспериментах по отклонению электронов магнитным полем. Второе слагаемое содержит «продольную массу», равную отношению силы к ускорению, если сила действует параллельно скорости:

Как было отмечено выше, эти понятия являются устаревшими и связаны с попыткой сохранить классическое уравнение движения Ньютона .

Скорость изменения энергии равна скалярному произведению силы на скорость тела:

Это приводит к тому, что, как и в классической механике, составляющая силы, перпендикулярная к скорости частицы, не изменяет её энергию (например, магнитная составляющая в силе Лоренца).

Преобразования энергии и импульса

Аналогично преобразованиям Лоренца для времени и координат релятивистские энергия и импульс, измеренные относительно различных инерциальных систем отсчёта, также связаны определёнными соотношениями:

где компоненты вектора импульса равны . Относительная скорость и ориентация инерциальных систем отсчёта S, S" определены так же, как и в преобразованиях Лоренца.

Ковариантная формулировка

Четырёхмерное пространство-время

Преобразования Лоренца оставляют инвариантной (неизменной) следующую величину, называемую интервалом :

где , и т. д. - являются разностями времён и координат двух событий. Если , то говорят, что события разделены времениподобным интервалом; если , то пространственноподобным. Наконец, если , то такие интервалы называются светоподобными. Светоподобный интервал соответствует событиям, связанным сигналом, который распространяется со скоростью света . Инвариантность интервала означает, что он имеет одинаковое значение относительно двух инерциальных систем отсчёта:

По своей форме интервал напоминает расстояние в евклидовом пространстве. Однако он имеет различный знак у пространственных и временных составляющих события, поэтому говорят, что интервал задаёт расстояние в псевдоевклидовом четырёхмерном пространстве-времени. Его также называют пространством-временем Минковского . Преобразования Лоренца играют роль поворотов в таком пространстве. Вращения базиса в четырёхмерном пространстве-времени, смешивающие временную и пространственные координаты 4-векторов , выглядят как переход в движущуюся систему отсчета и похожи на вращения в обычном трёхмерном пространстве. При этом естественно изменяются проекции четырёхмерных интервалов между определёнными событиями на временную и пространственные оси системы отсчёта, что и порождает релятивистские эффекты изменения временных и пространственных интервалов. Именно инвариантная структура этого пространства, задаваемая постулатами СТО, не меняется при переходе от одной инерциальной системы отсчёта к другой. Используя только две пространственные координаты (x, y), четырёхмерное пространство можно изобразить в координатах (t, x, y). События, связанные с событием начала координат (t=0, x=y=0) световым сигналом (светоподобный интервал), лежат на так называемом световом конусе (см. рисунок справа).

Метрический тензор

Расстояние между двумя бесконечно близкими событиями можно записать при помощи метрического тензора в тензорном виде:

где , а по повторяющимся индексам подразумевается суммирование от 0 до 3. В инерциальных системах отсчёта с декартовыми координатами метрический тензор имеет следующий вид:

Кратко эта диагональная матрица обозначается таким образом: .

Выбор недекартовой системы координат (например, переход к сферическим координатам) или рассмотрение неинерциальных систем отсчёта приводит к изменению значений компонент метрического тензора, однако его сигнатура остаётся неизменной. В рамках специальной теории относительности всегда существует глобальное преобразование координат и времени, которое делает метрический тензор диагональным с компонентами . Эта физическая ситуация соответствует переходу в инерциальную систему отсчёта с декартовыми координатами. Другими словами, четырёхмерное пространство-время специальной теории относительности является плоским (псевдоевклидовым). В отличие от этого, общая теория относительности (ОТО) рассматривает искривлённые пространства, в которых метрический тензор никаким преобразованием координат нельзя привести к псевдоевклидовому виду во всём пространстве, но сигнатура тензора сохраняется такой же.

4-вектор

Соотношения СТО могут быть записаны в тензорном виде при помощи введения вектора с четырьмя компонентами (цифра или индекс вверху компоненты является её номером, а не степенью!). Нулевую компоненту 4-вектора называют временно́й, а компоненты с индексами 1,2,3 - пространственными. Они соответствуют компонентам обычного трёхмерного вектора, поэтому 4-вектор обозначается также следующим образом: .

Компоненты 4-вектора, измеренные относительно двух инерциальных систем отсчёта, движущихся с относительной скоростью , связаны друг с другом следующим образом:

Примерами 4-векторов являются: точка в псевдоевклидовом пространстве-времени , характеризующая событие, и энергия-импульс :

.

При помощи метрического тензора можно ввести т.н. ковекторы, которые обозначаются той же буквой, но с нижним индексом:

Для диагонального метрического тензора с сигнатурой , ковектор отличается от 4-вектора знаком перед пространственными компонентами. Так, если , то . Свёртка вектора и ковектора является инвариантом и имеет одинаковое значение во всех инерциальных системах отсчёта:

Например, свёртка (квадрат - 4-вектора) энергии-импульса пропорциональна квадрату массы частицы:

.

Экспериментальные основания СТО

Специальная теория относительности лежит в основе всей современной физики. Поэтому какого-либо отдельного эксперимента, «доказывающего» СТО, нет. Вся совокупность экспериментальных данных в физике высоких энергий , ядерной физике , спектроскопии , астрофизике , электродинамике и других областях физики согласуется с теорией относительности в пределах точности эксперимента. Например, в квантовой электродинамике (объединение СТО, квантовой теории и уравнений Максвелла) значение аномального магнитного момента электрона совпадает с теоретическим предсказанием с относительной точностью .

Фактически СТО является инженерной наукой. Её формулы используются при расчёте ускорителей элементарных частиц. Обработка огромных массивов данных по столкновению частиц, двигающихся с релятивистскими скоростями в электромагнитных полях, основана на законах релятивистской динамики, отклонения от которых обнаружено не было. Поправки, следующие из СТО и ОТО, используются в системах спутниковой навигации (GPS). СТО лежит в основе ядерной энергетики и т.д.

Всё это не означает, что СТО не имеет пределов применимости. Напротив, как и в любой другой теории, они существуют, и их выявление является важной задачей экспериментальной физики. Например, в теории гравитации Эйнштейна (ОТО) рассматривается обобщение псевдоевклидового пространства СТО на случай пространства-времени, обладающего кривизной, что позволяет объяснить большую часть астрофизических и космологических наблюдаемых данных. Существуют попытки обнаружить анизотропию пространства и другие эффекты, которые могут изменить соотношения СТО . Однако необходимо понимать, что если они будут обнаружены, то приведут к более общим теориям, предельным случаем которых снова будет СТО. Точно так же при малых скоростях верной остаётся классическая механика, являющаяся частным случаем теории относительности. Вообще, в силу принципа соответствия , теория, получившая многочисленные экспериментальные подтверждения, не может оказаться неверной, хотя, конечно, область её применимости может быть ограничена.

Ниже приведены только некоторые эксперименты, иллюстрирующие справедливость СТО и её отдельных положений.

Релятивистское замедление времени

То, что время движущихся объектов течёт медленнее, получает постоянное подтверждение в экспериментах, проводимых в физике высоких энергий . Например, время жизни мюонов в кольцевом ускорителе в CERN с точностью увеличивается в соответствии с релятивистской формулой. В данном эксперименте скорость мюонов была равна 0.9994 от скорости света , в результате чего время их жизни увеличилось в 29 раз. Этот эксперимент важен также тем, что при 7-метровом радиусе кольца ускорение мюонов достигало значений от ускорения свободного падения . Это, в свою очередь, свидетельствует о том, что эффект замедления времени обусловлен только скоростью объекта и не зависит от его ускорения.

Измерение величины замедления времени проводилось также с макроскопическими объектами. Например, в эксперименте Хафеле - Китинга проводилось сравнение показаний неподвижных атомных часов , и атомных часов, летавших на самолёте.

Независимость скорости света от движения источника

На заре возникновения теории относительности определённую популярность получили идеи Вальтера Ритца о том, что отрицательный результат опыта Майкельсона может быть объяснён при помощи баллистической теории . В этой теории предполагалось, что свет со скоростью излучается относительно источника, и происходит сложение скорости света и скорости источника в соответствии с классическим правилом сложения скоростей . Естественно, эта теория противоречит СТО.

Астрофизические наблюдения являются убедительным опровержением подобной идеи. Например, при наблюдении двойных звёзд , вращающихся относительно общего центра масс, в соответствии с теорией Ритца происходили бы эффекты, которые на самом деле не наблюдаются (аргумент де Ситтера). Действительно, скорость света («изображения») от звезды, приближающейся к Земле, была бы выше скорости света от удаляющейся при вращении звезды. При большом расстоянии от двойной системы более быстрое «изображение» существенно обогнало бы более медленное. В результате видимое движение двойных звёзд выглядело бы достаточно странным, что не наблюдается.

Иногда встречается возражение, что гипотеза Ритца «на самом деле» верна, но свет при движении сквозь межзвёздное пространство переизлучается атомами водорода , имеющими в среднем нулевую скорость относительно Земли, и достаточно быстро приобретает скорость .

Однако, если бы это было так, возникала бы существенная разница в изображении двойных звёзд в различных диапазонах спектра , так как эффект «увлечения» средой света существенно зависит от его частоты .

В опытах Томашека (1923 г.) при помощи интерферометра сравнивались интерференционные картины от земных и внеземных источников (Солнце , Луна , Юпитер , звёзды Сириус и Арктур). Все эти объекты имели различную скорость относительно Земли , однако смещения интерференционных полос, ожидаемых в модели Ритца, обнаружено не было. Эти эксперименты в дальнейшем неоднократно повторялись. Например, в эксперименте Бонч-Бруевича А. М. и Молчанова В. А. (1956 г.) измерялась скорость света от различных краёв вращающегося Солнца. Результаты этих экспериментов также противоречат гипотезе Ритца .

Исторический очерк

Связь с другими теориями

Гравитация

Классическая механика

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики . Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тела . Надо отметить, что даже в классической физике предполагается, что механическое воздействие на твёрдое тело распространяется со скоростью звука , а отнюдь не с бесконечной (как должно быть в воображаемой абсолютно твёрдой среде).

Квантовая механика

Специальная теория относительности (в отличие от общей) полностью совместима с квантовой механикой . Их синтезом является релятивистская квантовая теория поля . Однако обе теории вполне независимы друг от друга. Возможно построение как квантовой механики, основанной на нерелятивистском принципе относительности Галилея (см. уравнение Шрёдингера), так и теорий на основе СТО, полностью игнорирующих квантовые эффекты. Например, квантовая теория поля может быть сформулирована как нерелятивистская теория . В то же время такое квантовомеханическое явление, как спин , последовательно не может быть описано без привлечения теории относительности (см. Уравнение Дирака).

Развитие квантовой теории всё ещё продолжается, и многие физики считают, что будущая полная теория ответит на все вопросы, имеющие физический смысл, и даст в пределах как СТО в сочетании с квантовой теорией поля, так и ОТО. Скорее всего, СТО ожидает такая же судьба, как и механику Ньютона - будут точно очерчены пределы её применимости. В то же время такая максимально общая теория пока является отдалённой перспективой.

См. также

Примечания

Источники

  1. Гинзбург В. Л. Эйнштейновский сборник, 1966. - М .: Наука, 1966. - С. 363. - 375 с. - 16 000 экз.
  2. Гинзбург В. Л. Как и кто создал теорию относительности? в Эйнштейновский сборник, 1966. - М .: Наука, 1966. - С. 366-378. - 375 с. - 16 000 экз.
  3. Сацункевич И. С. Экспериментальные корни специальной теории относительности . - 2-е изд. - М .: УРСС, 2003. - 176 с. - ISBN 5-354-00497-7
  4. Мизнер Ч., Торн К. , Уилер Дж. Гравитация. - М .: Мир, 1977. - Т. 1. - С. 109. - 474 с.
  5. Einstein A. «Zur Elektrodynamik bewegter Korper» Ann Phys.- 1905.- Bd 17.- S. 891. Перевод:Эйнштейн А. «К электродинамике движущегося тела» Эйнштейн А. Собрание научных трудов. - М .: Наука, 1965. - Т. 1. - С. 7-35. - 700 с. - 32 000 экз.
  6. Матвеев А. Н. Механика и теория относительности. - Издание 2-е, переработанное. - М .: Высш. шк., 1986. - С. 78-80. - 320 с. - 28 000 экз.
  7. Паули В. Теория Относительности. - М .: Наука, Издание 3-е, исправленное. - 328 с. - 17 700 экз. - ISBN 5-02-014346-4
  8. von Philipp Frank und Hermann Rothe «Über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme» Ann. der Physik, Ser. 4, Vol. 34, No. 5, 1911, pp. 825-855 (русский перевод)
  9. Фок В. А. Теория пространства времени и тяготения. - Издание 2-е, дополненное. - М .: Гос.изд. физ.-мат. лит., 1961. - С. 510-518. - 568 с. - 10 000 экз.
  10. «Преобразования Лоренца» в книге «Релятивистский мир» .
  11. Киттель Ч., Наит У., Рудерман М. Берклеевский курс физики. - Издание 3-е, исправленное. - М .: Наука, 1986. - Т. I. Механика. - С. 373,374. - 481 с.
  12. von W. v. Ignatowsky «Einige allgemeine Bemerkungen zum Relativitätsprinzip» Verh. d. Deutsch. Phys. Ges. 12, 788-96, 1910 (русский перевод)
  13. Терлецкий Я. П. Парадоксы теории относительности. - М .: Наука, 1966. - С. 23-31. - 120 с. - 16 500 экз.
  14. Паули В. Теория Относительности. - М .: Наука, Издание 3-е, исправленное. - С. 27. - 328 с. - 17 700 экз. - ISBN 5-02-014346-4
  15. Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7