Чему равно число exp. Разложение в степенной ряд. Обратная функция Ln

y(x) = e x , производная которой равна самой функции.

Экспоненту обозначают так , или .

Число e

Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
е ≈ 2,718281828459045...

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел :
.

Также число e можно представить в виде ряда:
.

График экспоненты

График экспоненты, y = e x .

На графике представлена экспонента, е в степени х .
y(x) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

;
;
;

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y(x) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Одной из самых известных показательных функций в математике является экспонента. Она представляет собой число Эйлера, возведенное в указанную степень. В Экселе существует отдельный оператор, позволяющий её вычислить. Давайте разберемся, как его можно использовать на практике.

Экспонента является числом Эйлера, возведенным в заданную степень. Само число Эйлера приблизительно равно 2,718281828. Иногда его именуют также числом Непера. Функция экспоненты выглядит следующим образом:

где e – это число Эйлера, а n – степень возведения.

Для вычисления данного показателя в Экселе применяется отдельный оператор – EXP . Кроме того, эту функцию можно отобразить в виде графика. О работе с этими инструментами мы и поговорим далее.

Способ 1: вычисление экспоненты при помощи ручного ввода функции

EXP(число)

То есть, эта формула содержит только один аргумент. Он как раз и представляет собой степень, в которую нужно возвести число Эйлера. Этот аргумент может быть как в виде числового значения, так и принимать вид ссылки на ячейку, содержащую в себе указатель степени.


Способ 2: использование Мастера функций

Хотя синтаксис расчета экспоненты предельно прост, некоторые пользователи предпочитают применять Мастер функций . Рассмотрим, как это делается на примере.


Если в качестве аргумента используется ссылка на ячейку, которая содержит показатель степени, то нужно поставить курсор в поле «Число» и просто выделить ту ячейку на листе. Её координаты тут же отобразятся в поле. После этого для расчета результата щелкаем по кнопке «OK» .

Способ 3: построение графика

Кроме того, в Экселе существует возможность построить график, взяв за основу результаты, полученные вследствие вычисления экспоненты. Для построения графика на листе должны уже иметься рассчитанные значения экспоненты различных степеней. Произвести их вычисление можно одним из способов, которые описаны выше.

Экспонента (число e) - иррациональное число, приблизительно равное 2,71828. Число e играет большую роль в дифференциальном и интегральном исчислениях и используется практически во всех научных сферах. Столь сухое математическое определение совершенно не раскрывает сути о физическом смысле экспоненты. Рассмотрим подробнее.

Смысл числа e

Число Пи представляет собой не просто иррациональное число, равное 3,1415, а одинаковое для всех случаев соотношение длины окружности к диаметру. Точно так же и число e имеет свой собственный смысл.

Экспонента - это базовое соотношение роста для всех растущих процессов. Любое число можно рассматривать как увеличенную единицу, любой квадрат - как масштабированный единичный квадрат, любой равносторонний треугольник - как увеличенный или уменьшенный правильный треугольник, ну а любой коэффициент роста можно представить в виде масштабированного коэффициента е.

Именно операции с числом e дадут вам возможность определить темпы роста в таких ситуациях, как прирост населения, начисление процентов по депозиту или объем полураспада радиоактивного вещества.

Дискретный рост

В качестве базового примера системы непрерывного удвоения можно привести размножение бактерий, которые удваиваются каждые сутки. Если удвоение происходит один раз, то математически мы получаем 2 в первой степени, то есть просто 2. Если удвоений x раз, то в итоге мы получаем 2 в степени x бактерий, денег или любого другого добра.

Однако система может изменяться не в 2 раза, а например на 20% или 120%. В этом случае мы можем представить удвоение не как двойку, а как 1+1 или 1+100%. В такой записи мы можем подставить любой коэффициент прироста и получить формулу роста как:

Рост = (1 + прирост) x ,

где x - это количество циклов прироста.

Благодаря этой формуле мы можем узнать, сколько бактерий мы получим из одной клетки через 30 дней. Однако бактерии делятся дискретно, то есть пока новая клетка не сформируется в течение суток, она не сможет производить новые организмы. Применяя эту формулу к деньгам, мы получим совсем другой результат.

Непрерывный рост

При начислении процентов на деньги происходит не дискретный, а непрерывный рост. Как только по депозиту начисляется прибыль в размере пары пенни, эти деньги начинают приносить уже свою прибыль. Нет нужды ждать, пока «родится» целый доллар, который начнет делиться по подобию бактерий. Достаточно сформироваться центу, который начнет генерировать свою микроприбыль.

Представим, что мы вложили $1 в бизнес, который обещает нам 100% прибыли через год. Это значит, что мы получим прирост:

Доход = (1 + 1) 1 = 2

Всего $2 - негусто. Однако если мы разобьем год на два полугодия, то мы получим по 50 центов за каждые полгода. Полученные центы уже могут самостоятельно генерировать прибыль, и тогда формула изменится.

Доход = (1 + 0,5) 2 = 2,25

Так как у нас теперь два периода удвоения, мы возвели прирост в квадрат и получили дополнительные 25 центов дохода. Если разбить нашу прибыль на 5 частей по 20 центов, то получится еще привлекательнее:

Доход = (1 + 0,2) 5 = 2,4883

Может быть, мы сможем разделить прибыль на бесконечно большое количество мелких частей и получим бесконечную прибыль? Увы, нет. Даже если мы разделим наш доллар на 100 000 частей, доход составит:

Доход= (1 + 0,00001) 100 000 = 2,71826

При бесконечном дроблении доллара прибыль будет увеличиваться на стотысячные знаки после запятой. Наши 2,71826 доллара прибыли будут стремиться к значению 2,718281828, что есть ничто иное как число Е.

И что все это значит

Экспонента - это наибольший возможный результат стопроцентного непрерывного роста за конкретный период времени. Да, изначально нам обещают 100% прибыли, то есть всего $2, но каждый цент приносит свои дивиденды и по итогам у нас оказывается ровно $2,71828 прибыли. Число е – это максимум, который мы можем получить при разбиении прибыли на суммы бесконечно малых величин.

Это означает, что если при потенциальной стопроцентной прибыли мы вложим в бизнес $1, то получим $2,718 чистой прибыли. Если $2, то мы получим 2е чистой прибыли, а если $100, то наш профит составит 100е. Таким образом, e - это предельная константа, которая ограничивает процессы роста точно так же, как скорость света ограничивает передвижение информации в пространстве. Число е – это максимально возможный результат, труднодостижимый на практике, поэтому в реальности многие процессы описываются с использованием частей экспоненты.

Использование экспоненты на практике

На первый взгляд рост изображается в виде прибавления 1%, однако, математически такая прибавка выражается как умножение на 1,01. Таким образом, при операциях с числом e мы используем степени или корни. Или натуральные логарифмы, если нам необходима обратная операция. Какой бы коэффициент прироста мы не взяли, он будет означать степень для числа е. К примеру, если мы знаем, что в течение 3 лет получим прибыль в размере 200%, то мы просто умножаем прирост (e 2) на 3 периода и получаем:

Рост = (е 3) 2 = e 6

Для лучшего понимания рассмотрим примеры.

Депозит в банке

Допустим, мы положили на депозит в банке $100 под годовую ставку в размере 8%. Выбранный банк предлагает нам полную капитализацию процентов, какую же прибыль мы получим через 5 лет? Так как банк обеспечивает нам непрерывный рост денег, через 5 лет на нашем счету уже будет:

Прибыль = 100 × е (0,08 × 5) = 149,1

Потрясающе, правда? К сожалению, реальные банки редко используют сложные проценты, а если и рассчитывают капитализацию, то по своим формулам, которые несколько отличаются от классической экспоненты.

Период полураспада

Представьте, что у вас есть 5 кг радиоактивного урана, который распадается со скоростью 100% в год. Сколько урана у вас останется через 2 года? По идее, весь уран должен распасться за первый же год, однако это не так. Через 6 месяцев у вас останется только 2,5 кг урана, который в свою очередь начнет распадаться со скоростью всего 2,5 кг в год. Еще через пару месяцев в вашем хранилище останется 1 кг урана, но и он будет распадаться с еще меньшей скоростью на уровне 1 кг в год. С течением времени вы теряете радиоактивное топливо, при этом снижается и скорость распада. Таким образом, через 2 года у вас останется:

Радиоактивный остаток = 5 × e −2 = 0,676

Заключение

Экспонента находит широкое применение в ситуациях, где что-либо непрерывно или дискретно растет. Вы можете использовать калькулятор возведения числа e в степень для подсчета результатов роста любых непрерывных процессов.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Экспонента представляет собой показательную функцию \ производная которой равна самой функции. Экспоненту обозначают: \

Экспонента обладает свойствами показательной функции с основанием степени е > 1. Основанием степени экспоненты является число "е". Это иррациональное число. Оно примерно равно:

Выражение числа "е" через предел последовательности. Число "е" можно выразить через предел последовательности. Это, так называемый, второй замечательный предел:

Выражение числа е в виде ряда

График экспоненты

На графике представлена экспонента, \ в степени \

На графике видно, что экспонента монотонно возрастает.

Что касается основных формул, то они такие же, как и для показательной функции с основанием степени \[е.\]

\[ (e^p)^p=e{pq}=(e^p)^p\]

Выражение показательной функции через экспоненту:

Где можно решить уравнение с экспонентой онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Функция Exp в Паскале (и многих других языках программирования) вычисляет экспоненту. Синтаксис:

function Exp(X: ValReal) : ValReal;

Функция Exp X вычисляет и возвращает экспоненту числа X.

Вычисление экспоненты - это вычисление числа е в степени X. То есть

Подробности см. в видео и читайте в статье далее.

Обратная функция Ln

Если вы помните , то вы также помните, что она вычисляет натуральный логарифм.

Так вот, обратной функцией Exp является функция Ln. Иными словами, обратная функция экспоненциальной функции (экспоненты) - это натуральный логарифм. То есть:

Log e (Y) = Ln (Y) = X

e X = Y = Exp (X)

e X = Exp(X) = Exp(Ln(Y)) = Y

Есть ещё вот такая полезная формула:

x Y = e Y ln(x) = Exp(Y * Ln(X))

Из этого следует, что используя функции Ln и Exp, мы можем возвести любое число в любую степень. Сделать это можно, например, так:

P:= Exp(Y * Ln(X))

Если описать это математическим языком, то приведённое выше выражение будет эквивалентно следующей записи:

Правда, надо сказать, что здесь есть нюансы. Есть частные случаи, когда приведённое выше выражение выдаст неправильный результат. Например, когда Y или X отрицательные числа, или когда они равны нулю. Такие ситуации надо обрабатывать дополнительно. Однако эта статья не о возведении в степень, поэтому мы будем рассматривать эти частные случаи в другой статье.

Пример исходного кода, где используется функция Exp:

program funcexp; uses Math; var x, y: single; begin y:= Exp(2); //y = Exp(2) = 7,39 WriteLn("Exp(2) = e * e = ", y:0:4); x:= Exp(3 * Ln(2)); //x = 2 в степени 3 WriteLn("2 ^ 3 = ", x:0:4); ReadLn; end.