Для чего исследуется мировой океан. Современные способы изучения океанов и морей. Ресурсы морей России

  1. Исследование мирового океана

    Океан очень красив и заманчив, в нем обитает множество различных видов рыб и не только, также океан помогает нашей Земле в выработке кислорода и играет важную роль в ее климате. Но люди, относительно недавно, детально занялись его изучением, и были удивлены результатами.
    Океанология – это наука, которая связана с изучением океана. Также она нам помогает значительно углубить знания и о природных силах Земли, в их числе горообразование, землетрясения, извержения вулканов.
    Первые исследователи считали, что океан является препятствием на пути к отдаленным землям. Их мало интересовало, что находятся в глубинах океана, несмотря на тот факт, что мировой океан занимает более 70% поверхности Земли.
    Именно по этой причине, еще 150 лет назад господствовало представление о том, что океанское дно – это лишенная любых элементов рельефа, огромная равнина.
    В XX веке началось научное исследование океана. В 1872 – 1876 гг. состоялось первое серьезное плавание с научной целью, на борту британского судна «Челленджер», на котором было специальное снаряжение, а его команда состояла из ученых и моряков.
    Во многом результаты этой океанографической экспедиции обогатили человеческие знания об океанах и их флоре и фауне.

    В глубине океана

    На «Челленджере» для промера океанских глубин были особые лотлини, которые состояли из свинцовых шаров, весивших 91 кг, эти шары были закреплены на пеньковом канате.
    Несколько часов могло длиться опускание на дно глубоководного желоба такого лотлиня, а вдобавок ко всему, этот метод довольно часто не обеспечивал нужной точности измерения больших глубин.
    В 1920-е годы появились эхолоты. Это позволило определять океанскую глубина всего за несколько секунд по времени, истекшему между посылом звукового импульса и приемом отраженного дном сигнала.
    Суда, которые были оснащены эхолотами, измеряли глубину по ходу следования и получали профиль океанского ложа. Новейшая система глубоководных промеров «Глория» появилась на судах, начиная с 1987 года. Эта система позволяла сканировать дно океана полосами шириной 60 м.
    Использовавшиеся ранее для измерения океанских глубин, утяжеленные лотлини, часто были оснащены небольшими грунтовыми трубками для взятия с океанского дна проб грунта. У современных пробоотборников большой вес и размер, а погружаться они могут на глубину до 50 м в мягкие донные отложения.

    Крупнейшие открытия

    Интенсивное исследование океана началось после Второй мировой войны. Открытия 1950 – 1960 гг., связанные с породами океанической коры, произвели революцию в науках о Земле.
    Эти открытия доказали тот факт, что у океанов относительно молодой возраст, а также подтвердили, что породившее их движение литосферных плит и сегодня продолжается, медленно изменяя земной облик.
    Движение литосферных плит вызывает извержения вулканов и землетрясения, а также приводит к образованию гор. Изучение океанической коры продолжается.
    Судно «Гломар Челленджер» в период 1968 – 1983 гг. находилось в кругосветном плавании. Оно снабжало геологов ценной информацией, буря скважины в океанском дне.
    Судно «Резолюшн» Объединенного океанографического общества глубокого бурения выполняло эту задачу в 1980-е гг. Это судно было способно производить подводные бурения на глубинах до 8 300 м.
    Сейсмические исследования также обеспечивают данными о донных океанских породах: ударные волны, посланные с поверхности воды отображаются от различных слоев породы по-разному.
    В результате этого ученые получают очень ценную информацию о возможных месторождениях нефти и о структуре пород.
    Для измерения скорости течения и температуры на разных глубинах, а так же для взятия проб воды используются другие автоматические приборы.
    Искусственные спутники также играют важную роль: они осуществляют мониторинг океанических течений и температур, которые влияют на климат Земли.
    Именно благодаря этому мы получаем очень важную информацию об изменении климата и глобальном потеплении.
    Аквалангисты в прибрежных водах могут без труда нырять на глубину до 100 м. Но на глубины, которые больше, они погружаются, постепенно повышая и сбрасывая давление.
    Такой метод погружения успешно используют для обнаружения затонувших судов и на морских нефтепромыслах.
    Этот метод дает намного больше возможностей при погружении, чем водолазный колокол или тяжелые водолазные костюмы.

    Подводные аппараты

    Идеальное средство для исследования океанов – это подводные лодки. Но большая их часть принадлежит военным. По этой причине ученные создали свои аппараты.
    Первые такие аппараты появились в 1930 – 1940 гг. Американский лейтенант Дональд Уолш и швейцарский ученый Жак Пиккар, в 1960 г. установили мировой рекорд погружения в самом глубоководном районе мира – в Марианском желобе Тихого океана (впадина Челленджера).
    На батискафе «Триест» они опустились на глубину 10 917 м, а в глубинах океана обнаружили необычных рыб.
    Но, вероятно, наиболее впечатляющими в более недавнем прошлом были события, связанные с крошечным батискафом США «Элвин», с помощью которого в 1985 – 1986 гг. изучались обломки «Титаника» на глубине около 4 000 м.

    Делаем вывод: огромный мировой океан изучен совсем немного и нам предстоит его изучать все более углубленно. И кто знает, какие нас ждут открытия в будущем... Это большая загадка, которая понемногу приоткрывается перед человечеством благодаря исследованию мирового океана.

    А что вам известно о мировом океане?​


  2. Группа американских ученых под руководством Роберта Сармэста утверждает, что неподалеку от Кипра обнаружила убедительные доказательства истинного местоположения легендарной Атлантиды. Описанный Платоном материк, доказывают исследователи, находился между Кипром и Сирией
  3. Сейчас сокращается количество органического планктона в океанах, а это самая большая проблема!!! т.к. он является начальным звеном в цепи питания всего живого на земле. На его сокращеие естественно влияет человек, т. к. от него зависят техногенные факторы (радиация, загрязнение прибрежной зоны океанов, выбросы нефти, горючего и всякой прочей дряни)
  4. Морские течения
    Морские течения - постоянные или периодические потоки в толще мирового океана и морей. Различают постоянные, периодические и неправильные течения; поверхностные и подводные, теплые и холодные течения. В зависимости от причины течения, выделяются ветровые и плотностные течения. Расход течения измеряется в Свердрупах.
    Классификация течений
    Выделяют три группы течений:
    Градиентные течения, вызванные горизонтальными градиентами гидростатического давления, возникающими при наклоне изобарических поверхностей относительно изопотенциальных (уровневых) поверхностей.
    1) Плотностные, вызванные горизонтальным градиентом плотности
    2) Компенсационные, вызванные наклоном уровня моря под воздействием ветра
    3) Бароградиентные, вызванные неравномерным атмосферным давлением над морской поверхностью
    4) Сейшевые, возникающие в результате сейшевых колебаний уровня моря
    5) Стоковые или сточные, возникающие в результате возникновения избытка воды в каком-либо районе моря (как результат притока материковых вод, осадков, таяния льдов)
    Течения, вызванные ветром
    1) Дрейфовые, вызванные только влекущим действием ветра
    2) Ветровые, вызванные и влекущим действием ветра, и наклоном уровня моря и изменением плотности воды, вызванными ветром
    Приливные течения , вызванные приливами.
    1) Отбойное течение
    Гольфстрим

    Гольфстри́м - - тёплое морское течение в Атлантическом океане. Продолжением Гольфстрима является Северо-Атлантическое течение. Благодаря Гольфстриму страны Европы, прилегающие к Атлантическому океану, отличаются более мягким климатом, нежели другие регионы на той же географической широте: массы тёплой воды обогревают находящийся над ними воздух, который западными ветрами переносится на Европу. Отклонения температуры воздуха от средних широтных величин в январе достигают в Норвегии 15-20 °С, в Мурманске - более 11 °C.
    Расход воды Гольфстримом составляет 50 миллионов кубических метров воды ежесекундно, что в 20 раз больше, чем расход всех рек мира, вместе взятых. Тепловая мощность составляет примерно 1,4×10(15) ватт.
    Возникновение и курс
    В возникновении и курсе Гольфстрима играют роль несколько факторов. К ним относятся атмосферная циркуляция и усиливающаяся с продвижением на север сила Кориолиса. Предшественник Гольфстрима, Юкатанское течение, втекает из Карибского моря в Мексиканский залив через узкий пролив между Кубой и Юкатаном. Там вода либо уходит по круговому течению залива либо образует Флоридское течение и следует через ещё более узкий пролив между Кубой и Флоридой и выходит в Атлантический океан.
    Успев набрать в Мексиканском заливе много тепла, Флоридское течение соединяется возле Багамских островов с Антильским течением и превращается в Гольфстрим, который течёт узкой полосой вдоль побережья Северной Америки. На уровне Северной Каролины Гольфстрим покидает прибрежную зону и поворачивает в открытый океан. Примерно в 1500 км далее, он сталкивается с холодным Лабрадорским течением, отклоняющим его ещё больше на восток в сторону Европы. Двигателем движения на восток выступает также сила Кориолиса. По пути в Европу Гольфстрим теряет много энергии из-за испарения, охлаждения и многочисленных боковых ответвлений, сокращающих главный поток, однако он доставляет всё ещё достаточно тепла в Европу, чтобы создать в ней необычный для её широт мягкий климат. Продолжением Гольфстрима к северо-востоку от Большой Ньюфаундлендской банки служит Северо-Атлантическое течение. Средний расход воды во Флоридском проливе - 25 млн м³/с.
    Гольфстрим часто образует ринги - вихри в океане . Отделяющиеся от Гольфстрима в результате меандрирования, они имеют диаметр около 200 км и движутся в океане со скоростью 3-5 см/с.
    Вихри в океане - круговые движения океанской воды, подобные круговым движениям воздуха в вихрях атмосферы

    Возможность влияния аварии на платформе Deepwater Horizon на Гольфстрим
    В связи с аварийным выходом нефти на платформе Deepwater Horizon в Мексиканском заливе в апреле 2010 года, появились сообщения о разрыве в непрерывном течении: в результате истечения нефти из повреждённой скважины течение в заливе, возможно, замкнулось в кольцо и нагревает само себя, а в основной Гольфстрим в Атлантике попадает меньше тёплой воды, чем раньше. На данный момент отсутствуют обоснованные прогнозы влияния на основной
    Гольфстрим, обогревающий Европу.

    Pafos сказал(а):

    Говорят, что космос и то исследован лучше, чем океан...

    Нажмите, чтобы раскрыть...

    И такое возможно.
    Какие океаны самые большие?
    Обычно мы думаем так: Земля состоит из континентов, разделенных морями и океанами. На самом деле наша Земля - океан, из которого поднимаются острова и материки. 7/10 поверхности земли покрыто пятью большими океанами, которые соединены между собой.
    Самый широкий и большой океан - Тихий , из него «вылезает» множество островов. Атлантический океан отделяет Америку от Европы и Африки, он самый узкий. Индийский океан окружает полуостров Индостан. Северный Ледовитый океан (Арктический) окружает Северный полюс. Антарктический - Южный.
    Тихий океан:

    Площадь
    поверхности
    воды, млн.км²
    = 178,68
    Объём,
    млн.км³
    = 710,36
    Средняя глубина = 3976
    Наибольшая глубина океана = Марианская впадина (11022)
    История исследования
    Испанский конкистадор Васко Нуньес де Бальбоа в 1510 году основал на западном берегу Дарьенского залива поселение Санта-Мария-ла-Антигуа-дель-Дарьен (es:Santa María la Antigua del Darién). Вскоре до него дошли известия о богатой стране и большом море, расположенных на юге. Бальбоа с отрядом выдвинулся из своего города (1 сентября 1513 г.), и четыре недели спустя с одной из вершин горного кряжа «в безмолвии» он узрел расстилающуюся к западу безбрежную водную гладь Тихого океана. Он вышел на берег океана и окрестил его Южным морем (исп. Mar del Sur).
    Осенью 1520 года Магеллан обогнул Южную Америку, преодолев пролив, после чего увидел новые водные просторы. За время дальнейшего перехода от Огненной Земли до Филиппинских островов, более трёх месяцев экспедиция не столкнулась ни с одной бурей, очевидно, поэтому Магеллан назвал океан Тихим (лат. Mare Pacificum). Первая детализированная карта Тихого океана была опубликована Ортелием в 1589 году.
    Моря: Уэдделла, Скоша, Беллинсгаузена, Росса, Амундсена, Дейвиса, Лазарева, Рисер-Ларсена, Космонавтов, Содружества, Моусона, Дюрвиля, Сомова сейчас включают в Южный океан.
    По количеству (около 10 тыс.) и общей площади островов (около 3,6 млн км²) Тихий океан занимает среди океанов первое место. В северной части - Алеутские; в западной - Курильские, Сахалин, Японские, Филиппинские, Большие и Малые Зондские, Новая Гвинея, Новая Зеландия, Тасмания; в центральной и южной - многочисленные мелкие острова. Острова центральной и западной части океана составляют географический регион Океания.
    Тихий океан в разное время имел несколько названий:
    Южный океан или Южное море (Mar del Sur) - так его назвал испанский конкистадор Бальбоа, первым из европейцев его увидевший в 1513 году. Сегодня Южным океаном называют водные окрестности Антарктиды.
    Великий океан - назван французским географом Бюашемом в 1753 году. Самое корректное, но не прижившееся название.
    Восточный океан - иногда назывался в России.
    Течения
    Основные поверхностные течения: в северной части Тихого океана - тёплые Куросио, Северо-Тихоокеанское и Аляскинское и холодные Калифорнийское и Курильское; в южной части - тёплые Южно-Пассатное,Японское и Восточно-Австралийское и холодные Западных Ветров и Перуанское.
    Физико-географическое положение
    Занимающий более трети поверхности Земли, Тихий океан является самым большим океаном планеты. Этот океан протянулся от Евразии до Америки и от Северного Ледовитого Океана до течения Западных Ветров в Южном полушарии.
    Его воды расположены большей частью на южных широтах, меньшей - на северных. Своим восточным краем океан омывает западные побережья Северной и Южной Америки, а своим западным краем он омывает восточные побережья Австралии и Евразии. Почти все его сопутствующие моря находятся с северных и западных сторон, такие как Берингово, Охотское, Японское, Восточно-Китайское, Жёлтое, Южно-Китайское, Австрало-Азиатское, Коралловое, Тасманово; у Антарктиды находятся моря Амундсена, Беллинсгаузена и Росса.
    Флора и фауна
    Тихий океан отличается богатейшей фауной, в тропической и субтропической зонах между побережьями Азии и Австралии (здесь огромные территории заняты коралловыми рифами и мангровыми зарослями) общей с Индийским океаном. Из эндемиков следует назвать моллюсков наутилусов, ядовитых морских змей и единственный вид морских насекомых - водомерок рода Halobates. Из 100 тысяч видов животных 3 тысячи представлены рыбами, из них около 75 % эндемичны. Воды у островов Фиджи населяют многочисленные популяции актиний. Рыбы семейства помацентровых прекрасно чувствуют себя среди жгучих щупалец этих животных. Из млекопитающих здесь обитают, среди прочих, моржи, тюлени и каланы. Морской лев населяет побережья Калифорнийского полуострова, Галапагосских островов и Японии.

  5. Происхождение Мирового океана

    Происхождение Мирового океана является предметом идущих уже сотни лет споров.
    Считается, что в архее океан был горячим. Благодаря высокому парциальному давлению углекислого газа в атмосфере, достигавшему 5 бар, его воды были насыщены угольной кислотой Н2СО(3) и характеризовались кислой реакцией (рН ≈ 3−5). В этой воде было растворено большое количество различных металлов, в особенности железа в форме хлорида FeCl(2).
    Деятельность фотосинтезирующих бактерий привела к появлению в атмосфере кислорода. Он поглощался океаном и расходовался на окисление растворенного в воде железа.
    Существует гипотеза, что начиная с силурийского периода палеозоя и вплоть до мезозоя суперконтинент Пангею окружал древний океан Панталасса, который покрывал около половины земного шара.
    Как образовались океаны?

    В истории Земли существует еще немало неразгаданных тайн и загадок. Одной из них является вопрос о том, как образовались океаны.
    На самом деле, мы даже не знаем точно, когда это произошло. Представляется, однако, несомненным тот факт, что в самый ранний период развития Земли их не существовало. Возможно, что вначале океан представлял собой огромные облака пара, превращавшегося в воду по мере того, как поверхность Земли остывала. По оценкам ученых, сделанным на основе сведений о количестве минеральных солей в океане, это случилось от 500 000 000 до 1 000 000 000 лет тому назад.
    Современные теории утверждают, что когда-то почти вся поверхность планеты была морем. Некоторые районы Земли по нескольку раз оказывались под волнами морей. Однако не известно, был ли данный участок дна мирового океана сушей и наоборот.
    Существует множество доказательств того, что в тот или иной период различные участки суши были покрыты неглубокими морями. Большая часть известняка, песчаника и глинистых сланцев, найденных на твердой суше, являются осадочными породами - отложениями минеральных солей на морском дне в течение миллионов лет. Самый обычный мел представляет собой спрессованное скопление ракушек крохотных существ, когда-то обитавших в морях.
    Сегодня волны мирового океана покрывают почти три четверти поверхности Земли. Хотя существует еще множество регионов, в которых человек не исследовал океанское дно, но мы приблизительно знаем, каков его вид. Оно не столь разнообразно, как поверхность материков, однако и на нем имеются горные хребты, равнины и глубокие впадины.
    Есть ли жизнь в кипятке?

    бактерии, но природа, как всегда, опровергла и это убеждение. На дне Тихого океана обнаружены сверхгорячие источники с температурой воды от 250 до 400 градусов Цельсия, и оказалось, что в этом кипятке прекрасно себя чувствуют живые организмы: бактерии, гигантские черви, различные моллюски и даже некоторые виды крабов.
    Это открытие казалось невероятным. Достаточно вспомнить, что большая часть растений и животных погибает при температуре организма свыше 40 градусов, а большинство бактерий - при температуре 70 градусов . Лишь очень немногие бактерии способны выжить при 85 градусах, а самыми стойкими всегда считались бактерии, обитающие в серных источниках. Они могли существовать при температуре до 105 градусов . Но это уже был предел.
    Оказывается, в природе предела нет, а есть непознанное или еще не обнаруженное, как это случилось с термостойкими живыми организмами на дне океана. Более того, когда кипяток, поднятый для анализа со дна океана, немного остыл (примерно до +80 градусов) бактерии, живущие в нем, перестали размножаться, очевидно из-за холода.
    Французский ученый Л.Тома назвал живущие в кипятке существа еще одним из чудес света в современной биологии . Таким образом, обнаружена еще одна загадка природы, которая заставляет пересмотреть прежние представления относительно того, в каких условиях и как может развиваться жизнь.
  6. Как изучается океан?

    Как и в любой другой научной дисциплине, в океанологии выделяются теоретические и экспериментальные исследования. Они тесно взаимосвязаны. Данные наблюдений, получаемые в экспериментах, требуют теоретического осмысления, чтобы составить целостную картину устройства интересующего вас объекта - океана. Теоретические модели в свою очередь подсказывают, как организовать последующие наблюдения, чтобы получить как можно больше новых знаний.
    До недавнего времени основным средством экспериментального изучения океана, если не считать попутных наблюдений любознательных мореплавателей, были морские экспедиции на исследовательских судах. Такие суда должны иметь специальное оснащение - приборы для измерения температуры воды, ее химического состава, скорости течений, устройства для отбора проб грунта с морского дна и для лова обитателей морских глубин. Первые океанографические приборы опускались с борта судна на металлическом тросе с помощью обычной лебедки.
    Измерение свойств воды на больших глубинах требует особой изобретательности. Действительно, как снять показания прибора, находящегося на глубине в несколько километров? Поднять его на поверхность? Но за время подъема датчик прибора проходит через самые разные слои воды, и его показания многократно изменяются. Чтобы зафиксировать, например, значения температуры на нужной глубине, используется особый, так называемый опрокидывающийся термометр. После переворачивания «вверх ногами» такой термометр уже не меняет своих показаний и фиксирует температуру воды на той глубине, на которой произошло опрокидывание. Сигналом к переворачиванию служит падение посыльного грузика, соскальзывающего вниз по несущему тросу. Точно так же при переворачивании закрываются и горловины сосудов для отбора проб воды на химический анализ. Такие сосуды называют батометрами .
    В последние годы на смену таким сравнительно простым приборам, долгое время служившим океанографам, все чаще приходят электронные устройства, которые опускаются в толщу вод на токопроводящем кабеле. Через такой кабель прибор сообщается с бортовым компьютером, запоминающим и обрабатывающим данные, поступающие из глубин.
    Но и таких устройств, более точных и более удобных в обращении, чем их предшественники, недостаточно для получения полной картины состояния океана. Дело в том, что размеры Мирового океана столь велики (его площадь составляет 71% площади всей Земли , то есть 360 млн. кв. км), что самому быстроходному судну потребуется много десятилетий, чтобы побывать во всех районах океана. За это время состояние его вод существенно меняется, подобно тому как меняется погода в атмосфере. В результате получается лишь фрагментарная картина, искаженная из-за растянутости наблюдений во времени.
    На помощь океанологам приходят искусственные спутники Земли, совершающие несколько оборотов в течение одних суток, либо же «неподвижно» зависающие над какой-либо точкой земного экватора на очень большой высоте, откуда можно охватить взором почти половину земной поверхности.
    Измерять характеристики океана с высоты спутника не так-то просто, но возможно. Даже изменения цвета воды, замеченные космонавтами, многое могут сказать о движении вод. Еще точнее движение вод прослеживается по перемещениям наблюдаемых со спутников дрейфующих буев. Но больше всего информации извлекается из регистрации испускаемого поверхностью океана электромагнитного излучения. Анализируя это излучение, улавливаемое спутниковыми приборами, можно определять температуру поверхности океана, скорость приводного ветра, высоту ветровых волн и другие показатели, которые интересуют океанологов.
  7. Атлантический океан

    Площадь
    91,66 млн. км²
    Объём
    329,66 млн. км³
    Наибольшая глубина
    8742 м
    Средняя глубина
    3597 м
    Атланти́ческий океа́н - второй по величине океан после Тихого океана.
    Площадь 91,6 млн. км², из которых около четверти приходится на внутриконтинентальные моря. Площадь прибережных морей невелика и не превышает 1 % от общей площади акватории. Объём вод составляет 329,7 млн. км³, что равно 25 % объёма Мирового океана. Средняя глубина 3736 м, наибольшая - 8742 м (жёлоб Пуэрто-Рико). Среднегодовая солёность вод океана составляет около 35 ‰. Атлантический океан имеет сильно изрезанную береговую линию с выраженным членением на региональные акватории: моря и заливы.
    Название произошло от имени титана Атласа (Атланта) в греческой мифологии или от легендарного острова Атлантида.
    История исследования
    История открытий Атлантики
    Первыми из философов античности слово «Атлантический» употребил в своих сочинениях греческий историк Геродот , писавший, что «море, по коему плавают эллины, и то, что за Геркулесовыми столпами, именуется Атлантическим». Термин «Атлантический океан» встречается в трудах Эратосфена Киренского (III век до н. э.) и Плиния Старшего (I век н. э), но в том, какую именно акваторию он обозначал в древности, учёные не уверены до сих пор. Возможно, так именовали акваторию между Гибралтарским проливом и Канарскими островами.
    Задолго до эпохи великих географических открытий просторы Атлантики бороздили многочисленные суда викингов, карфагенян, финикийцев, норманнов и басков. К примеру, племя басков обосновалось на Пиренейском полуострове в глубокой древности, ещё до появления на континенте индоевропейских народов. Кормясь рыболовным промыслом, но не имея доступа к тихим бухтам тёплого Средиземного моря, баски волей-неволей досконально изучили бурный Бискайский залив, о котором издавна ходила дурная слава. Нельзя исключить, что за несколько веков до Колумба они достигли «земли Вяленой Рыбы» (о. Ньюфаундленд)по ту сторону Атлантики: тамошние воды и доныне славятся богатейшими рыбными запасами. В X-XI ст. новую страницу в изучение северной части Атлантического океана вписали норманны. По мнению большинства исследователей доколумбовых открытий, скандинавские викинги первыми и не раз переплывали океан, достигнув берегов Американского континента (они называли его Винландом) и открыв Гренландию и Лабрадор. Если бы им удалось колонизировать Новый Свет, то, возможно, сегодня Канада была бы заморской провинцией Швеции или Норвегии.
    Спустя несколько веков экспедиции Христофора Колумба нанесли на карту многие острова Карибского бассейна и огромный материк, позднее названный Америкой. Англичане не замедлили снарядить к северо-восточным берегам Нового Света несколько исследовательских экспедиций, собравших весьма ценные сведения, а в 1529 г. испанские картографы составили карту северной части Атлантики, омывающей западные берега Европы и Африки, и обозначили на ней опасные мели и рифы.
    В конце XV века соперничество между Испанией и Португалией за господство в Атлантике обострилось настолько, что в конфликт был вынужден вмешаться Ватикан. В 1494 году был подписан договор, которым вдоль 48-49° западной долготы устанавливался т. н. «папский меридиан». Все земли к западу от него были отданы Испании, а к востоку - Португалии. В XVI столетии по мере освоения колониальных богатств волны Атлантики начали регулярно бороздить корабли, перевозившие в Европу золото, серебро, драгоценные камни, перец, какао и сахар. В Америку тем же путем доставлялось оружие, ткани, спиртное, продукты и рабы для плантаций хлопка и сахарного тростника. Неудивительно, что в XVI-XVII ст. в этих краях процветал пиратский промысел и каперство, а многие знаменитые пираты, такие как Джон Хокинс, Фрэнсис Дрейк и Генри Морган, вписали свои имена в историю.
    На картах европейских мореплавателей, составленных в XVII веке, фигурирует название «Эфиопское море», а топоним «Атлантика» вернулся лишь в конце XVIII столетия.
    Первые попытки изучения морского дна были предприняты в 1779 году близ берегов Дании, а начало серьёзным научным исследованиям положила в 1803-06 годах первая русская кругосветная экспедиция под началом морского офицера Ивана Крузенштерна. Участники последующих походов провели замеры температуры и удельного веса воды на разных глубинах, взяли пробы прозрачности воды и установили наличие подводных течений.
    Не желая отставать, англичане в те же годы предприняли целый ряд успешных научных экспедиций. В 1817-18 гг. Джон Росс совершил плавание на судне «Изабелла», а в 1839-43 гг. его племянник Джеймс трижды плавал в Антарктику на судах «Эребус» и «Террор». Переломным событием в истории подводных исследований стало появление в 1845 году нового донного зонда, сконструированного Джоном Бруком. В течение 1868-76 гг. Королевское географическое общество Великобритании организовало ряд океанографических экспедиций под началом профессора Эдинбургского университета лорда Чарльза Томсона. Во второй половине XIX и начале XX ст. были проведены систематические исследования в Мексиканском заливе и Карибском море. Не менее ценные научные результаты принесла экспедиция Эриха фон Дригальски на судне «Гаусс» (1901-03), участники которой провели тщательные измерения в северо-восточной и юго-восточной части Атлантики. В 1899 году на международной океанографической конференции в Стокгольме было принято решение приступить к созданию батиметрической карты океана в масштабе 1:10 000 000 (первые карты такого типа появились ещё в середине XIX века). В первой половине XX века Германией, Британией, США и Россией был предпринят ряд научных экспедиций, по итогам которых учёные получили детальное представление о Срединно-Атлантическом хребте. В 1968 году американское судно «Гломар Челленджер» провело исследования подводных трещин в земной коре, а в 1971-80 гг. была успешно реализована программа Международной декады океанографических исследований.

    Общее описание
    Моря - Балтийское, Северное, Средиземное, Чёрное, Саргассово, Карибское, Адриатическое, Азовское, Балеарское, Ионическое, Ирландское, Мраморное, Тирренское, Эгейское. Крупные заливы - Бискайский, Гвинейский, Мексиканский, Гудзонов.
    Основные острова: Британские, Исландия, Ньюфаундленд, Большие и Малые Антильские, Канарские, Зелёного мыса, Фолклендские (Мальвинские).
    Меридиональный Срединно-Атлантический хребет делит Атлантический океан на восточную и западную части.
    Основные поверхностные течения: тёплые Северное Пассатное, Гольфстрим и Северное Атлантическое, холодные Лабрадорское и Канарское в северной части Атлантического океана; тёплые Южное Пассатное и Бразильское, холодные Западных Ветров и Бенгельское в южной части Атлантического океана.
    Наибольшая величина приливов - 18 м (залив Фанди). Температура воды на поверхности у экватора до 28 °C. В высоких широтах замерзает. Солёность 34-37,3 %.
    Рыболовство: (сельдь, треска, морской окунь, мерлуза, тунец и др.) - 2/5 мирового улова. Добыча нефти на шельфах Мексиканского залива, Карибского моря, Северного моря.

    Карта глубин Атлантического океана.
    Геологическое строение
    Атлантический океан образовался в мезозое в результате раскола древнего суперконтинента Пангея и дрейфа материков. Раскол Пангеи шёл с севера на юг и начался в триасе, а закончился в мелу. Затем Атлантический океан расширялся за счёт движения Североамериканской и Южноамериканской плит на заайнозое произошло закрытие океана Тетис, смещение Африканской плиты к северу. В северной части Атлантического океана зона спрединга располагалась между Северной Америкой и Гренландией, там где сейчас расположено море Баффина. Затем спрединг переместился восточнее, между Гренландией и Скандинавским полуостровом.
    Дно Атлантического океана в его северной части относится к Северо-Американской и Евразийской плитам, центральная и южная часть подстилается Южно-Американской, Африканской, Карибской плитами и плитой Скотия на юге.
    Флора, фауна и минеральные ресурсы
    Растительный мир Атлантики не отличается видовым разнообразием. В толще воды доминирует фитопланктон, состоящий из динофлагеллятов и диатомовых водорослей. В разгар их сезонного цветения море у берегов Флориды окрашивается в ярко-красный цвет, а в литре морской воды содержатся десятки миллионов одноклеточных растений. Донная флора представлена бурыми (фукусы, ламинарии), зелёными, красными водорослями и некоторыми сосудистыми растениями. В устьях рек растёт зостера морская, или взморник, а в тропиках преобладают зелёные (каулерпа, валония) и бурые (саргассы) водоросли. Для южной части океана характерны бурые водоросли (фукус, лесония, электус).

    Животный мир отличается большим - около сотни - числом биполярных видов, обитающих только в холодных и умеренных поясах и отсутствующих в тропиках. В первую очередь это крупные морские звери (киты, тюлени, котики) и океанские птицы. В тропических широтах обитают морские ежи, коралловые полипы, акулы, рыбы-попугаи и рыбы-хирурги. Дельфины часто встречаются в водах Атлантики. Жизнерадостные интеллектуалы животного мира охотно сопровождают большие и малые суда - иногда, к сожалению, попадая под безжалостные лезвия винтов. Коренными жителями Атлантики являются африканский ламантин и самое крупное млекопитающее планеты - синий кит.


  8. Почему в Атлантическом океане самая соленая вода?

    Атлантический океан занимает площадь в 92 млн.км2. Он считается самым соленым из всех океанов, несмотря на то, что собирает пресные воды с самой значительной части суши. Содержание солей в водах Атлантики составляет в среднем 35,4%, что больше, чем соленость Тихого, Индийского и Северного Ледовитого океанов. Правда стоит отметить, что некоторые ученые полагают, что Индийский океан наиболее соленый.
    Дело в том, что в среднем соленость больше у Атлантического океана, но если брать отдельные зоны Индийского океана, то несомненно будут места, где соленость достигает более, чем 35,4%. Особенно это заметно в северо-западной части Индийского океана, где к высокой температуре воды прибавляется горячее дыхание Сахары. Рекордсменом по солености считают Красное море (до 42 и Персидский залив. В отличие от северных вод, на юге, в районе Антарктиды, соленость Индийского океана значительно уменьшается.
    В Атлантическом же океане соленость распределена более равномерно, что в общем счете сказывается на большей солености океана в целом.
    Конечно, распределение солености не всегда является зональной, во многом она зависит от ряда причин: количества и режима атмосферных осадков, испарения, притока вод из других широт с течениями и количества пресных вод, доставляемых реками.
    Самая высокая соленость наблюдается в тропических широтах (по Гембелю) - 37,9%, в Северной Атлантике между 20 и 30° с.ш., в Южной между 20 и 25° ю. ш. Здесь господствует пассатная циркуляция, мало осадков, испарение же составляет слой в 3 м. Пресных вод почти не поступает.
    Несколько меньше солёность и в умеренных широтах Северного полушария, куда устремляются воды Северо-Атлантического течения. Соленость в приэкваториальных широтах 35,2%.
    Прослеживается изменение солености с глубиной: на глубине 100-200 м она составляет 35%, что связано с подповерхностным течением Ломоносова.
    Установлено, что соленость поверхностного слоя не совпадает в ряде случаев с соленостью на глубине. Резко падает соленость и при встрече различных по температуре течений. Например, южнее острова Ньюфаундленд, при встрече Гольфстрима и Лабрадорского течения на незначительном расстоянии соленость падает от 35% до 31-32%
    Интересной особенностью Атлантического океана является существование в нем пресных подземных вод - субмаринные источники (по И. С. Зецкеру). Один из них давно известен морякам, он расположен восточнее полуострова Флорида, где корабли пополняют запасы пресной воды. Это 90-метровое "пресное окно" в соленом океане. Вода поднимается на поверхность и бьет на глубине 40 м.
  9. Какая разница между океаном, морем, бухтой и заливом?

    Океан представляет собой огромное водное пространство. Всего на Земле четыре океана: Тихий, Атлантический, Индийский и Северный Ледовитый.
    Запомни, что западное побережье Азии и восточное побережье Америки граничат с Тихим океаном, а западное побежье Аме-. рики и восточное побережье Европы и Азии примыкают к Атлантическому океану. Индийский океан граничит с западным побережьем Африки, южным - Азии и восточным -- Австралии,
    Самый маленький из океанов - Северный Ледовитый. Он лежит между северными побережьями Азии, Европы и Америки.
    Глубина океана может быть достаточно значительной и достигать порядка 4 500 метров (11 400 футов). Но есть в нем и более глубокие места - впадины. Глубина Марианской впадины достигает 11022 метров. Это самая большая глубина на Земле.

    Прежде всего запомни, что существуют два вида морей: внутренние и наружные моря. Внутреннее море со всех сторон окружено континентом, а наружное лишь примыкает к нему.
    Северное море окаймляет Атлантический океан. Примером внутреннего моря может быть Средиземное море.
    Слова «залив» и «бухта» являются взаимозаменяемыми. Более часто используется слово «залив».
    Обычно этими словами обозначаются моря, которые подходят к островам. Таков, например, залив Биафра или Персидский залив.
    Глубина воды в заливах или бухтах не бывает слишком значительной. И это совсем не удивительно. Дно моря постепенно повышается, и со временем залив может стать сушей.

    Если ты посмотришь на карту, то сможешь найти моря, заливы и бухты.
  10. Сколько на Земле океанов?

    Посмотрите на глобус или на карту Земли. Вы сможете увидеть там огромные пространства воды. Это – океаны. Всего их четыре.
    Самым большим из четырех земных океанов является Тихий океан. Он такой большой, что люди назвали его Великим.
    Вторым по величине является Атлантический океан, третьим - Индийский океан, а последним - Северный Ледовитый.
    Вместе все четыре океана составляют девять десятых мировых запасов воды. Одну треть составляют внутренние моря и моря, примыкающие к побережьям различных стран.
    Что такое внутренние моря? Они представляют собой часть океана, которая некогда была отделена от него сушей или островами.
    Примером внутреннего моря в Европе могут служить Средиземное и Черное моря. Они отделены от Атлантического океана Гибралтарским проливом. Можно привести и другой пример - Балтийское море, которое отделено от Атлантического океана проливами Скагеррак и Каттегат.
    Моря, окружающие материки, в сущности являются огромными заливами. Таковы Желтое, Белое или Охотское море.
    Люди называют морями и некоторые очень большие озера, например, Каспийское и Аральское.
    Есть на карте и океанические моря. Это - части океана, ограниченные островами. Например, Андаманское море в Индийском океане или Саргассово в Атлантическом.
    Атлантический океан простирается от восточного побережья Европы и Африки до западного побережья Америки.
    Тихий океан простирается от восточного побережья Северной и Южной Америки до побережья Азии.
    Индийский океан лежит между западным побережьем Африки, южным побережьем Азии и восточным побережьем Австралии.
    Между северными побережьями Америки и Европы лежит Северный Ледовитый океан.
    Вы можете увидеть все океаны, если внимательно рассмотрите глобус.

  11. Долгое время ученым ничего не было известно об обитателях океанов, живших с середины юрского периода до эпохи эоцена (а это почти 100 миллионов лет). Но недавняя находка в Канзасе (США) останков древних гигантских рыб многое прояснила. Своим мнением об открытии с корреспондентом "Правды.Ру" поделилась ученый секретарь Палеонтологического института РАН Вера Коновалова.
    Группой ученых из Британии, США и Японии под руководством специалистов Оксфордского университета были найдены представители своеобразного семейства древних морских гигантов. По мнению ученых, во времена юрского и мелового периодов эти рыбы могли занимать экологическую нишу современных усатых китов, питаясь мелкими планктонными организмами. Они процветали в глубинах океана в период, когда их предшественники лидсихтисы уже вымерли.
    По словам доктора Кеншу Шимады, находка останков рыбы в центре территории США не является чем-то удивительным, так как 90 млн лет назад современный Канзас был самым обычным морским дном.
  12. Что нам известно о Мертвом море?

    Мертвое море - озеро наполненное соленой водой, протянувшееся на 76 км в длину и 16 км в ширину, находящееся на границе Иордании и Израиля. Побережье Мертвого моря является самой низкой точкой суши, находится оно на 402 метра ниже уровня Средиземного моря.
    Озеро такое соленое, что ни одна рыба там жить не может, отсюда и такое название - Мертвое море. Также его называют Асфальтитом, ибо в его водах содержится асфальт, то есть отвердевшая нефть. Избыток солей (в литре воды этого моря растворено 400 граммов соли) позволяет лишь держаться на поверхности озера, но не плыть. Там даже можно спокойно лежать, читая газету.
    В некоторых местах соль выпадает в осадок и покрывает сверкающим слоем дно или облепляет солеными "сугробами" прибрежные камни. Из-за светло-желтого песка и белой соли вода кажется ярко-голубой.
    Воды и минералы Мертвого моря издавна пользуются популярностью у желающих быть молодым, здоровым и бодрым. Например, еще тысячи лет назад, древнеегипетская царица Клеопатра использовала воду Мёртвого моря для создания своего «бальзама красоты». Грязь, взятая со дна Мертвого моря, как и вода, содержит огромное количество кальция, калия, йода, магния и брома, что помогает в лечении многих болезней. Люди, приезжающие отдыхать на берега этого необычного моря, могут выбрать разные лечебные процедуры. Мертвое море богато не только грязью с полезными минералами, соленой водой, но и серными источниками, которые находятся поблизости.
    К сожалению, за последнее столетие уровень воды в Мертвом море снизился почти на 25 метров. В 1977 году, из-за снижения уровня воды, море поделилось на две части - Северную и Южную. По прогнозам ученых без интенсивного технического вмешательства уровень водоема будет продолжать снижаться со скоростью примерно 1 метр в год и совсем исчезнет с лица земли в течение ближайших 50 лет.
    Почему в Мертвом море невозможно утонуть?

    Мертвое море - вот уж поистине странное и к тому же далеко не единственное название, данное человеком этому одному из самых необычных водоемов на Земле.
    Впервые это море стали называть «мертвым» древние греки. Жители древней Иудеи звали его «соленым». Арабские авторы упоминали о нем как о «зловонном море».
    В чем же заключается особенность этого моря? В действительности оно представляет собой скорее огромное соленое озеро, расположенное между Иорданией и Израилем. Оно образовано во впадине или трещине в земной коре, имеющейся в этом регионе.
    Мертвое море простирается примерно на 75 км в длину, достигая в ширину в различных местах от 5 до 18 км. Удивительным является то обстоятельство, что поверхность Мертвого моря находится на 400 м ниже уровня мирового океана. В южной своей части его глубина невелика, но в северной доходит до 400 м.
    Из Мертвого моря, в отличие от обычных озер, не вытекает ни единой реки, зато оно само вбирает в себя воды реки Иордан, впадающей в него с севера, и множество маленьких ручьев, стекающих со склонов окружающих холмов. Единственным способом, которым из моря удаляется излишки воды, является ее испарение. В результате этого в его водах создалась необычайно высокая концентрация минеральных солей, таких, как поваренная соль, углекислый калий (поташ), хлорид и бромид магния и другие.
    Поэтому Мертвое море - самое соленое море в мире. Концентрация солей в его воде в 6 раз выше, чем в океанской! Это повышает плотность воды настолько, что человек плавает здесь, как пробка, не прилагая никаких усилий! Мертвое море может служить огромным источником ценных веществ. По оценкам ученых, в нем растворено около 2 000 000 тонн поташа, идущего на производство удобрений для почвы.
    Есть ли жизнь в Мертвом море?

    Мертвое море - один из самых странных водоемов на Земле. Миллионы лет назад уровень воды в нем был примерно на 420 м выше нынешнего и таким образом превышал уровень Средиземного моря.
    В те времена в нем существовала жизнь. Однако, потом наступил период великой засухи, во время которого из Мертвого моря испарилось столько воды, что оно постепенно уменьшилось до своих нынешних размеров.
    Одной из самых поразительных особенностей, касающейся Мертвого моря, является количество соли, содержащейся в его воде - 23-25 процентов. Для сравнения скажем, что в океанской воде соли составляют лишь 4-6 процентов! Если вы попробуете на вкус воду из Мертвого моря, то она не только покажется вам очень соленой, но и может вызвать у вас тошноту из-за большого содержания хлористого магния. Кроме того, на ощупь она имеет сходство с маслянистыми жидкостями из-за большого количество хлорида кальция, растворенного в ней.
    Ни одно животное не может существовать в Мертвом море. Разумеется, нередко отдельные рыбы попадают туда с водами впадающей в него реки Иордан. Однако, из-за слишком высокого содержания солей рыбы умирают, становясь добычей птиц, гнездящихся на морском берегу.
    Все картинки в этом сообщении кликабельны.
  13. Как образовались Великие озера?

    Пять Великих озер образовывают вместе самое большое водохранилище пресной воды на Земле. Одно из них превосходит по величине любое другое пресноводное озеро в мире. Больше его только озеро с соленой водой - Каспийское море. Озеро Верхнее, Мичиган, Гурон, Эри и Онтарио это бассейн Великих озер, который образовался ледниками во время Ледникового периода. Ледники надвигались с Севера, и под действием веса ледников долины становились глубже и шире.
    Затем, когда лед растаял, оставались огромные залежи песка, гравия, камней там, где находился край ледника. Этими завалами они ограничили некоторую часть суши, которая раньше была долиной.
    В то же время не стало льда, он отодвинулся, земля начала подниматься, и сначала на юго-западе. Это послужило причиной того, что поверхность земли в этом месте изменила наклон. Так что вода потекла с юго-запада на северо-восток. Ко времени, когда ледник отступил, все озера вытекли в реку Святого Лаврентия и Атлантический океан.
    Почему же Великие озера наполнились пресной водой вновь? Некоторые ручейки вливались в них, но основная масса потоков текла в сторону, противоположную озерам. Основной источник, питающий Великие озера,- подземные воды, которые в этом месте подходят близко к поверхности.
    Дно озер - источник грунтовых вод, которые поддерживают их уровень. Общая площадь Великих озер и их каналов 246 кв. км.
  14. Почему Черное море называется «Черным»?

    Все давно привыкли и никому не приходит в голову, что наше Черное море может как-то иначе называться. Однако это такое знакомое, теплое и совсем даже не пугающее его имя было у моря не всегда. Вернее, оно у него было, но очень-очень давно.
    И действительно, почему Черное море называется «Черным»?
    Из самых древних иранских текстов явствует, что море называлось «ахшайна», что означает «темное, непрозрачное, черное». А потом это имя забылось на несколько сот лет. Чтобы вновь появиться? Значит это только то, что было это название самым точным и правильным, раз по прошествии времени к нему же и вернулись.
    Тем не менее, со времени, когда в историко-географических документах мы находим первые упоминания о Черном море и до наших дней, накопилось несколько десятков названий бассейна. Великая греческая колонизация этого региона в своих письменных источниках с IX-VIII вв. до н.э. упоминала это море не раз. Сначала пришельцев с юга море встретило, по-видимому, негостеприимно. Оно поразило их сильными зимними бурями и льдом у северных берегов. К тому же местные жители – тавры – наносили чувствительный ущерб греческим мореходам. Вероятно, поэтому Черное море долгое время называлось у греков Негостеприимным морем (Аксинос Понтос).
    С годами, по мере дальнейшего проникновения в Северное Причерноморье и расселения по его благодатным берегам, греки стали именовать море Гостеприимным (Эвксинос Понтос). Этим названием море отмечено у Геродота (Vв. до н.э.), а также на карте Птолемея (IIв. н.э.) Описания Понта Эвксинского мы находим в лоциях того времени – периплах (морских путеводителях).
    Позднее арабские географы, используя научные знания о Черном море древних ученых, значительно дополнили и расширили их новыми сведениями, приобретенными в результате усиления торговых связей Ближнего Востока с Причерноморьем (здесь пролегали самые знаменитые торговые пути: «из варяг в греки» и «Великий шелковый путь».
    Судя по историческим документам, Черное море тогда именовалось Русским. Это отмечено у арабских ученых Масуди (середина Хв.) и Эдризи (XIIв.). И это не удивительно, так как первые документальные употребления слова «рос», «русь» связаны именно с Крымом (Таврикой). Какие-то русы жили на полуострове в IXв. и позднее. В это же время просветитель Кирилл видел в Таврике книги, «русскими письменами писанные». Но кто скрывался под этим названием: скифы или славяне – ответить точно не может пока никто. Греки, к примеру, в Х в. называли руссов скифами и даже тавро-скифами; арабы же определенно называли руссов славянами.
    Очевидно только, что в индоарийском прочтении слово «рос» означает «светлый, белый». Выходит, как ни парадоксально, но Черное море одно время называлось «Белым» морем – Русским? Так именовалось оно несколько сотен лет. На некоторых итальянских картах (портоланах) это название сохранялось вплоть до XV-XVI вв. Но и наряду с этим названием у некоторых народов и путешественников Черное море называлось по-своему.
    Так знаменитый путешественник Марко Поло (XIIIв.) называл Черное море в своей великой «Книге» Великим морем. Восточные авторы в это же время нередко упоминают Черное море под именем Судакского (Сурожского), тем самым подчеркивая широкую известность крымского торгового центра Судака (Сурожа). Выдающийся же отечественный путешественник Афанасий Никитин, побывавший в Крыму в XVв., возвращаясь из своего большого похода «за три моря » в Индию, называет Черное море (третье на своем пути) – Стамбульским. Были и другие имена: Киммерийское, Таврическое, Крымское, Славянское, Греческое, Грузинское и даже Армянское.

    Марко Поло
    Почему, например, Армянское? Можно предположить, что когда в XI в. в Крым переселяется большое количество армян, вытесненных персами и турками-сельджуками со своих исконных территорий, и часть Крыма восточнее нынешнего Белогорска становится Приморской Арменией - значительным экономическим и религиозным центром, море также называют Армянским.
    В условиях непрекращавшейся борьбы за господство над Черным морем очередная надпись на карте исчезала вместе с вытеснением очередного «хозяина» из Причерноморья. «Она течет вниз по морскому шельфу, очень похоже на то, как река на земле. Равнины в глубине наших океанов походят на пустыни морского мира, но эти каналы могут поставлять питательные вещества, необходимые для жизни в пустыне», - рассказал исследователь Дэн Парсонс (Dr. Dan Parsons), передает Daily Telegraph. По его словам, если бы черноморская река располагалась не под водой, то стала бы шестой в мире по полноводности.
    Чтобы исследовать дно Черного моря, использовался автоматический глубоководный аппарат, который и собирал данные о характеристиках среды. С его помощью удалось рассмотреть берега реки и ее пойму. Основное принципиальное отличие от обычных рек оказалось в особенностях движения вод, связанных с сопротивлением окружающей среды.

    Река впадает в Черное море через пролив Босфор из Средиземного моря (NASA Visual Earth)
    Парсонс рассказал, что река солонее и плотнее, чем окружающая морская вода, потому что несет много осадка. Она течёт по морскому дну, вынося воды на абиссальные равнины, так же как реки на суше. Через Мраморное море и пролив Босфор из Средиземного моря в Черное попадают более соленые воды - и именно они наполняют подводную реку. По этой причине вода в реке отличается чрезвычайно высокой концентрацией соли.
    Абиссальные равнины в океане – как пустыни на суше. Они удалены от прибрежных вод, богатых полезными веществами, там практически нет жизни. Подпитка такими подводными реками была бы очень кстати.
    Авторы исследования полагают, что подводные реки поддерживают жизнь в самых глубоких местах Мирового океана, далеких от богатых пищей прибрежных вод. «Они могут быть жизненно важными - как артерии, обеспечивающие существование в глубине океана», - отметил Парсонс.
    Он добавил, что сейчас удалось найти только первую из всех подводных рек. Предположительно, еще одна располагается около побережья Бразилии, где Амазонка впадает в Атлантический океан.
    Единственным же существенным отличием этого водного потока от земных рек является то обстоятельство, что при резком обрушении в полости вода закручивается по спирали не вправо по часовой стрелке как диктует сила Кориолиса в Северном полушарии, где расположено Черное море, а, наоборот, против часовой.
    Картинки в этом сообщении кликабельны.

    "Когда мы впервые увидели колонию этих кораллов, то были потрясены", – говорит Зо Ричардс (Zoe Richards), представитель австралийского центра. "Огромный коралл имел около 5 метров в диаметре и 2 метра в высоту, ничего подобного здесь ранее мы не находили".
    Ученые говорят, что новые кораллы относятся к виду Acropora palmata, считавшемуся исчезнувшим. Прежде считалось, что кораллы этого вида можно найти только в Атлантическом океане. Генетический анализ атлантических и тихоокеанских кораллов показал, что эти виды близки друг к другу, но имеют и различия.
    По словам ученых, Acropora palmata относятся к так называемым рифообразующим кораллам и здесь создается уникальная экосистема со своими рыбами и другими океанскими обитателями. Большинство рифообразующих кораллов расположены в природоохранных зонах.
    Австралийские ученые говорят, что прежде у побережья Маршалловых островов были найдены небольшие колонии кораллов Acropora, тогда как новая находка является самой большой из них. Прежде сопоставимые по масштабам кораллы Acropora palmata были обнаружены в 1898 году близ островов Фиджи в Тихом океане.

    История формирования
    Индийский океан сформировался на стыке юрского и мелового периодов в результате распада Гондваны. Тогда произошло отделение Африки и Декана от Австралии с Антарктидой, а позже - Австралии от Антарктиды (в палеогене, около 50 миллионов лет назад).
    Рельеф дна

    В районе острова Родригес (Маскаренский архипелаг) существует т. н. тройное соединение, где сходятся Центрально-Индийский и Западно-Индийский хребты, а также Австрало-Антарктическое поднятие. Хребты состоят из обрывистых горных цепей, изрезанных перпендикулярными или косыми по отношению к осям цепей сбросами и разделяют базальтовое дно океана на 3 сегмента, а их вершины представляют собой, как правило, погасшие вулканы. Дно Индийского океана покрыто отложениями мелового и более поздних периодов, толщина слоя которых колеблется от нескольких сотен метров до 2-3 км. Глубочайший из многочисленных желобов океана - Яванский (4 500 км в длину и 29 км в ширину). Реки, впадающие в Индийский океан, несут с собой огромные количества осадочного материала, в особенности с территории Индии, создавая высокие наносные пороги.
    Побережье Индийского океана изобилует клифами, дельтами, атоллами, прибрежными коралловыми рифами и солёными болотами, поросшими манграми. Некоторые острова - например, Мадагаскар, Сокотра, Мальдивские - являются фрагментами древних материков, другие - Андаманские, Никобарские или остров Рождества - имеют вулканическое происхождение. Вулканическое происхождение также имеет расположенное в южной части океана Кергеленское плато.
    Климат
    В данном регионе выделяются четыре вытянутых вдоль параллелей климатических пояса. В первом, расположенном севернее 10° южной широты, преобладает муссонный климат с частыми циклонами, перемещающимися в направлении побережий. Летом температура над океаном составляет 28-32 °C, зимой понижается до 18-22 °C. Вторая зона (пассатная) располагается между 10 и 30 градусом южной широты. В течение всего года здесь дуют юго-восточные ветры, особо сильные с июня по сентябрь. Средняя годовая температура достигает 25 °C. Третья климатическая зона лежит между 30 и 45 параллелью, в субтропических и умеренных широтах. Летом температура здесь достигает 10-22 °C, а зимой - 6-17 °C. От 45 градусов и южнее характерны сильные ветры. Зимой температура здесь колеблется от −16 °C до 6 °C, а летом - от −4 °C до 10 °C.
    Характеристика вод
    Индийский океан:

    Площадь
    поверхности
    воды, млн.км² = 90,17
    Объём,
    млн.км³ = 18,07
    Средняя
    глубина,
    м = 1225
    Наибольшая
    глубина океана,
    м = Зондский жёлоб (7209)
    Пояс вод Индийского океана между 10 градусом северной широты и 10 градусом южной широты называется термическим экватором, где температура поверхностных вод составляет 28-29 °C. Южнее этой зоны температура понижается, у берегов Антарктиды достигая −1 °C. В январе и феврале лёд вдоль побережья этого материка подтаивает, огромные ледяные глыбы отламываются от ледяного покрова Антарктиды и дрейфуют в направлении открытого океана.
    Севернее температурные характеристики вод определяются муссонной циркуляцией воздуха. Летом здесь наблюдаются температурные аномалии, когда Сомалийское течение охлаждает поверхностные воды до температуры 21-23 °C. В восточной части океана на той же географической широте температура вод составляет 28 °C, а наивысшая температурная отметка - около 30 °C - была зафиксирована в Персидском заливе и Красном море. Средняя солёность океанских вод составляет 34,8 ‰. Наиболее солёны воды Персидского залива, Красного и Аравийского морей: это объясняется интенсивным испарением при небольшом количестве пресной воды, приносимой в моря реками.
    Флора и фауна
    Флора и фауна данного региона необычайно богаты. Растительный мир представлен бурыми, красными и зелёными водорослями. Типичными представителями зоопланктона являются веслоногие рачки, сифонофоры и крылоногие моллюски. Океанские воды населяют моллюски, кальмары, крабы и лангусты. Рыбы представлены губанами, щетинозубыми, светящимися анчоусами, рыбами-попугаями, рыбами-хирургами, летучими рыбами и ядовитыми крылатками. Характерными обитателями океанов являются наутилусы, иглокожие, кораллы Fungia, Seratopia, Sinularia и кистепёрые рыбы. Необычна и красива огромная харония. К эндемикам относятся морские змеи и дюгонь - млекопитающее отряда сирен.
    Большая часть вод Индийского океана лежит в тропическом и умеренном поясах. В тёплых водах обитают многочисленные кораллы, которые, наряду с другими организмами - такими, например, как красные водоросли - строят коралловые острова. В коралловых рифах обитают разнообразные животные: губки, моллюски, крабы, иглокожие и рыбы. В тропических мангровых зарослях живут ракообразные, моллюски и медузы (диаметр последних иногда превышает 1 м). Наиболее многочисленными рыбами Индийского океана являются хамса, летучая рыба, тунец и акула. Нередко встречаются морские черепахи, дюгони, тюлени, дельфины и другие китообразные. Орнитофауна представлена, в частности, птицами-фрегатами, альбатросами и несколькими видами антарктических пингвинов.
    Рыбный промысел
    Значение Индийского океана для мирового рыболовного промысла невелико: уловы здесь составляют лишь 5 % от общего объёма. Главные промысловые рыбы здешних вод - тунец, сардина, хамса, несколько видов акул, барракуды и скаты; ловят здесь также креветок, омаров и лангустов.
    Транспортные пути
    Важнейшими транспортными путями Индийского океана являются маршруты из Персидского залива в Европу и Северную Америку, а также из Аденского залива в Индию, Индонезию, Австралию, Японию и Китай.
    Полезные ископаемые
    Важнейшими полезными ископаемыми Индийского океана являются нефть и природный газ. Их месторождения имеются на шельфах Персидского и Суэцкого заливов, в проливе Басса, на шельфе полуострова Индостан. На побережьях Мозамбика, островов Мадагаскар и Цейлон эксплуатируются ильменит, монацит, рутил, титанит и цирконий. У берегов Индии и Австралии имеются залежи барита и фосфорита, а в шельфовых зонах Индонезии, Таиланда и Малайзии в промышленных масштабах эксплуатируются месторождения касситерита и ильменита.
    Государства побережья Индийского океана
    В Индийском океане расположены островные государства Мадагаскар (четвёртый по площади остров в мире), Коморские острова, Сейшельские острова, Мальдивы, Маврикий, Шри-Ланка. Океан омывает на востоке такие государства: Австралия, Индонезия; на северо-востоке: Малайзия, Таиланд, Мьянма; на севере: Бангладеш, Индия, Пакистан; на западе: Оман, Сомали, Кения, Танзания, Мозамбик, ЮАР. На юге граничит с Антарктидой. ​

Этот неведомый мир составляет 90 процентов обитаемого пространства планеты. Нам известно больше о поверхности Луны, чем о морском дне. В этой вечной темноте обитают странные формы жизни. Лишь несколько десятилетий назад считалось, что жизнь на таких глубинах невозможна, а уже сегодня ученые полагают, что первая жизнь появилась на дне океана. Энергия, ресурсы, пища и даже климат находится под влиянием океанов. Там ли определиться будущее нашей планеты?


Лишь с помощью новейшей техники можно постичь тайны морских глубин. Глубоководные исследования длительны и дороги, поэтому так медленно ученые проливают свет в темноту. Дорогостоящие экспедиции на современнейших судах бороздят моря в поисках ответов. Недавно был запущен один из самых масштабных мировых проектов по исследованию океана, который получил название АРГО. Армии из более 3 тысяч роботизированных буев доставляют данные ученым из семи морей, доступные им по щелчку мыши. Международное научное сообщество, наконец, получило доступ к обширной базовой информации во всех сферах морских исследований. Эти данные также доступны лицам, которые занимаются судоходством и рыболовным промыслом, метеорологам и исследователям климата.

Девяносто процентов всей жизни на Земле обитает в глубинах, но нам знакома лишь небольшая ее часть. Нам удается исследовать лишь те части моря, которые освещаем, но что происходит за их пределами.

Без техники мы слепы в глубинах. Каждый новый вопрос требует новое оборудование. Исследования часто терпят неудачу из-за прерывания связи. Однако изобретательность не знает границ. Ученые, инженеры, механики и моряки входят в международные команды пытающиеся извлечь тайны из морских глубин. Бесчисленное множество специальных устройств и аппаратов опускается на морское дно в поисках ответов.

глубоководный робот ROV Kiel 6000


Одно из самых современных устройств для морских исследований совсем недавно вернулось из своей первой экспедиции. Глубоководный робот ROV KIEL 6000, созданный институтом морских наук имени Лейбница, сейчас еще проходит проверку в порту города Киль. Данный дистанционно управляемый аппарат может опускаться на глубину до 6 тысяч метров. Он управляется и контролируется с помощью кабеля. Дистанционно управляемые аппараты пользуются огромным спросом у морских исследователей. Один экземпляр стоит 5 миллионов евро, но по словам мореплавателей он того стоит. Аппарат ROV KIEL 6000 уже достиг сенсационных результатов за свое первое путешествие в Южную Атлантику.

Только с таким оборудованием как глубоководные аппараты исследователи могут отважиться погрузиться в эту враждебные среду. Дистанционно управляемая система камер это глаза ученого, а манипуляторы это его руки. Вдобавок к ним множество измерительных приборов и сенсоров. Большая часть информации может быть немедленно передана на борт для анализа с помощью 6-километрового кабеля.

исследовательское судно «FS Poseidon»


автономный подводный аппарат SEAL 5000


Базой всех проектов по изучению морских глубин являются . Одним из них является «FS Poseidon». На его борту ученые всего мира недавно начали проверку автономного подводного аппарата SEAL 5000, стоимость которого составляет 1,5 миллиона евро. В отличие от дистанционных аппаратов он абсолютно независим, не соединен кабелем и может создавать очень точные карты морского дна.


Составлять карту морского дна с корабля все равно, что пытаться нарисовать карту Луны, глядя в телескоп. раскачивается вверх-вниз, и звуковые волны эхолота постоянно отклоняются на своем пути между палубой судна и дном океана. Но грубую картину все же получить можно. Как раз задачей аппарата SEAL 5000 и является создания точных топографических карт, которые нужны исследователям морских глубин, открывая экспертам удивительные тайны. С помощью таких карт геологи могут найти различные минеральные отложения.

Могут пройти годы, прежде чем они принесут плоды. А потребность человека в новых ресурсах бесконечна, поэтому исследование морских глубин приобретает все более важное экономическое значение. С помощью таких подробных карт геологи также находят следы гидротермальных источников. Среди прочих веществ они выбрасывают соединение металлов, которые откладываются вблизи. Уже были найдены отложения различных металлов от меди до золота, но когда речь идет о морских сокровищах основное внимание уделяется веществу, которое могло бы разом решить энергетические проблемы всего человечества. Под океанским дном скапливается невообразимое количество метана. Он более чем в два раза превышает общее количество угля, нефти и газа в мире. Но может ли метан решить энергетические проблемы будущего. Морские глубины так просто не уступит свои сокровища.

На глубине газ находится в виде замороженного гидрата метана, который является своего рода цементом морского дна. Если же ледяное твердое вещество станет газообразным, его объем увеличится более чем в 100 раз. Это делает его извлечение очень опасным, поэтому ученые по всему миру лихорадочно ищут менее опасный метод добычи этого замороженного золота. Добыча была бы особенно рискованной на материковых склонах, ведь если убрать этот цемент, большие части склонов могут внезапно осесть, что приведет к гигантским цунами с катастрофическими последствиями для прибрежных регионов. Кроме того метан очень сильно влияет на парниковый эффект. Он в 30 раз сильнее, чем углекислый газ. Но частично решение проблемы есть. Во время добычи метан можно было бы заменить в углекислым газом. Другими словами морские глубины могли бы быть хранилищем углекислого газа.

Немецкие и японские ученые являются лидерами в этом секторе исследований, работая вместе над различными проектами. Ученые должны ответить на множество вопросов, прежде чем начать рассматривать вариант хранения парниковых газов в море.

Как ни странно, но вокруг скоплений углекислого газа кипит жизнь. Жидкий углекислый газ очень опасное вещество на морском дне Окинавской впадины на побережье Японии. Здесь газ залегает на глубине 3000 метров. Из-за высокого давления и ледяного холода глубин газ превратился в жидкость, создавая скопление газа.

Какое воздействие оказывает это вещество на обитателей глубин. Ученые пытаются это выяснить. Эти формы жизни явно научились выживать в таких жестоких условиях. По словам ученых, скопление углекислого газа в Окинавской впадины уникально.


Непосредственную помощь в исследовании морских глубин оказывают немногочисленные морские суда. Но это не просто , а плавучие обсерватории, причем всегда заняты. В мире имеется всего несколько сотен больших исследовательских судов и за их экспедициями можно наблюдать через Интернет, на сайте sailwx.info .

современное исследовательское судно, проект


Палубы исследовательских судов похожи на научные лаборатории. Исследователи всего мира, используя разнообразное оборудование, теснятся на маленьком пространстве. Они работают по сменам круглые сутки. Но одно устройство найдется на любом .

прибор для взятия проб воды


Прибор для взятия проб воды, измеряющий электропроводность, температуру и глубину. Определение этих величин немного похожи на измерение пульса человека, но они являются базовой информацией, необходимой каждому океанографу. Прибор для взятия проб может черпать воду с точно указанной глубины. Эти и другие функции приводятся в действие с поста управления судна. Этот прибор используется чаще всех на каждом исследовательском судне по всему миру. Как только его поднимают на борт, пробы воды и немедленно обрабатываются. Анализ питательных веществ или микроорганизмов дает важные данные для описания океанской среды. Это стандартная процедура для океанографа.


В морских глубинах были найдены невероятно странные существа, причем большинство из них пока не изучены. Каждое новое положение видеокамеры открывает новые виды. Чтобы узнать больше о морских организмах в 2000 году была начата перепись морской жизни. Это глобальный проект по изучению глубоководных организмов. Все открытые формы жизни будут зарегистрированы. Ученые из 16 стран под руководством Норвегии участвуют в проекте по изучению экосистемы северной части Североатлантического хребта, регистрируя океанские формы жизни. За два месяца они открыли 80000 глубоководных форм жизни. Многие из них прежде не были известны. Ученые предполагают, что в глубинах проживает 10 миллионов видов, а на суше около 1,4 миллиона. Причудливый мир темноты принадлежит исключительно животным, ведь растения не могут существовать без света. Здесь нет даже водорослей, хотя некоторые формы жизни похожие на растения на самом деле животные. Они используют тонкие листовидные отростки, чтобы вылавливать из воды микроорганизмы.

В этой пустынной темноте удаленной от центра жизни найти пищу очень трудно. Так что когда умирает кит это чудо для обитателей морских глубин. Мертвый кит подобен оазису дающий за раз столько пищи, сколько обычно попадает сюда за тысячу лет.

самое современное исследовательское судно в мире «Maria S. Merian»


«Maria S. Merian » самое . Спущенное на воду в 2007 году, оно является первым научным судном, построенным в Германии за последние 15 лет. На борту судна может работать 20 ученых. В их распоряжении лаборатория, оборудованная для самых разных исследовательских миссий. Это исследовательское судно может идти 48 часов, не загрязняя воды, благодаря технологии «чистый корабль». Данная технология означает, что сточные воды и нечистоты не сливаются в море. Все жидкие отходы отправляются в специальный танк и хранятся там. Часть их может быть позже переработана, и снова использована на борту. Для науки это значит, что сточные воды не попадают ни в морскую воду ни в образцы. Никаких посторонних примесей, только чистая морская вода.

Многие научные проекты зависят от чистоты воды, например, проект по поиску рассеянности металлов. Этим веществам с недавних пор придается особое значение, и это не впервые. Они появляются в морской воде лишь в очень небольших количествах, но без этих элементов микроорганизмы вроде водорослей не могут расти в море. С помощью специального ковша ученые проводят точнейший анализ. Даже подъемное устройство сделано из синтетического волокна, чтобы избежать малейшего замутнения.


Различные измерители на борту исследовательского судна «Maria S. Merian» позволяют ученым следить за сложными экспериментами из центра управления, а чтобы не потерять из вида сложную технику, находящуюся под водой несколько лет, запускается робот-зонд или буй.

Кроме того у буя-измерителя может быть и своя особая задача. Так сотни буев стали частью масштабного проекта по изучению морских глубин мира, который получил название АРГО.

В программе по получению данных из морских глубин в режиме реального времени участвует 26 стран. Учёные очень ценят возможность отправлять такие буи, ведь эти маленькие датчики могут очень им помочь. В мировом океане сейчас находится 3000 буев, которые могут передавать данные в любую погоду, шторм или штиль. Это дает возможность ученым впервые получать достаточно данных, чтобы они могли уверенно сказать нагревается ли океан, уменьшается ли количество кислорода, и как это влияет на соленость. Для этого буй опускается на глубину 2 тысяч метров и дрейфует по течению. Через 10 дней он медленно поднимается на поверхность, одновременно с этим измеряя температуру, соленость и другие параметры. Оказавшись на поверхности, буй передает полученные данные, а также свои координаты на береговые центры через спутник. Каждый буй передает собранные данные каждые 10 дней. Так создается глобальная сеть доступная с каждого компьютера. Впервые эти данные стали доступными каждому ученому в мире.

Проект АРГО это своего рода глобальная океаническая метеостанция, за работой и маршрутом каждого отдельного буя можно следить благодаря компьютерной анимации. Это очень мощный инструмент для изучения климатических изменений. С помощью 3 тысяч однотипных буев-измерителей АРГО собирает данные о состоянии всего мирового океана.

Именно эта информация очень важна для будущей деятельности в морских глубинах, ведь права на разработку ресурсов морских глубин скоро будут пересмотрены. Территория шириной 200 морских миль вокруг континентального шельфа будет принадлежать соответствующему государству, поэтому все прибрежные страны желают тщательно исследовать свою подводную территорию, надеясь расширить свой континентальный шельф и обеспечить себя ресурсами в будущем. Широко известен правовой спор по поводу Северного полюса. Пять стран соперничают за господство над морскими глубинами скованными льдами: Россия, Норвегия, Дания, США и Канада. Причина проста - ресурсы. В соответствии с исследованиями 90 миллиардов баррелей нефти и втрое больше природного газа, не говоря уже о минеральных отложениях, находятся подо льдами северного полюса. Но технологии подводной добычи пока мало используются. Впереди всех Норвегия. Компания StatoilHydro извлекает природный газ на глубине 1000 метров, где построена первая в мире фабрика по добыче природного газа с морского дна.

Исследования пока находятся на ранней стадии. Маленькими шагами, но с большими усилиями ученые приобретают важнейшие знания, но уже стало ясно, что морские глубины сильнее влияют на всю планету, чем когда-либо предполагалось. И никто не знает, что еще ждет нас там. Наши шумные аппараты приносят свет в царство темноты, возможно, отпугивая настоящих властителей подводного мира, и заставляя их опускаться еще глубже.

Исследование, вернее недостаток его - одна из проблем Мирового океана. Знание может помочь человечеству решить множество задач, связанных как с использованием, так и с охраной океанских вод.

Человек стал осваивать Океан с незапамятных времён. Еще Александр Македонский (356 - 323 годы до н.э.) погружался в море в большом стеклянном сосуде, а в своих военных операциях прибегал к помощи ныряльщиков (например, при осаде Тира в 334 году до н.э.). Самые ранние упоминания о водолазных аппаратах относятся к 16 веку. Такие аппараты представляли собой лишенные дна колокола, в которые по трубам поступал воздух. Первый колокол, вмещавший в себя более одного водолаза был построен в 1690 году Эдмондом Галлеем (1656 - 1742 г.г.). Хорошо известный нам водолазный костюм с металлическим шлемом, сконструированный англичанином А.Зибе, еще в 1837 году широко использовался в подводных работах на глубине до 60 метров. В 1943 году Жак Ив Кусто и Эмиль Ганьян изобрели акваланг, который сделал водолаза значительно подвижнее.

В 1620 году Корнелиус Ван Дреббель построил первую подводную лодку, приводимая в движение двадцатью гребцами, она плавала по Темзе на глубине 5 метров. С 60-х годов нашего века подводные суда стали применяться для наблюдений и строительства; с 1973 года используются при подводной добыче нефти и газа для осмотра трубопроводов, ремонта и обслуживания платформ. Серьезные попытки исследовать большие глубины были начаты в 1930 году, когда у Бермудских островов Отис Бартон и Уильям Биб в батисфере - стальном шаре, опускаемом с корабля на тросе, погрузились до глубины 425 метров. 23 января 1960 года Жак Пиккар и Дональд Уолш в батискафе “ Триест" достигли глубины 10917 метров на дне впадины Челленджер в Марианском желобе.

Несмотря на то, что мореплавание имеет почти такую же длинную историю, как и сам человек, настоящие разносторонние исследования Океана начались только двести лет назад. Большой вклад внесли в океанографию тех времён Беринг, Лисянский, Беллинсгаузен, Крузенштерн, Лазарев, Литке, которые кроме чисто географических открытий, проводили также биологические изыскания, собирая научные коллекции, изучая растительный и животный мир Океана. В 1872-1876 годах английское судно «Челленджер» осуществило первую океанографическую экспедицию, которая принесла такое количество новых сведений, что над их обработкой пришлось потрудиться 70 ученым в течение 20 лет. Поистине этапным для мировой океанографии стало путешествие адмирала Макарова в 1886-1889 годах на корабле «Витязь». На фронтоне океанографического института в Монако «Витязь» назван среди десяти самых известных океанографических кораблей мира.

В ХХ веке, веке техники и электроники, подводные экспедиции получили новый импульс. Ведутся акустические, гидрологические, гидрохимические, геофизические, метеорологические и биологические наблюдения и исследования. Появились специальные научно-исследовательские суда, автономные буйковые станции, подводные лаборатории, разнообразнейшие батискафы и подлодки. Океан изучается как изнутри - на больших и малых глубинах, так и из космоса. Одной из самых известных программ изучения океана в ХХ веке были экспедиции Тура Хейердала. Эти международные экипажи построили по рисункам, найденным в Древнем Египте суда из тростника и папируса. Связав их особым способом, они совершили длительные морские переходы на кораблях" Ра-1 " и " Ра-2 ", доказав, что древние египтяне могли плавать на большие расстояния. Жак Ив Кусто со своей командой вносит огромный вклад в дело изучения океана. Его отчеты мы можем видеть по телевизору, а ученые пользуются его пробами и лабораторными исследованиями.

Интересы естествознания, использование минеральных ресурсов, прогноз стихийных бедствий, да и просто погоды, проблема искусственного регулирования биологической продуктивности требуют постоянного и обширного изучения Океана. Чтобы беречь этот резервуар жизни на планете, также и даже более чем необходимо его знать.

ЗАКЛЮЧЕНИЕ

Последствия, к которым ведёт расточительное, небережное отношение человечества к Океану, ужасающи. Уничтожение планктона, рыб и других обитателей океанских вод - далеко не всё. Ущерб может быть гораздо большим. Ведь у Мирового океана имеются общепланетарные функции: он является мощным регулятором влагооборота и теплового режима Земли, а также циркуляции её атмосферы. Загрязнения способны вызвать весьма существенные изменения всех этих характеристик, жизненно важных для режима климата и погоды на всей планете. Симптомы таких изменений наблюдаются уже сегодня. Повторяются жестокие засухи и наводнения, появляются разрушительные ураганы, сильнейшие морозы приходят даже в тропики, где их отроду не бывало. Разумеется, пока нельзя даже приблизительно оценить зависимость подобного ущерба от степени загрязненности Мирового океана, однако взаимосвязь, несомненно, существует. Как бы там ни было, охрана океана является одной из глобальных проблем человечества. Мертвый океан - мертвая планета, а значит, и все человечество.

Еще статьи по теме

Глобальные проблемы человечества загрязнение водной среды
В настоящее время проблема загрязнения водных объектов (рек, озер, морей, грунтовых вод и т.д.) является наиболее актуальной, т.к. всем известно – выражение «вода - это жизнь». Без воды человек не может прожить более трех суток, но д...

Способы утилизации промышленных и бытовых отходов
По оценке американских экспертов в области охраны природы, проблема мусора в последние годы выдвинулась среди прочих экологических проблем на первое место. Говоря об озоновых дырах, атомных электростанциях и глобальном потеплении, мы н...

Исследователи из разных стран доказали, что живые организмы населяют всю толщу воды Мирового океана (МО). Ученые пришли к этому выводу еще в минувшем столетии, а современная глубоководная техника подтверждает существование рыб, крабов, раков, червей на глубине до 11000 м. Выясним, как дно Мирового океана исследовал французский ученый Жак Пикар, какой вклад внесли английские и российские океанологи.

Вода на Земле — объект неустанного внимания человечества

Лет 400-500 назад многие путешественники не предполагали, каковы истинные размеры и глубина океанов. Умы многих бередили легенды об Атлантиде, погрузившейся в пучину моря, мифы об удивительной стране Эльдорадо, где водные источники даруют вечную молодость. Плавания европейцев к далеким берегам, где в изобилии были золото, драгоценности и пряности, всегда были опасными из-за наличия скалистых рифов и обширных мелей на пути кораблей. Но это не помешало совершить Великие географические открытия, нанести на карту большинство морей и заливов, найти проходы между материками и островами.

Кто исследовал дно Мирового океана в древности и в средние века? Мореплаватели изучали подводный рельеф доступными им способами, наносили на карты и глобусы. Ученые подсчитали, что водная поверхность на нашей планете в три раза превышает площадь суши (361 и 149 млн км 2 соответственно). Мировой океан во все периоды истории оказывал влияние на развитие торговли, рыболовства и путешествий. Велика роль МО в формировании климата и погоды на суше, обеспечении населения продуктами питания.

Зарождение океанологии (океанографии)

Дно Мирового океана исследовал во время своего кругосветного путешествия; уделяли внимание замерам глубин и Но это были не ученые, а торговцы и мореплаватели. В XIX-XX веках возросла роль науки в исследовании океана. Благодаря достижениям исследователей были проложены безопасные водные пути, созданы карты течений, солености и температуры, подводного и подледного рельефа.

Одновременно развитие судоходства оказало значительное влияние на организацию и работу научных экспедиций. Так произошло с плаваниями российских судов, которые отправились в кругосветные путешествия, подошли к берегам Антарктиды. Было организовано изучение побережья и глубины северных и дальневосточных морей.

Кто исследовал дно Мирового океана

Успех морских путешествий способствовал накоплению знаний о МО. Постепенно происходило становление одной из географических наук — океанологии. Среди ее основоположников — голландец Б. Варениус и россиянин Ю. Шокальский. Значительный вклад в этот процесс внесли российские мореплаватели и военные. Дно Мирового океана исследовал одним из первых итальянец Л. Марсильи.

В начале XIX века русские ученые Э. Ленц и Е. Паррот изобрели глубомер. В середине того же столетия американец Дж. М. Брук создал лот с отделяющимся грузом для сбора образцов грунта. Этими достижениями успешно воспользовались участники океанографической экспедиции на британском корабле «Челленджер». Работая под эгидой Английского Королевского общества, ученые в 1872-1876 годах собрали богатые коллекции морских растений и животных, измерили глубины в Атлантическом, Индийском и Тихом океанах. К числу выдающихся исследователей того времени следует отнести русского океанолога С. О. Макарова, изучавшего Черное и Средиземное моря.

Замеры в океане позволили создать на рубеже XX века почти полную карту глубин. Около 100 лет назад на смену веревочным лотам пришли звуковые волны и приборы — эхолоты. Устройство издает который отражается от дна и улавливается. Зная время и скорость звука в воде, получают в результате расчетов расстояние, которое надо поделить пополам. Это и будет глубина в районе проведения измерений.

Открытия на дне МО

Эхолоты открыли перед исследователями Мирового океана широкие возможности. Последние десятилетия XIX века и годы после Второй мировой войны были отмечены ростом интереса к биологии МО. Ученые собрали доказательства существования жизни не только в поверхностном слое воды, но и на глубине. Во второй половине XX века весь мир облетели снимки, на которых люди увидели дно Мирового океана. Фото глубоководных организмов поразили воображение обывателей. Ведь существа, обитающие в кромешной темноте при температуре около 2-3 °С, обладают светящимися и электрическими органами.

Ученые нанесли на карты протяженные срединно-океанические хребты, котловины, отдельные горы. Легче всего было исследовать шельф и материковый склон, но истинных первооткрывателей манили глубины. Еще в конце XIX века участники экспедиции «Челленджера» обнаружили и нанесли на карту самое глубокое место в МО в районе на северо-западе Тихого океана. Подобные желоба возникли в результате столкновения мощных континентальных платформ с тонкими океаническими плитами. На материках глубоким впадинам в океане соответствуют молодые горные массивы.

Объект изучения — дно Мирового океана

Исследовал швейцарский океанолог Жак Пикар вместе с гражданином США Доном Уолшем. Для погружения ученые использовали глубоководный аппарат «Триест». Произошло это важное событие 23 января 1960 года. До этого в экспериментальных погружениях участвовал знаменитый французский режиссер и натуралист Жак Ив Кусто, который впоследствии снимал документальные фильмы о жизни на дне Мирового океана.

Жак Пикар совместно с Доном Уолшем в «Триесте» погрузились в «Бездну Челенджера» на юго-западе Марианской впадины. Глубина здесь достигает 10 911-11 030 м ниже уровня МО. Продолжительность спуска батискафа составила около 5 часов, исследователи самого глубокого желоба в мире пробыли на его дне 20 минут, подкрепили силы шоколадкой и начали подъем, длившийся более 3 часов.

Исследования показали, что разнообразие видов глубоководных животных соперничает с богатством фауны тропических коралловых рифов. Морские донные организмы приспособлены к своей среде обитания, хотя на дне впадин темно и холодно.

Основные направления современных исследований МО

Вторая половина XX века ознаменовала начало международного этапа изучения Мирового океана. Были организованы плавания научно-исследовательских судов, глубоководные бурения для сбора образцов грунта. В конце минувшего столетия ученые больше внимания уделяли взаимодействию МО с материками, влиянию на климат.

С тех пор, как дно Мирового океана исследовал Жак Пикар, прошло немало времени. Океанографические исследования продолжаются, они позволяют выявить в МО одиночные вулканы, зоны разломов и сейсмической активности. В результате столкновения океанических и материковых плит, вулканических извержений происходят стихийные природные явления, гибнут сотни тысяч человек, погружаются в пучину вод острова, возникают огромные волны — цунами. Разрушительной силой обладают тайфуны, которые зарождаются над океанами и обрушиваются на побережья. Изучение и своевременное предупреждение населения об этих опасных явлениях — одна из задач современной океанологии.

Внушительные запасы природных ресурсов МО позволяют человечеству рассчитывать на безбедное существование еще на протяжении сотен лет. Воды океанов давно уже бороздят не только рыболовные, грузовые, пассажирские и военные суда. Геологоразведочные и научно-исследовательские корабли, добывающие платформы стали элементами, без которых уже трудно представить безбрежные морские просторы.

Мировой океан, покрывающий 71% поверхности Земли, поражает сложностью и разнообразием процессов, развивающихся в нем.

От поверхности до наибольших глубин воды океана находятся в непрерывном движении. Эти сложные движения воды от огромных по масштабу океанических течений до мельчайших вихрей возбуждаются приливообразующими силами и служат проявлением взаимодействия атмосферы и океана.

Водная масса океана в низких широтах накапливает тепло, полученное от солнца, и переносит это тепло в высокие широты. Перераспределение тепла, в свою очередь, возбуждает определенные атмосферные процессы. Так, в области сближения холодных и теплых течений в Северной Атлантике возникают мощные циклоны. Они достигают Европы и часто определяют погоду на всем ее пространстве до Урала.

Живая материя океана очень неравномерно распределяется по глубинам. В различных районах океана биомасса зависит от климатических условий и поступления солей азота и фосфора в поверхностные воды. В океане обитает великое множество растений и животных. От бактерий и одноклеточных зеленых водорослей фитопланктона до крупнейших на земле млекопитающих - китов, вес которых достигает 150 т. Все живые организмы составляют единую биологическую систему со своими законами существования и эволюции.

На дне океана очень медленно накапливаются рыхлые осадки. Это первая стадия образования осадочных горных пород. Для того, чтобы геологи, работающие на суше, могли правильно расшифровать геологическую историю той или иной территории, необходимо детально исследовать современные процессы осадкообразования.

Как выяснилось в последние десятилетия, земная кора под океаном обладает большой подвижностью. На дне океана образуются горные хребты, глубокие рифтовые долины, вулканические конусы. Словом, дно океана «живет» бурно, и нередко там возникают такие сильные землетрясения, что по поверхности океана стремительно бегут огромные опустошительные волны цунами.

Пытаясь исследовать природу океана - этой грандиозной сферы земли, ученые сталкиваются с определенными трудностями, для преодоления которых приходится применять методы всех основных естественных наук: физики, химии, математики, биологии, геологии. Обычно об океанологии говорят как о союзе различных наук, о федерации наук, объединенных предметом исследования. В таком подходе к изучению природы океана сказывается естественное стремление глубже проникнуть в его тайны и настоятельная необходимость глубоко и всесторонне знать характерные черты его природы.

Задачи эти очень сложны, и решать их приходится большим коллективом ученых и специалистов. Для того, чтобы представить, как именно это делается, рассмотрим три наиболее актуальных направления океанологической науки:

  • взаимодействие океана и атмосферы;
  • биологическая структура океана;
  • геология дна океана и его минеральные ресурсы.

Завершило многолетний неустанный труд старейшее советское научно-исследовательское судно «Витязь». Оно прибыло в Калининградский морской порт. Закончился 65-й прощальный рейс, продолжавшийся более двух месяцев.

Вот и сделана последняя «ходовая» запись в судовом журнале ветерана нашего океанологического флота, который за тридцать лет плаваний оставил за кормой более миллиона миль.

В беседе с корреспондентом «Правды» начальник экспедиции профессор А. А. Аксенов отметил, что 65-й рейс «Витязя», как и все предыдущие, оказался успешным. Во время комплексных исследований в глубоководных районах Средиземного моря и Атлантического океана получены новые научные данные, которые обогатят наши знания о жизни моря.

«Витязь» будет временно базироваться в Калининграде. Предполагается, что затем он станет базой для создания музея Мирового океана.

Несколько лет ученые многих стран работают по международному проекту ПИГАП (программа исследования глобальных атмосферных процессов). Цель этой работы - найти надежный метод прогноза погоды. Нет необходимости объяснять, насколько это важно. Можно будет заранее знать о засухе, о наводнениях, ливнях, сильных ветрах, жаре и холоде…

Пока никто не может дать такого прогноза. В чем главная трудность? Невозможно точно описать математическими уравнениями процессы взаимодействия океана и атмосферы.

Почти вся вода, выпадающая на сушу в виде дождя и слега, поступает в атмосферу с поверхности океана. Воды океана в районе тропиков сильно нагреваются, и течения разносят это тепло в высокие широты. Над океаном возникают огромные вихри - циклоны, которые определяют погоду на суше.

Океан - это кухня погоды… Но в океане очень мало постоянных станций наблюдения за погодой. Это немногочисленные острова и несколько автоматических плавучих станций.

Ученые пытаются построить математическую модель взаимодействия океана и атмосферы, но она должна быть реальной и точной, а для этого недостает многих данных о состоянии атмосферы над океаном.

Выход был найден в том, чтобы в небольшом районе океана очень точно и непрерывно проводить измерения с судов, с самолетов и метеорологических спутников. Такой международный эксперимент под названием «Тропекс» был проведен в тропической зоне Атлантического океана в 1974 г., и были получены очень важные данные для построения математической модели.

Необходимо знать всю систему течений в океане. Течения переносят тепло (и холод), питательные минеральные соли, нужные для развития жизни. Очень давно моряки начали собирать сведения о течениях. Это началось в XV- XVI вв., когда парусные суда вышли в открытый океан. В наше время все моряки знают, что существуют подробные карты поверхностных течений, и пользуются ими. Однако в последние 20-30 лет были сделаны открытия, которые показали, насколько неточны карты течений и насколько сложна общая картина циркуляции вод океана.

В экваториальной зоне Тихого и Атлантического океанов были исследованы, измерены и нанесены на карты мощные глубинные течения. Они известны как течение Кромвелла в Тихом и течение Ломоносова в Атлантическом океанах.

На западе Атлантического океана было открыто глубинное Антило-Гвианское противотечение. А под знаменитым Гольфстримом оказался Противогольфстрим.

В 1970 г. советские ученые провели очень интересное исследование. В тропической зоне Атлантического океана была установлена серия буйковых станций. На каждой станции непрерывно регистрировались течения на различных глубинах. Измерения длились полгода, причем периодически выполняли гидрологические съемки в районе измерений для получения данных об общей картине движения вод. После обработки и обобщения материалов измерений выяснилась очень важная общая закономерность. Оказывается, ранее существовавшее представление об относительно равномерном характере постоянного пассатного течения, которое возбуждается северными пассатными ветрами, не соответствует действительности. Не существует этого потока, этой громадной реки в жидких берегах.

В зоне пассатного течения движутся громадные вихри, водовороты, размером в десятки и даже сотни километров. Центр такого вихря перемещается со скоростью порядка 10 см/с, но на периферии вихря скорости течения значительно больше. Это открытие советских ученых было позднее подтверждено американскими исследователями, а в 1973 г. подобные вихри были прослежены в советских экспедициях, работавших на севере Тихого океана.

В 1977-1978 гг. был поставлен специальный эксперимент по изучению вихревой структуры течений в районе Саргассова моря на западе Северной Атлантики. На большом пространстве советские и американские экспедиции в течение 15 месяцев непрерывно вели измерения течений. Этот огромный материал еще не до конца проанализирован, но сама постановка задачи потребовала массовых специально поставленных измерений.

Особое внимание к так называемым синоптическим вихрям в океане вызвано тем, что именно вихри несут в себе наибольшую долю энергии течения. Следовательно, их тщательное изучение может существенно приблизить ученых к решению задачи о долгосрочном прогнозе погоды.

Еще одно интереснейшее явление, связанное с океанскими течениями, открыто в последние годы. К востоку и к западу от мощного океанского течения Гольфстрим обнаружены очень устойчивые так называемые ринги (кольца). Подобно реке, Гольфстрим имеет сильные изгибы (меандры). В некоторых местах меандры смыкаются, и образуется кольцо, в котором резко различается температура поды на периферии и в центре. Такие кольца прослежены также на периферии мощного течения Куросио в северо-западной части Тихого океана. Специальные наблюдения над рингами в Атлантическом и Тихом океанах показали, что эти образования очень устойчивы, сохраняют существенную разницу в температуре воды на периферии и внутри ринга в течение 2-3 лет.

В 1969 г. впервые были применены специальные зонды для непрерывного измерения температуры и солености на различных глубинах. До этого температуру измеряли ртутными термометрами в нескольких точках на разных глубинах и с этих же глубин в батометрах поднимали воду. Затем определяли соленость воды и наносили значения солености и температуры на график. Получали распределение этих свойств воды по глубине. Измерения в отдельных точках (дискретные) не позволяли даже предположить, что температура воды с глубиной изменяется так сложно, как это показали непрерывные измерения зондом.

Оказалось, что вся водная масса от поверхности до больших глубин разделяется на тонкие слои. Разница в температуре соседних горизонтальных слоев доходит до нескольких десятых градуса. Эти слои толщиной от нескольких сантиметров до нескольких метров существуют иногда несколько часов, иногда исчезают за несколько минут.

Первые измерения, сделанные в 1969 г., показались многим случайным явлением в океане. Не может быть, говорили скептики, чтобы могучие океанские волны и течения не перемешивали воду. Но в последующие годы, когда зондирование водной толщи точными приборами было проведено по всему океану, оказалось, что тонкослоистая структура водной толщи обнаруживается везде и всегда. Не вполне ясны причины этого явления. Пока объясняют его так: по той или иной причине в толще воды возникают многочисленные довольно четкие границы, разделяющие слои с различной плотностью. На границе двух слоев различной плотности очень легко возникают внутренние волны, которые перемешивают воду. В процессе разрушения внутренних волн возникают новые однородные слои, и границы слоев образуются на иных глубинах. Так этот процесс повторяется многократно, меняются глубина залегания и толщина слоев с резкими границами, но общий характер водной толщи остается неизменным.

В 1979 г. начался экспериментальный этап международной программы изучения глобальных атмосферных процессов (ПИГАП). Несколько десятков судов, автоматические наблюдательные станции в океане, специальные самолеты и метеорологические спутники, вся эта громада исследовательских средств работает на всем пространстве Мирового океана. Все участники этого эксперимента работают по единой согласованной программе для того, чтобы, сопоставляя материалы международного эксперимента, можно было построить глобальную модель состояния атмосферы и океана.

Бели принять во внимание, что кроме генеральной задачи - поиска надежного метода долгосрочного прогноза погоды, необходимо знать множество частных фактов, то общая задача физики океана представится весьма и весьма сложной: методы измерений, приборы, действие которых основано на применении самых современных электронных схем, довольно трудная обработка получаемой информации с обязательным использованием ЭВМ; построение весьма сложных и оригинальных математических моделей процессов, развивающихся в водной толще океана и на границе с атмосферой; постановка широких экспериментов в характерных районах океана. Таковы общие особенности современных исследований в области физики океана.

Особые трудности возникают при изучении живой материи в океане. Относительно недавно были получены необходимые материалы для общей характеристики биологической структуры океана.

Лишь в 1949 г. была открыта жизнь на глубинах более 6000 м. Позднее глубоководная фауна - фауна ультраабиссали оказалась интереснейшим объектом специального исследования. На таких глубинах условия существования очень стабильны в геологическом масштабе времени. Можно по сходству ультраабиссальной фауны установить былые связи отдельных океанических впадин и восстановить географические условия геологического прошлого. Так, например, сравнивая глубоководную фауну Карибского моря и восточной части Тихого океана, ученые установили, что в геологическом прошлом не было Панамского перешейка.

Несколько позднее было сделано поразительное открытие - в океане обнаружен новый тип животных - погонофоры. Тщательное исследование их анатомии, систематическая классификация составили содержание одного из выдающихся трудов в современной биологии - монографии А. В. Иванова «Погонофоры». Эти два примера показывают, насколько трудным оказалось изучение распределения жизни в океане и тем более общих закономерностей функционирования биологических систем океана.

Сопоставляя разрозненные факты, сравнивая биологию основных групп растений и животных, ученые пришли к важным выводам. Общая биологическая продукция Мирового океана оказалась несколько меньше аналогичной величины, характеризующей всю площадь суши, несмотря на то, что площадь океана в 2,5 раза больше, чем суши. Это связано с тем, что областями высокой биологической продуктивности являются периферия океана и области подъема глубинных вод. Остальное пространство океана - почти безжизненная пустыня, в которой можно встретить разве что крупных хищников. Отдельными оазисами в океанской пустыне оказываются лишь небольшие коралловые атоллы.

Другой важный вывод касается общей характеристики пищевых цепей в океане. Первым звеном пищевой цепи являются одноклеточные зеленые водоросли фитопланктона. Следующее звено - зоопланктон, далее планктоноядные рыбы и хищники. Существенное значение имеют дойные животные - бентос, также являющиеся пищей для рыб.

Воспроизводство в каждом звене пищевой цени таково, что продуцируемая биомасса в 10 раз превышает ее потребление. Иначе говоря, 90%, например, фитопланктона погибает естественным путем и только 10% служит пищей для зоопланктона. Установлено также, что рачки зоопланктона совершают в поисках пищи вертикальные суточные миграции. Совсем недавно удалось обнаружить в пищевом рационе рачков зоопланктона сгустки бактерий, причем этот вид пищи составил до 30% общего объема. Общий итог современных исследований биологии океана состоит в том, что найден подход и построена первая блоковая математическая модель экологической системы открытого океана. Это первый шаг на пути к искусственному регулированию биологической продуктивности океана.

Какими же методами пользуются биологи в океане?

Прежде всего, разнообразными орудиями лова. Мелкие организмы планктона отлавливаются специальными конусными сетями. В результате лова получают осредненное количество планктона в весовых единицах на единицу объема воды. Этими сетями можно облавливать отдельные горизонты водной толщи или «процеживать» воду от заданной глубины до поверхности. Донные животные отлавливаются различными орудиями, буксируемыми по дну. Рыбы и другие организмы нектона отлавливаются разноглубинными тралами.

Своеобразные методы применяются для изучения пищевых взаимоотношений различных групп планктона. Организмы «метят» радиоактивными веществами и затем определяют количество и темп выедания в последующем звене пищевой цепи.

В последние годы нашли применение физические методы косвенного определения количества планктона в воде. Один из этих методов основан на использовании лазерного луча, который как бы прощупывает поверхностный слой воды в океане и дает данные о суммарном количестве фитопланктона. Другой физический метод основан на использовании способности организмов планктона к свечению - биолюминесценции. Специальный батометр-зонд погружается в воду, и по мере погружения фиксируется интенсивность биолюминесценции, как показатель количества планктона. Этими методами очень быстро и полно получают характеристику распределения планктона во множестве точек зондирования.

Важным элементом изучения биологической структуры океана являются химические исследования. Содержание биогенных элементов (минеральных солей азота и фосфора), растворенного кислорода и ряд других важных характеристик среды обитания организмов определяют химическими методами. Особенно важны тщательные химические определения при изучении высокопродуктивных прибрежных районов - зон апвеллинга. Здесь, при регулярных и сильных ветрах с берега, происходит сильный сгоп воды, сопровождающийся подъемом глубинных вод и распространением их в мелководной области шельфа. Глубинные воды содержат в растворенном виде значительное количество минеральных солей азота и фосфора. Вследствие этого в зоне апвеллинга пышно расцветает фитопланктон и в конечном счете формируется область промысловых скоплений рыбы.

Прогноз и регистрация специфического характера среды обитания в зоне апвеллинга выполняются методами химии. Таким образом, и в биологии вопрос о допустимых и применяемых методах исследования решается в наше время комплексно. Широко применяя традиционные методы биологии, исследователи все шире используют методы физики и химии. Обработка материалов, а также обобщение их в виде оптимизированных моделей выполняются методами современной математики.

В области изучения геологии океана за последние 30 лет получено так много новых фактов, что пришлось решительно изменить многие традиционные представления.

Всего лишь 30 лет назад измерение глубины дна океана было исключительно трудным делом. Нужно было опускать в воду тяжелый лот с грузом, подвешенным на длинном стальном тросе. При этом результаты часто бывали ошибочными, а точки с измеренными глубинами отстояли одна от другой на сотни километров. Поэтому и господствовало представление о громадных пространствах океанического дна как о гигантских равнинах.

В 1937 г. впервые был применен новый метод измерения глубин, основанный на эффекте отражения звукового сигнала от дна.

Принцип измерения глубины эхолотом очень прост. Специальный вибратор, укрепленный в нижней части корпуса судна, излучает пульсирующие акустические сигналы. Сигналы отражаются от поверхности дна и улавливаются принимающим устройством эхолота. Время пробегания сигнала «туда и обратно» зависит от глубины, и на ленте при движении корабля вычерчивается непрерывный профиль дна. Серия таких профилей, разделенных относительно небольшими расстояниями, дает возможность провести на карте линии равных глубин - изобаты и изобразить донный рельеф.

Измерения глубин эхолотом изменили прежние представления ученых о рельефе дна океана.

Как же оно выглядит?

От берега тянется полоса, которую называют континентальным шельфом. Глубины на континентальном шельфе обычно не превышают 200-300 м.

В верхней зоне континентального шельфа идет непрерывное и бурное преобразование рельефа. Берег отступает под натиском волн, и одновременно под водой возникают большие скопления обломочного материала. Именно здесь образуются крупные залежи песка, гравия, гальки - превосходный строительный материал, раздробленный и отсортированный самой природой. Разнообразные косы, пересыпи, бары, в свою очередь, наращивают берег в другом месте, отделяют лагуны, перегораживают устья рек.

В тропической зоне океана, где вода очень чистая и теплая, вырастают грандиозные коралловые сооружения - береговые и барьерные рифы. Они тянутся на сотни километров. Коралловые рифы служат убежищем для великого множества организмов и вместе с ними образуют сложную и необыкновенную биологическую систему. Словом, верхняя зона шельфа «живет» бурной геологической жизнью.

На глубинах 100-200 м геологические процессы как бы замирают. Рельеф становится выровненным, на дне много выходов коренных пород. Разрушение скал идет очень медленно.

На внешнем крае шельфа, обращенном к океану, круче становится падение поверхности дна. Иногда уклоны достигают 40-50°. Это материковый склон. Его поверхность рассекают подводные каньоны. Здесь происходят напряженные, порой катастрофические процессы. На склонах подводных каньонов накапливается ил. Временами устойчивость скоплений внезапно нарушается, и по дну каньона низвергается грязевой поток.

Грязевой поток достигает устья каньона, и здесь основная масса песка и крупных обломков, отлагаясь, образует конус выноса - подводную дельту. За пределы материкового подножия выходит мутьевой поток. Нередко отдельные конусы выноса соединяются, и у материкового подножия образуется сплошная полоса рыхлых осадков большой мощности.

53% площади дна занимает ложе океана, та область, которая до недавнего времени считалась равниной. В действительности рельеф ложа океана довольно сложный: поднятия различного строения и происхождения делят его на огромные котловины. Размеры океанических котловин можно оценить хотя бы по одному примеру: северная и восточная котловины Тихого океана занимают площадь большую, чем вся Северная Америка.

На большом пространстве самих котловин господствует холмистый рельеф, иногда встречаются отдельные подводные горы. Высота гор океана достигает 5-6 км, и их вершины нередко возвышаются над водой.

В других районах ложе океана пересекают громадные пологие валы шириной в несколько сот километров. Обычно на этих валах располагаются вулканические острова. В Тихом океане, например, есть Гавайский вал, на котором расположена цепь островов с действующими вулканами и лавовыми озерами.

Со дна океана во многих местах поднимаются вулканические конусы. Иногда вершина вулкана достигает поверхности воды, и тогда возникает остров. Некоторые из таких островов постепенно разрушаются и скрываются под водой.

В Тихом океане обнаружено несколько сотен вулканических конусов с явными следами действия волн на плоских вершинах, погруженных на глубину 1000-1300 м.

Эволюция вулканов может быть и иной. На вершине вулкана поселяются рифообразующие кораллы. При медленном погружении кораллы надстраивают риф, и с течением времени образуется кольцевой остров - атолл с лагуной в середине. Рост кораллового рифа может продолжаться очень долго. На некоторых атоллах Тихого океана было проведено бурение, с тем чтобы определить мощность толщи коралловых известняков. Оказалось, что она достигает 1500. Это значит, что вершина вулкана опускалась медленно - приблизительно на протяжении 20 тыс. лет.

Изучая рельеф дна и геологическое строение твердой коры океана, ученые пришли к некоторым новым выводам. Земная кора под дном океана оказалась значительно тоньше, чем на материках. На материках мощность твердой оболочки Земли - литосферы - достигает 50-60 км, а в океане не превышает 5-7 км.

Оказалось также, что литосфера суши и океана различна по составу пород. Под слоем рыхлых пород - продуктов разрушения поверхности суши лежит мощный гранитный слой, который подстилается базальтовым слоем. В океане гранитный слой отсутствует, и рыхлые отложения лежат прямо на базальтах.

Еще более важным оказалось открытие грандиозной системы горных цепей на дне океана. Горная система срединно-океанических хребтов тянется через все океаны на 80 000 км. По своим размерам подводные хребты сравнимы лишь с величайшими горами на суше, например с Гималаями. Гребни подводных хребтов обычно рассечены вдоль глубокими ущельями, которые были названы рифтовыми долинами, или рифтами. Их продолжение прослеживается и на суше.

Ученые поняли, что глобальная система рифтов - явление очень важное в геологическом развитии всей нашей планеты. Начался период тщательного изучения системы рифтовых зон, и в скором времени были получены столь значительные данные, что произошло резкое изменение представлений о геологической истории Земли.

Сейчас ученые вновь обратились к полузабытой гипотезе дрейфа континентов, высказанной немецким ученым А. Вегенером в начале века. Было выполнено тщательное сопоставление контуров материков, разделенных Атлантическим океаном. При этом геофизик Я. Буллард совмещал контуры Европы и Северной Америки, Африки и Южной Америки не по береговым линиям, а по срединной линии материкового склона, приблизительно по изобате 1000 м. Очертания обоих берегов океана совпали так точно, что даже завзятые скептики не могли сомневаться в действительном огромном горизонтальном перемещении материков.

Особенно убедительны были данные, полученные во время геомагнитных съемок в области срединно-океанических хребтов. Выяснилось, что излившаяся базальтовая лава постепенно смещается в обе стороны от гребня хребта. Таким образом, было получено прямое доказательство расширения океанов, раздвижения земной коры в области рифта и в соответствии с этим дрейфа континентов.

Глубинное бурение в океане, которое несколько лет ведется с американского судна «Гломар Челленджер», вновь подтвердило факт расширения океанов. Установили даже среднюю величину расширения Атлантического океана - несколько сантиметров в год.

Удалось также объяснить повышенную сейсмичность и вулканизм на периферии океанов.

Все эти новые данные послужили основанием для создания гипотезы (часто ее называют теорией, настолько убедительны ее аргументы) тектоники (подвижности) литосферных плит.

Первоначальная формулировка этой теории принадлежит американским ученым Г. Хессу и Р. Дитцу. Позднее ее развили и дополнили советские, французские и другие ученые. Смысл новой теории сводится к представлению о том, что жесткая оболочка Земли - литосфера - разделена на отдельные плиты. Эти плиты испытывают горизонтальные перемещения. Силы, приводящие в движение литосферные плиты, порождаются конвективными течениями, т. е. течениями глубинного огненно-жидкого вещества Земли.

Расплывание плит в стороны сопровождается образованием срединно-океанических хребтов, на гребнях которых возникают зияющие трещины рифтов. Через рифты происходит излияние базальтовой лавы.

В других областях литосферные плиты сближаются и сталкиваются. В этих столкновениях, как правило, рождается поддвиг края одной плиты под другую. На периферии океанов известны такие современные зоны поддвига, где часто возникают сильнейшие землетрясения.

Теория тектоники литосферных плит подтверждается множеством фактов, добытых за последние пятнадцать лет в океане.

Общей основой современных представлений о внутреннем строении Земли и процессах, происходящих в ее недрах, служит космогоническая гипотеза академика О. Ю. Шмидта. По его представлениям, Земля, как и другие планеты Солнечной системы, образовалась путем слипания холодного вещества пылевого облака. Дальнейшее нарастание Земли происходило путем захвата новых порций метеоритного вещества при прохождении через пылевое облако, некогда окружавшее Солнце. По мере нарастания планеты происходило погружение тяжелых (железных) метеоритов и всплывание легких (каменных). Этот процесс (разделение, дифференциация) был столь мощным, что внутри планеты вещество расплавлялось и разделялось на тугоплавкую (тяжелую) часть и легкоплавкую (более легкую). Одновременно действовал и радиоактивный разогрев во внутренних частях Земли. Все эти процессы привели к образованию тяжелого внутреннего ядра, более легкого внешнего ядра, нижней и верхней мантии. Геофизические данные и расчеты показывают, что в недрах Земли таится огромная энергия, действительно способная к решительным преобразованиям твердой оболочки - литосферы.

Основываясь на космогонической гипотезе О. 10. Шмидта, академик А. П. Виноградов разработал геохимическую теорию происхождения океана. А. П. Виноградов путем точных расчетов, а также экспериментов по изучению дифференциации расплавленного вещества метеоритов установил, что водная масса океана и атмосферы Земли образовалась в процессе дегазации вещества верхней мантии. Этот процесс продолжается и в наше время. В верхней мантии действительно происходит непрерывная дифференциация вещества, и наиболее легкоплавкая его часть проникает на поверхность литосферы в виде базальтовой лавы.

Представления о строении земной коры и ее динамике постепенно уточняются.

В 1973 и 1974 гг. в Атлантическом океане была осуществлена необычная подводная экспедиция. В заранее выбранном районе Срединно-Атлантического хребта были выполнены глубоководные погружения подводных аппаратов и был детально исследован небольшой по размеру, но очень важный участок океанского дна.

Исследуя дно с надводных судов в период подготовки экспедиции, ученые детально изучили рельеф дна и обнаружили такой район, внутри которого было глубокое ущелье, рассекающее вдоль гребень подводного хребта - рифтовая долина. В этом же районе находится хорошо выраженный в рельефе трансформный разлом - поперечный по отношению к гребню хребта и рифтовому ущелью.

Такая типичная структура дна - рифтовое ущелье, трансформный разлом, молодые вулканы, была обследована с трех подводных судов. В экспедиции участвовали французский батискаф «Архимед» с обеспечивающим его работу специальным судном «Марсель ле Биан», французская подводная лодка «Сиана» с судном «Норуа», американское исследовательское судно «Кнорр», американская подводная лодка «Алвин» с судном «Лулу».

Всего было сделано 51 глубоководное погружение за два сезона.

При выполнении глубоководных погружений до 3000 м экипажи подводных судов столкнулись с некоторыми затруднениями.

Первое, что поначалу сильно усложняло исследования, это невозможность определить местоположение подводного аппарата в условиях сильно расчлененного рельефа.

Подводный аппарат должен был двигаться, сохраняя расстояние от дна не более 5 м. На крутых склонах и пересекая узкие долины, батискаф и подводные лодки не могли пользоваться системой акустических маяков, так как подводные горы препятствовали прохождению сигналов. По этой причине была введена в действие бортовая система на обеспечивающих судах, с помощью которой определяли точное место подводного судна. С обеспечивающего судна следили за подводным аппаратом и руководили его движением. Иногда была и прямая опасность для подводного аппарата, и однажды такая ситуация возникла.

17 июля 1974 г. подводная лодка «Алвин» буквально застряла в узкой трещине и в течение двух с половиной часов осуществляла попытки выйти из западни. Экипаж «Алвин» проявил удивительную находчивость и хладнокровие - после выхода из западни не всплыл на поверхность, но продолжал исследования еще два часа.

В дополнение к непосредственным наблюдениям и измерениям из подводных аппаратов, когда выполнялось фотографирование и сбор образцов, в районе работ экспедиции было сделано бурение с известного специального судна «Гломар Челленджер».

Наконец, с борта исследовательского судна «Кнорр» регулярно проводились геофизические измерения, дополнявшие работу наблюдателей подводных аппаратов.

В результате в небольшом районе дна было сделано 91 км маршрутных наблюдений, 23 тысячи фотографий, собрано более 2 т образцов горных пород и сделано более 100 видеозаписей.

Научные результаты этой экспедиции (она известна под названием «Famous») очень важны. Впервые были применены подводные аппараты не просто для наблюдений подводного мира, но для целеустремленного геологического исследования, подобного тем подробным съемкам, которые геологи ведут на суше.

Впервые были получены прямые доказательства перемещения литосферных плит вдоль границ. В данном случае исследовалась граница между Американской и Африканской плитами.

Была определена ширина зоны, которая расположена между движущимися литосферными плитами. Неожиданно оказалось, что эта зона, где земная кора образует систему трещин и где происходит излияние базальтовой лавы на поверхность дна, то есть формируется новая земная кора, эта зона имеет ширину менее километра.

Очень важное открытие было сделано на склонах подводных холмов. В одном из погружений подводного аппарата «Сиана» на склоне холма были обнаружены трещиноватые рыхлые отдельности, сильно отличающиеся от различных обломков базальтовой лавы. После всплытия «Сианы» было установлено, что это марганцевая руда. Более подробное обследование района распространения марганцевых руд привело к открытию древнего гидротермального месторождения на поверхности дна. Повторные погружения дали новые материалы, доказывающие, что действительно вследствие выхода на поверхность дна термальных вод из недр дна в этом небольшом участке дна лежат руды железа и марганца.

Во время экспедиции возникало множество технических проблем и бывали неудачи, но драгоценный опыт целеустремленных геологических исследований, полученный в течение двух сезонов, тоже важный результат этого необыкновенного океанологического эксперимента.

Методы изучения строения земной коры в океане отличаются некоторыми особенностями. Рельеф дна изучается не только с помощью эхолотов, но также локаторов бокового обзора и специальными эхолотами, которые дают картину рельефа в пределах полосы, равной по ширине глубине места. Эти новые методы дают результаты более точные и более правильно позволяют изобразить рельеф на картах.

На научно-исследовательских судах проводится гравиметрическая съемка с помощью набортных гравиметров, съемка магнитных аномалий. Эти данные дают возможность судить о строении земной коры под океаном. Основной метод исследования - это сейсмическое зондирование. В толще воды помещают небольшой заряд взрывчатки и производят взрыв. Специальное приемное устройство регистрирует время вступления отраженных сигналов. Вычислениями определяют скорость распространения продольных волн, вызванных взрывом в толще земной коры. Характерные величины скоростей дают возможность разделять литосферу на несколько слоев различного состава.

В настоящее время в качестве источника используют пневматические устройства или электрический разряд. В первом случае в воде происходит выброс (практически мгновенно) небольшого объема воздуха, сжатого в специальном устройстве давлением 250-300 атм. На небольшой глубине воздушный пузырь резко расширяется и этим самым имитируется взрыв. Частое повторение таких взрывов, вызываемых устройством, которое называют воздушной пушкой, дает непрерывный профиль сейсмического зондирования и, следовательно, достаточно подробный профиль строения земной коры на всем протяжении галса.

Аналогичным образом используется профилограф с электрическим разрядником (спаркер). В этом варианте сейсмической аппаратуры мощность разряда, возбуждающего колебания, обычно невелика, и пользуются спаркером для изучения мощности и распределения неуплотненных слоев донных отложений.

Для изучения состава донных отложений и получения их образцов применяют различные системы грунтовых трубок и дночерпателей. Грунтовые трубки имеют, в зависимости от задачи исследования, различный диаметр, обычно несут на себе тяжелый груз для максимального заглубления в грунт, иногда имеют внутри поршень и несут на нижнем конце тот или иной замыкатель (кернопрерыватель). Трубка погружается в воду и в осадок на дне на ту или иную глубину (но обычно не более 12-15 м), и извлеченный таким образом керн, обычно называемый колонкой, поднимается на палубу судна.

Дночерпатели, представляющие собой грейферного типа устройства, как бы вырезают небольшой монолит поверхностного слоя донного грунта, который доставляется на палубу судна. Разработаны модели дночерпателей самовсплывающие. Они позволяют обойтись без троса и палубной лебедки и значительно упрощают способ получения образца. В прибрежных районах океана на малых глубинах применяют вибропоршневые грунтовые трубки. С их помощью удается получить колонки длиной до 5 м на песчаных грунтах.

Очевидно, все перечисленные приборы нельзя использовать для получения образцов (кернов) донных пород, уплотненных и имеющих мощность десятки и сотни метров. Эти образцы получают с помощью обычных буровых установок, смонтированных на судах. Для относительно небольших глубин шельфа (до 150-200 м) используют специальные суда, несущие буровую вышку и устанавливаемые в точке бурения на нескольких якорях. Удержание судна в точке осуществляется путем регулирования натяжения цепей, идущих к каждому из четырех якорей.

На глубинах в тысячи метров в открытом океане постановка судна на якорь технически неосуществима. Поэтому разработан специальный метод динамического позиционирования.

Буровое судно выходит в заданную точку, причем точность определения места обеспечивается специальным навигационным устройством, принимающим сигналы с искусственных спутников Земли. Затем на дно устанавливается довольно сложное устройство типа акустического маяка. Сигналы этого маяка принимает система, установленная на судне. После получения сигнала специальные электронные устройства определяют смещение судна и мгновенно выдают команду на подруливающие устройства. Включается нужная группа гребных винтов и положение судна восстанавливается. На палубе судна глубинного бурения размещены буровая вышка с установкой вращательного бурения, большой набор труб и специальное устройство для подъема и свинчивания труб.

Буровое судно «Гломар Челленджер» (пока единственное) осуществляет работы по международному проекту глубоководного бурения в открытом океане. Уже пробурено более 600 скважин, причем наибольшая глубина проходки скважин составила 1300 м. Материалы глубоководного бурения дали столько новых и неожиданных фактов, что интерес к их изучению чрезвычайный. При исследовании дна океана применяют много разнообразных приемов и методов, и можно ожидать в недалеком будущем появления новых методов, использующих новые принципы измерений.

В заключение следует кратко упомянуть об одной задаче в общей программе исследований океана - об изучении загрязнения. Источники загрязнения океана разнообразны. Сброс промышленных и бытовых стоков из прибрежных предприятий и городов. Состав загрязняющих веществ здесь чрезвычайно разнообразен: от отходов атомной промышленности до современных синтетических моющих средств. Значительное загрязнение создают сбросы с океанских судов, а порой и катастрофические разливы нефти при авариях танкеров и морских нефтяных скважин. Есть еще один способ загрязнения океана - через атмосферу. Воздушные течения переносят на громадные расстояния, например, свинец, попадающий в атмосферу с выхлопными газами двигателей внутреннего сгорания. В процессе газообмена с атмосферой свинец попадает в воду и обнаруживается, например, в антарктических водах.

Определения загрязнения организованы в настоящее время в специальную международную систему наблюдений. При этом систематические наблюдения над содержанием загрязняющих веществ в воде возложены на соответствующие суда.

Наибольшее распространение в океане имеет загрязнение нефтепродуктами. Для контроля над ним применяют не только химические методы определения, но большей частью оптические методы. На самолетах и вертолетах устанавливают специальные оптические устройства, с помощью которых определяют границы площади, покрытой нефтяной пленкой, и даже толщину пленки.

Природа Мирового океана, этой, образно выражаясь, огромной экологической системы нашей планеты, еще недостаточно изучена. Доказательством такой оценки служат недавние открытия в различных областях океанологии. Методы изучения Мирового океана довольно разнообразны. Несомненно, в будущем, по мере того как будут найдены и применены новые методы исследования, наука обогатится новыми открытиями.