Единица площади - квадратный сантиметр. Формулы для вычисления площади. Подробнее о площади

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Продолжим знакомиться с геометрическими алгоритмами. На прошлом уроке мы нашли уравнение прямой линии по координатам двух точек. У нас получилось уравнение вида:

Сегодня мы напишем функцию, которая по уравнениям двух прямых линий будет находить координаты их точки пересечения (если такая имеется). Для проверки равенства вещественных чисел, будем использовать специальную функцию RealEq().

Точки на плоскости описываются парой вещественных чисел. При использовании вещественного типа операции сравнения лучше оформить специальными функциями.

Причина известна: на типе Real в системе программирования Паскаль нет отношения порядка, поэтому записи вида a = b, где a и b вещественные числа, лучше не использовать.
Сегодня мы введем в употребление функцию RealEq() для реализации операции “=” (строго равно) :

Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq}

Задача. Заданы уравнения двух прямых: и . Найти точку их пересечения.

Решение. Очевидное решение состоит в том, чтобы решить систему уравнений прямых: Давайте перепишем эту системе несколько иначе:
(1)

Введем обозначения: , , . Здесь D – определитель системы, а - определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если , то система (1) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: , , которые называются формулами Крамера . Напомню, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

В программном коде для проверки проверка равенства используется функция RealEq(). Вычисления над вещественными числами производятся с точностью до _Eps=1e-7.

Program geom2; Const _Eps: Real=1e-7;{точность вычислений} var a1,b1,c1,a2,b2,c2,x,y,d,dx,dy:Real; Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq} Function LineToPoint(a1,b1,c1,a2,b2,c2: real; var x,y:real):Boolean; {Определение координат точки пересечения двух линий. Значение функции равно true, если точка пересечения есть, и false, если прямые параллельны. } var d:real; begin d:=a1*b2-b1*a2; if Not(RealEq(d,0)) then begin LineToPoint:=True; dx:=-c1*b2+b1*c2; dy:=-a1*c2+c1*a2; x:=dx/d; y:=dy/d; end else LineToPoint:=False End;{LineToPoint} begin {main} writeln("Введите коэффициенты уравнений: a1,b1,c1,a2,b2,c2 "); readln(a1,b1,c1,a2,b2,c2); if LineToPoint(a1,b1,c1,a2,b2,c2,x,y) then writeln(x:5:1,y:5:1) else writeln("Прямые параллельны."); end.

Мы составили программу, с помощью которой можно, зная уравнения линий, найти координаты их точки пересечения.

В двумерном пространстве две прямые пересекаются только в одной точке, задаваемой координатами (х,y). Так как обе прямые проходят через точку их пересечения, то координаты (х,y) должны удовлетворять обоим уравнениям, которые описывают эти прямые. Воспользовавшись некоторыми дополнительными навыками вы сможете находить точки пересечения парабол и других квадратичных кривых.

Шаги

Точка пересечения двух прямых

    Запишите уравнение каждой прямой, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения. Возможно, данное вам уравнение вместо «у» будет содержать переменную f(x) или g(x); в этом случае обособьте такую переменную. Для обособления переменной выполните соответствующие математические операции на обеих сторонах уравнения.

    • Если уравнения прямых вам не даны, на основе известной вам информации.
    • Пример . Даны прямые, описываемые уравнениями и y − 12 = − 2 x {\displaystyle y-12=-2x} . Чтобы во втором уравнении обособить «у», прибавьте к обеим сторонам уравнения число 12:
  1. Вы ищете точку пересечения обеих прямых, то есть точку, координаты (х,у) которой удовлетворяют обоим уравнениям. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять. Запишите новое уравнение.

    • Пример . Так как y = x + 3 {\displaystyle y=x+3} и y = 12 − 2 x {\displaystyle y=12-2x} , то можно записать такое равенство: .
  2. Найдите значение переменной «х». Новое уравнение содержит только одну переменную «х». Для нахождения «х» обособьте эту переменную на левой стороне уравнения, выполнив соответствующие математические операции на обеих сторонах уравнения. Вы должны получить уравнение вида х = __ (если вы не можете это сделать, этого раздела).

    • Пример . x + 3 = 12 − 2 x {\displaystyle x+3=12-2x}
    • Прибавьте 2 x {\displaystyle 2x} к каждой стороне уравнения:
    • 3 x + 3 = 12 {\displaystyle 3x+3=12}
    • Вычтите 3 из каждой стороны уравнения:
    • 3 x = 9 {\displaystyle 3x=9}
    • Разделите каждую сторону уравнения на 3:
    • x = 3 {\displaystyle x=3} .
  3. Используйте найденное значение переменной «х» для вычисления значения переменной «у». Для этого подставьте найденное значение «х» в уравнение (любое) прямой.

    • Пример . x = 3 {\displaystyle x=3} и y = x + 3 {\displaystyle y=x+3}
    • y = 3 + 3 {\displaystyle y=3+3}
    • y = 6 {\displaystyle y=6}
  4. Проверьте ответ. Для этого подставьте значение «х» в другое уравнение прямой и найдите значение «у». Если вы получите разные значение «у», проверьте правильность ваших вычислений.

    • Пример: x = 3 {\displaystyle x=3} и y = 12 − 2 x {\displaystyle y=12-2x}
    • y = 12 − 2 (3) {\displaystyle y=12-2(3)}
    • y = 12 − 6 {\displaystyle y=12-6}
    • y = 6 {\displaystyle y=6}
    • Вы получили такое же значение «у», поэтому в ваших вычислениях ошибок нет.
  5. Запишите координаты (х,у). Вычислив значения «х» и «у», вы нашли координаты точки пересечения двух прямых. Запишите координаты точки пересечения в виде (х,у).

    • Пример . x = 3 {\displaystyle x=3} и y = 6 {\displaystyle y=6}
    • Таким образом, две прямые пересекаются в точке с координатами (3,6).
  6. Вычисления в особых случаях. В некоторых случаях значение переменной «х» найти нельзя. Но это не значит, что вы допустили ошибку. Особый случай имеет место при выполнении одного из следующих условий:

    • Если две прямые параллельны, они не пересекаются. При этом переменная «х» просто сократится, а ваше уравнение превратится в бессмысленное равенство (например, 0 = 1 {\displaystyle 0=1} ). В этом случае в ответе запишите, что прямые не пересекаются или решения нет.
    • Если оба уравнения описывают одну прямую, то точек пересечения будет бесконечное множество. При этом переменная «х» просто сократится, а ваше уравнение превратится в строгое равенство (например, 3 = 3 {\displaystyle 3=3} ). В этом случае в ответе запишите, что две прямые совпадают.

    Задачи с квадратичными функциями

    1. Определение квадратичной функции. В квадратичной функции одна или несколько переменных имеют вторую степень (но не выше), например, x 2 {\displaystyle x^{2}} или y 2 {\displaystyle y^{2}} . Графиками квадратичных функций являются кривые, которые могут не пересекаться или пересекаться в одной или двух точках. В этом разделе мы расскажем вам, как найти точку или точки пересечения квадратичных кривых.

    2. Перепишите каждое уравнение, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения.

      • Пример . Найдите точку (точки) пересечения графиков x 2 + 2 x − y = − 1 {\displaystyle x^{2}+2x-y=-1} и
      • Обособьте переменную «у» на левой стороне уравнения:
      • и y = x + 7 {\displaystyle y=x+7} .
      • В этом примере вам дана одна квадратичная функция и одна линейная функция. Помните, что если вам даны две квадратичные функции, вычисления аналогичны шагам, изложенным далее.
    3. Приравняйте выражения, расположенные с правой стороны каждого уравнения. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять.

      • Пример . y = x 2 + 2 x + 1 {\displaystyle y=x^{2}+2x+1} и y = x + 7 {\displaystyle y=x+7}
    4. Перенесите все члены полученного уравнения на его левую сторону, а на правой стороне запишите 0. Для этого выполните базовые математические операции. Это позволит вам решить полученное уравнение.

      • Пример . x 2 + 2 x + 1 = x + 7 {\displaystyle x^{2}+2x+1=x+7}
      • Вычтите «x» из обеих сторон уравнения:
      • x 2 + x + 1 = 7 {\displaystyle x^{2}+x+1=7}
      • Вычтите 7 из обеих сторон уравнения:
    5. Решите квадратное уравнение. Перенеся все члены уравнения на его левую сторону, вы получили квадратное уравнение. Его можно решить тремя способами: при помощи специальной формулы, и .

      • Пример . x 2 + x − 6 = 0 {\displaystyle x^{2}+x-6=0}
      • При разложении уравнения на множители вы получите два двучлена, при перемножении которых получается исходное уравнение. В нашем примере первый член x 2 {\displaystyle x^{2}} можно разложить на х*х. Сделайте следующую запись: (x)(x) = 0
      • В нашем примере свободный член -6 можно разложить на следующие множители: − 6 ∗ 1 {\displaystyle -6*1} , − 3 ∗ 2 {\displaystyle -3*2} , − 2 ∗ 3 {\displaystyle -2*3} , − 1 ∗ 6 {\displaystyle -1*6} .
      • В нашем примере второй член – это х (или 1x). Сложите каждую пару множителей свободного члена (в нашем примере -6), пока не получите 1. В нашем примере подходящей парой множителей свободного члена являются числа -2 и 3 ( − 2 ∗ 3 = − 6 {\displaystyle -2*3=-6} ), так как − 2 + 3 = 1 {\displaystyle -2+3=1} .
      • Заполните пробелы найденной парой чисел: .
    6. Не забудьте про вторую точку пересечения двух графиков. Если вы решаете задачу быстро и не очень внимательно, вы можете забыть про вторую точку пересечения. Вот как найти координаты «х» двух точек пересечения:

      • Пример (разложение на множители) . Если в уравнении (x − 2) (x + 3) = 0 {\displaystyle (x-2)(x+3)=0} одно из выражений в скобках будет равно 0, то все уравнение будет равно 0. Поэтому можно записать так: x − 2 = 0 {\displaystyle x-2=0} x = 2 {\displaystyle x=2} и x + 3 = 0 {\displaystyle x+3=0} x = − 3 {\displaystyle x=-3} (то есть вы нашли два корня уравнения).
      • Пример (использование формулы или дополнение до полного квадрата) . При использовании одного из этих методов в процессе решения появится квадратный корень. Например, уравнение из нашего примера примет вид x = (− 1 + 25) / 2 {\displaystyle x=(-1+{\sqrt {25}})/2} . Помните, что при извлечении квадратного корня вы получите два решения. В нашем случае: 25 = 5 ∗ 5 {\displaystyle {\sqrt {25}}=5*5} , и 25 = (− 5) ∗ (− 5) {\displaystyle {\sqrt {25}}=(-5)*(-5)} . Поэтому запишите два уравнения и найдите два значения «х».
    7. Графики пересекаются в одной точке или вообще не пересекаются. Такие ситуации имеют место при соблюдении следующих условий:

      • Если графики пересекаются в одной точке, то квадратное уравнение раскладывается на одинаковые множители, например, (х-1) (х-1) = 0, а в формуле появляется квадратный корень из 0 ( 0 {\displaystyle {\sqrt {0}}} ). В этом случае уравнение имеет только одно решение.
      • Если графики вообще не пересекаются, то уравнение на множители не раскладывается, а в формуле появляется квадратный корень из отрицательного числа (например, − 2 {\displaystyle {\sqrt {-2}}} ). В этом случае в ответе напишите, что решения нет.

Найдите площадь круга по формуле: S = π × r 2 . Чтобы найти площадь круга в квадратных сантиметрах, необходимо знать расстояние в сантиметрах от центра круга до линии его окружности. Это расстояние называется радиусом окружности. Как только радиус будет известен, обозначьте его буквой r из вышеупомянутой формулы. Умножьте значение радиуса само на себя и на число π (3,1415926...), чтобы узнать площадь круга в квадратных сантиметрах.

  • Например, площадь круга с радиусом 4 см составит 50,27 квадратных сантиметра в результате перемножения 3,14 и 16.

Вычислите площадь треугольника по формуле: S = 1/2 b × h. Площадь треугольника в квадратных сантиметрах вычисляется умножением половины длины его основания b (в сантиметрах) на его высоту h (в сантиметрах). Основанием треугольника выбирается одна из его сторон, тогда как высота треугольника – это перпендикуляр, опущенный к основанию треугольника из противоположной к нему вершины. Площадь треугольника можно вычислить через длину основания и высоту по любой из сторон треугольника и противоположной к ней вершине.

  • Например, если длина основания треугольника составляет 4 см, а высота, проведенная к основанию – 3 см, площадь составит: 2 x 3 = 6 квадратных сантиметра.
  • Найдите площадь параллелограмма по формуле: S = b × h. Параллелограммы подобны прямоугольникам за одним исключением – их углы не обязательно равны 90 градусам. Соответственно, расчет площади параллелограмма производится аналогичным для прямоугольника способом: длина стороны основания в сантиметрах умножается на высоту параллелограмма в сантиметрах. За основание берут любую из сторон, а высота определяется длиной перпендикуляра к ней из противоположного тупого угла фигуры.

    • Например, если длина основания параллелограмма составляет 5 см, а его высота – 4 см, его площадь составит: 5 x 4 = 20 квадратных сантиметров.
  • Вычислите площадь трапеции по формуле: S = 1/2 × h × (B+b). Трапеция – это четырехугольник две стороны которого параллельны между собой, а остальные две – нет. Чтобы определить площадь трапеции в квадратных сантиметрах, необходимо знать три мерки (в сантиметрах): длину более длинной параллельной стороны B , длину более короткой параллельной стороны b и высоту трапеции h (определяемую как кратчайшее расстояние между ее параллельными сторонами по перпендикулярному к ним отрезку). Сложите между собой длины двух параллельных сторон, поделите сумму пополам и умножьте на высоту, чтобы получить площадь трапеции в квадратных сантиметрах.

    • Например, если более длинная из параллельных сторон трапеции равна 6 см, более короткая – 4 см, а высота – 5 см, площадь фигуры составит: ½ x (6+4) х 5 = 25 квадратных сантиметров.
  • Найдите площадь правильного шестиугольника: S = ½ × P × a. Приведенная формула верна только для правильного шестиугольника с шестью равными сторонами и шестью одинаковыми углами. Буквой P обозначается периметр фигуры (или произведение длины одной стороны на шесть, что справедливо для правильного шестиугольника). Буквой a обозначается длина апофемы – расстояние от центра шестиугольника до середины одной из его сторон (точки, расположенной посередине между двумя соседними вершинами фигуры). Перемножьте периметр и апофему в сантиметрах и поделите результат на два, чтобы найти площадь правильного шестиугольника.