Из скольких хромосом состоит геном человека. Изменения хромосом в процессе деления клетки. Геном человека: общие понятия

В клетках тела 46 хромосом. Носителями единиц наследственности являются структуры клеточного ядра – хромосомы.
Хромосомы легко могут наблюдаться в делящихся клетках. В клетках тела содержится диплоидный набор хромосом – каждая хромосома имеет аналогичную себе сестринскую хромосому. В половых клетках содержится гаплоидный набор хромосом.
В клетках тела человека 46 хромосом.
Существует два типа клеточного деления – митоз и мейоз. Первый характерен для деления соматических клеток, второй происходит при образовании половых клеток.
При митозе хромосомы удваиваются и затем расходятся по дочерним клеткам. В результате образуются две клетки, абсолютно идентичные родительской.
При мейозе хромосомы удваиваются один раз, но затем следуют два цикла клеточных делений. При первом делении гомологичные хромосомы случайным образом расходятся по разным клеткам. Второе деление мейоза напоминает митоз. В результате мейоза образуется четыре дочерних клетки с гаплоидным набором хромосом.
Процесс рекомбинации хромосом при редукционном делении соответствует рекомбинации менделевских единиц наследственности.
Единицы наследственности называются генами и располагаются линейно в хромосомах. Гены, расположенные в одной хромосоме, называются сцепленными.
Сцепленные гены могут рекомбинировать благодаря процессу кроссинговера, при котором происходит обмен участками между гомологичными хромосомами.
Процессы рекомбинации, происходящие в мейозе, лежат в основе генетической изменчивости и приводят к генетической уникальности индивидов.
Ученые из Института Сангера фонда Вэлкам Траст в Кембридже, расшифровали еще одну хромосому человека, которая стала самой большой, картированной на данный момент. Хромосома 20 стала третьей по счету. Она содержит информацию о ряде заболеваний, начиная от ожирения и экземы и заканчивая слабоумием и катарактой.

В состав хромосомы входит 727 , 32 из которых связаны с развитием генетических заболеваний, включая болезнь Крейтцфельда-Якоба, тяжелые нарушения иммунной системы, болезни сердца, диабет. Шестьдесят миллионов нуклеотидов, входящие в состав хромосомы, составляют около двух процентов всего генетического кода человека.

Доктор Панос Делоукас, возглавлявший группу ученых, отметил, что хромосома содержит дополнительный участок ДНК, содержащий, по крайней мере, один ген. Подобный участок обнаруживается у 37 процентов людей европейской расы. Ученым не известно, функционирует ли этот ген у людей, и за что он отвечает.

Учеными также обнаружено, что в двадцатой хромосоме встречается более 30 тысяч вариантов расположения нуклеотидов, что обеспечивает разнообразие строения ДНК. Знание вариаций, по мнению ученых, поможет, например, объяснить, почему у некоторых людей есть предрасположенность к развитию рака или сахарного диабета.

Каждая хромосома человека представлена двумя спиралевидными цепочками молекул ДНК, соединенных между собой нуклеотидами. В ДНК содержится четыре нуклеотида: аденин, тимин, гуанин и цитозин. Последовательность расположения нуклеотидов в молекулах ДНК определяет генетический код организма.

У людей 99, 9 процентов генов одинаковы, и именно различие в строении 0, 1 процента генов делает людей уникальными.

Полезно

Проект по расшифровке генома человека – международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20–25 тыс. Проект стал кульминацией нескольких лет работы поддержанной министерством энергетики США, в частности семинаров проводившихся в 1984-м и 1986-м годах, и последовавшими действиями министерства энергетики. Отчёт 1987 года чётко указывает: «Окончательной целью данного начинания является понимание человеческого генома» и «знание человеческого генома так же необходимо для прогресса медицины и других наук о здоровье, как знание анатомии было необходимо для достижения её нынешнего состояния». Поиски технологий, подходящих для решения предложенной задачи, начинались ещё во второй половине 80-х годов. В 1998 году, американский исследователь Крейг Вентер и его фирма «Celera Genomics» запустили аналогичное исследование, финансированное частным капиталом. В начале 1990-х, когда п

Сколько генов в человеческом геноме.

Steven L. Salzberg

BMC Biology, 20.08.2018

Через 17 лет после первоначальной публикации генома человека мы все еще не нашли всех наших генов. Ответ оказывается более сложным, чем можно была себе представить в начале проекта геном человека(HGP).

Список человеческих генов

Трудно переоценить важность списка человеческих генов. Тысячи исследований полагаются на него, включая исследования по выявлению генетических причин рака, сложных расстройств, таких как шизофрения и деменция, менделевские расстройства и многие другие. Получив результаты секвенирования ДНК у больного пациента, первый вопрос, который обычно задают, «какие гены затронуты?». Сам вопрос предполагает, что мы знаем, где находятся гены, - и все же, несмотря на огромный прогресс за последние два десятилетия, наши знания о каталоге человеческих генов еще далеки от завершения.

Основные цели Проекта генома человека (HGP), который длился с 1990 по 2003 год, заключались в определении как последовательности ДНК, так и «местоположения оценочных 100 000 человеческих генов» . Ученые в то время полагали, что как только у нас в руках будет последовательность, мы довольно быстро сможем определит местоположение всех генов. Последующая история доказала обратное: сегодня существует несколько конкурирующих баз данных генов человека, в которых много тысяч различий. И хотя количество белок-кодирующих генов постепенно сходится, число других типов генов взорвалось.

Что такое ген?

Чтобы ответить на вопрос о том, сколько генов у нас есть, мы должны сначала договориться о том, что мы подразумеваем под словом «ген». Определение эволюционировало со времен Менделя, но основное внимание в процессе HGP было связано с белок-кодирующими генами; т.е. области генома, которые транскрибируются в РНК, а затем используются для синтеза белков. Однако многие гены являются некодирующими: оригинальная статья о HGP в 2001 году признала, что «тысячи генов человека продуцируют некодирующие РНК в качестве своего конечного продукта», хотя в самой статье сообщалось о 706 некодирующих генах РНК . Поэтому для этого обсуждения дадим следующее определение гена:

Gene : любой интервал вдоль хромосомной ДНК, который транскрибируется в функциональную молекулу РНК или который транскрибируется в РНК, а затем переводится в функциональный белок.

Это определение включает как некодирующие РНК-гены, так и белок-кодирующие гены, а также объединяет все альтернативные варианты сплайсинга в одном локусе вместе, считая их вариантами на одно и того же гена. Это правило предназначено для исключения псевдогенов, которые являются не функциональными остатками истинных генов. Правда это определение ставит вопрос о том, что подразумевается под функциональностью, и по-настоящему всеобъемлющее определение термина гена, вероятно, займет много страниц для описания.

Однако, есть ли у нас понимание относительно количества белок-кодирующих генов? Короткий ответ: нет. HGP начинался с предположения, что наш геном содержит 100 000 белок-кодирующих генов, а оценки, опубликованные в 1990-х годах, немного изменили этот показатель вниз, обычно сообщая о значениях между 50 000 и 100 000. В двух исходных документах HGP сообщалось о 31 000 и 26 588 белок-кодирующих генах , а когда более полный проект HGP появился в 2004 году , авторы подсчитали, что полный каталог будет содержать 24 000 белок-кодирующих генов. Каталог человеческих генов Ensembl, описанный в этой статье (версия 34d), содержит 22 287 белок-кодирующих генов и 34 214 транскриптов.

Расширяющееся число генов РНК

Изобретение RNA-seq в 2008 году , которое было разработано для улучшения нашей способности количественно определять экспрессию генов, также значительно улучшило нашу способность обнаруживать транскрибируемые последовательности, как кодирующие, так и некодирующие. Многие из впоследствии обнаруженных некодирующих транскриптов содержали интроны и были довольно длинными, что приводило их к тому, что они назывались линк-РНК, для длинных промежуточных некодирующих РНК, которые позднее были сокращены до lncRNAs, что привело к «вмешательству». Базы данных lncRNAs (и других генов РНК, таких как микроРНК) резко выросли за десятилетие, и в настоящее время в каталогах человеческих генов теперь больше генов РНК, чем белок-кодирующих генов.

Быстро расширяющееся число вариантов сращивания

РНК-seq также выявила еще один сюрприз: альтернативное сращивание, альтернативное инициирование транскрипции и альтернативное прерывание транскрипции происходили гораздо чаще, чем кто-либо раньше, возможно, затрагивая до 95% человеческих генов . Следствием этих находок является то, что даже если мы знаем, где находятся все гены, у нас все еще есть значительная работа, чтобы обнаружить все изоформы этих генов, и еще большая, чтобы определить, имеют ли эти изоформы какую-либо функцию или они просто представляют ошибки сплайсинга, как утверждают некоторые .

Где мы сейчас?

Перед нами стоит задача выявления всех человеческих генов. Одной из проблем сейчас является то, что за последние 15 лет только две группы контролировали доминирующие списки генов: RefSeq, который поддерживается Национальным центром биотехнологической информации (NCBI) в NIH и Ensembl / Gencode, который поддерживается Европейской лабораторией молекулярной биологии (EMBL). Даже после всего этого времени, несмотря на значительный прогресс, у двух каталогов сегодня есть сотни разногласий между их списками белок-кодирующих генов, тысячи несоответствий между их lncRNAs и несколькими категориями генов (например, микроРНК и антисмысловых РНК), где они расходятся еще больше, иногда даже не соглашаясь на тип гена. Эти два каталога также развиваются; например, только в прошлом году сотни генов, кодирующих белок, были добавлены или удалены из списка Gencode. Эти разногласия подчеркивают постоянную проблему создания всеобъемлющего каталога генов человека.

Проблема нахождения всех человеческих генов слишком важна, чтобы оставить ее в руках только двух групп, особенно с учетом отсутствия согласия в текущих базах данных. В 2017 году мы создали новую базу данных человеческих генов, CHESS, которая использовала массивную коллекцию РНК-seq для сбора заново всех транскриптов из широкого обзора тканей человека, который доступен в виде препринта . Набор генов CHESS, который добавляет более 100 000 новых изоформ гена и меньшее количество новых генов в существующие базы данных, предназначен для обеспечения более полной коллекции генов человека. По дизайну он включает в себя все белок-кодирующие гены как Gencode, так и RefSeq, так что пользователям CHESS не нужно решать, какую базу данных они предпочитают. Большее количество генов может включать в себя больше ложных результатов, но мы полагаем, что более широкий набор, тем не менее, окажется очень полезным, особенно для многих исследований болезней человека, которые еще не нашли генетической причины. Ясно что база данных CHESS в настоящей версии 2.0, еще не окончательна и улучшится в ближайшие годы.

Суть в том, что мы еще не знаем, сколько у нас генов, хотя мы добились прогресса. Многие гены (особенно lncRNAs) оказываются сильно тканеспецифичными. И пока мы более тщательно не изучим все типы клеток человека нет уверенности, что обнаружены все человеческие гены и транскрипты. Для большинства других видов животных и растений мы знаем еще меньше о наборе генов, хотя наши знания быстро улучшаются. Однако наша неспособность найти простой ответ на фундаментальный вопрос HGP не означает, что мы потерпели неудачу. Напротив, наши знания о генах человека значительно богаче, чем в начале HGP, и технологические достижения последнего десятилетия вселяют оптимизм, что мы в конечном итоге установим это число.

Сколько же всего генов у человека?

Это наиболее интересный вопрос, ради которого собственно и затевалось полное секвенирование генома человека. После получения основной информации о структуре генома человека в первую очередь были произведены различные анализы по поиску генов и определению их числа. Однако задача оказалась не простой. Это может показаться странным для читателя, но однозначного ответа на поставленный вопрос до сих пор нет.

Сколько же всего генов в ДНК человека? Еще несколько лет назад полагали, что их около 100 тыс., затем решили, что не более 80 тыс. В конце 1998 г. пришли к выводу, что в геноме человека не более 50–60 тыс. генов и на их долю приходится около 3% общей длины ДНК.

Последние подсчеты общего числа генов в геноме человека проводили несколько международных команд ученых. Уже упоминавшаяся компания «Celera» провела собственные исследования, результаты которого изложены в журнале «Science» в 2001 году. По ее оценкам общее число генов в геноме человека составляет от 26383 до 39114. Средний размер гена оценивается равным примерно 3000 п. н. Если принять, что число генов у человека порядка 30 тысяч и на каждый ген приходится примерно 3 тыс. п. н., то нетрудно подсчитать, что в кодировании белков принимает участие менее 1,5% хромосомной ДНК. Таким образом, генетические инструкции по формированию человеческой личности занимают меньше 3 сантиметров на двухметровой молекуле ДНК. Удивляет и малое количество генов, несущих эти инструкции, - их всего в пять раз больше, чем, например, у такого на наш взгляд совершенно примитивного организма, как муха дрозофила.

Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинзом, подсчитав число генов у человека независимым способом и на основе своих данных, получила сходный результат - около 32000 генов содержится в геноме каждой клетки человека.

Разнобой в окончательные оценки пока вносят два других коллектива ученых. Доктор Вильям Хезелтайн (руководитель фирмы «Хьюмэн Геном Сайенс») продолжает настаивать, что в их банке содержится приватизированная информация на 120 тыс. генов. Этой информацией он не собирается пока делиться с мировой общественностью. Фирма вложила деньги в патенты и собирается заработать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Фирма «Инсайт» сообщила о том, что имеет в настоящее время каталог, состоящий из 140 тысяч идентифицированных ей генов человека, и также настаивает на этом количестве общего числа генов у человека.

Очевидно, что наспех приватизированная генетическая информация будет еще тщательно анализироваться и проверяться в ближайшие годы, пока точное число генов станет окончательно «канонизировано». Дело в том, что устройство генов весьма многообразно и до конца еще не поняты все возможные варианты. Вот мы прочитали последовательность нуклеотидов ДНК. Определено, что она способна кодировать белок. Но один ли? Выше уже говорилось о том, как транскрипция и последующие модификации РНК, а затем трансляция и модификации полипептидов, способны обеспечить огромное многообразие белков, кодируемых одним участком ДНК. И понять это исходя только из нуклеотидной последовательности ДНК очень часто просто невозможно. Тем не менее структура генома представляет собой единственную базу для осмысления данных, получаемых такими новыми направлениями, рожденными геномикой, как транскриптомика (исследует совокупность РНК-транскриптов организма), протеомика (исследует совокупность белков организма), метаболомика (исследует обмен веществ - метаболизм - в организме). Эти направления призваны дополнить лежащий в основе структурной геномики метод геномного секвенирования, дать возможность выйти за пределы его разрешающей способности.

Выше уже также говорилось об альтернативном сплайсинге. Сейчас хорошо известно, что за счет этого процесса с одних и тех же генов могут считываться разные белки, которые затем взаимодействуют друг с другом, образуя неповторимую смесь, как из основных цветов в живописи - желтого, красного и голубого можно получить мириады оттенков. Такой сплайсинг характерен не менее чем для половины генов человека. Считается, что в среднем с одного гена человека за счет альтернативного сплайсинга может образовываться три разных пептида. Но некоторые гены имеют до 10 альтернативно сплайсируемых экзонов, что позволяет теоретически получать более 1000 различных вариантов белков всего лишь на одном гене. В реальности число разных белков, кодируемых одним геном, достигает 10. Кроме того, существуют еще и альтернативные промоторы, альтернативные кодоны инициации трансляции, редактирование РНК (превращение Ц в У или А в аналог Г - инозин). Все вышесказанное пока еще невозможно учесть при оценке общего числа генов у человека.

Но и это не все. Кроме генов, кодирующих белки, имеются еще гены, конечным продуктом которых являются РНК. Вспомним об упоминавшихся выше генах-риборегуляторах - они не кодируют белки, но производят функционирующую в клетках РНК. Так что скорее всего окончательная оценка числа генов у человека будет сделана еще нескоро.

На сегодняшний день ученым известны функции всего лишь около восьми-десяти тысяч из них. А детальные сведения о механизмах их регуляции еще более скудны. Тем не менее, приведенные выше данные о строении и функционировании генов человека свидетельствуют о том, что у человека, царствующего в природе, в отличие от других существующих на нашей планете организмов, очень высока сложность протеома - полного набора функциональных белков в клетке, которая обеспечивается не просто за счет крупного размера генома или большого числа генов, а благодаря всевозможным инновациям, связанным с функционированием генов и формированием белков: большее число доменов-модулей, более высокая комбинаторика (перемешивание) этих модулей в белках, активное использование альтернативного сплайсинга и многое другое, о чем мы поговорим дальше.

Проект «Геном человека» является наиболее амбициозной биологической исследовательской программой за всю историю науки. Знание генома человека внесет неоценимый вклад в развитие медицины и биологии человека. Исследования человеческого генома так же необходимо человечеству, как когда-то было необходимо знание человеческой анатомии. Осознание этого пришло в 1980-х, и это привело к тому, что появился проект «Геном человека». В 1988-м с аналогичной идеей выступил выдающийся российский молекулярный биолог и биохимик, академик А. А. Баев (1904–1994). С 1989 г. и в США, и в СССР функционируют соответствующие научные программы; позднее возникла Международная организация по изучению генома человека (HUGO). Вклад России в международное сотрудничество признан в мире: 70 отечественных исследователей являются членами HUGO.

Итак, прошло 10 лет с того времени, когда проект «Геном человека» был завершен. Есть повод вспомнить, как это было...

В 1990 г. при поддержке министерства энергетики США, а также Великобритании, Франции, Японии, Китая и Германии, был запущен этот трехмиллиардный проект. Возглавил его д-р Фрэнсис Коллинз, глава . Целями проекта являлись:

  • идентификация 20 000–25 000 генов ДНК;
  • определение последовательности 3 млрд. пар химических оснований, составляющих ДНК человека, и сохранение этой информации в базе данных;
  • усовершенствование приборов для анализа данных;
  • внедрение новейших технологий в область частного использования;
  • исследование этических, правовых и социальных вопросов, возникающих при расшифровке генома.

В 1998 г. аналогичный проект был запущен д-ром Крейгом Вентером и его фирмой «Celera Genomics ». Д-р Вентер поставил перед своей командой задачу более быстрого и дешевого секвенирования человеческого генома (в отличие от трехмиллиардного международного проекта, бюджет проекта д-ра Вентера ограничивался 300 млн долл.). Кроме того, фирма «Celera Genomics » не собиралась открывать доступ к своим результатам.

6 июня 2000 г. президент США и премьер-министр Великобритании объявили о расшифровке человеческого генетического кода, и таким образом соревнование закончилось. На самом деле, был опубликован рабочий черновик человеческого генома, и лишь к 2003 г. он был расшифрован практически полностью, хотя и сегодня все еще проводят дополнительный анализ некоторых участков генома.

Тогда умы ученых были взбудоражены необыкновенными возможностями: новые, действующие на генетическом уровне лекарства, а значит, не за горами создание «персональной медицины», настроенной точно под генетический характер каждого отдельно взятого человека. Существовали, конечно, и опасения, что может быть создано генетически зависимое общество, в котором людей буду делить на высшие и низшие классы по их ДНК и соответственно ограничивать их возможности. Но все же была надежда, что этот проект окажется столь же прибыльным, сколь и Интернет.

И вдруг все затихло... надежды не оправдались... казалось, что 3 млрд долл., вложенных в эту затею, выброшены на ветер.

Нет, не совсем так. Быть может, полученные результаты не столь грандиозны, как предполагалось во времена зарождения проекта, но они позволят достичь в будущем значительных успехов в различных областях биологии и медицины.

В результате исполнения проекта «Геном человека» был создан открытый банк генокода. Общедоступность полученной информации позволила многим исследователям ускорить свою работу. Ф. Коллинз привел в качестве иллюстрации такой пример: «Поиск гена фиброзно-кистозной дегенерации был успешно завершен в 1989 г., что стало результатом нескольких лет исследований моей лаборатории и еще нескольких других и стоило США около 50 млн долл. Сейчас это способен сделать смышленый выпускник университета за несколько дней, и все, что ему понадобится, - это Интернет, несколько недорогих реактивов, термоциклический аппарат для увеличения специфичности сегментов ДНК и доступ к ДНК-секвенатору, читающему ее по световым сигналам».

Еще один важный результат проекта - дополнение истории человека. Раньше все данные об эволюции были почерпнуты из археологических находок, а расшифровка генокода не только дала возможность подтвердить теории археологов, но в будущем позволит точнее узнать историю эволюции как человека, так и биоты в целом. Как предполагается, анализ сходства в последовательностях ДНК различных организмов сможет открыть новые пути в исследовании теории эволюции, и во многих случаях вопросы эволюции теперь можно будет ставить в терминах молекулярной биологии. Такие важнейшие вехи в истории эволюции, как появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных, можно будет проследить на молекулярном уровне. Ожидается, что это позволит пролить свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами: приматами, неандертальцем (чей генокод недавно был реконструирован из 1,3 млрд фрагментов, подвергавшихся тысячелетнему разложению и загрязненных генетическими следами археологов, державших в руках останки этого существа), а также и всеми млекопитающими, и ответить на вопросы: какой же ген делает нас Homo sapiens , какие гены отвечают за наши поразительные таланты? Таким образом, поняв, как прочитать информацию о нас в генокоде, мы сможем узнать, как гены влияют на физические и умственные характеристики и даже на наше поведение. Возможно, в будущем, посмотрев на генетический код, можно будет не только предсказать, как будет выглядеть человек, но и, к примеру, будет ли у него актерский талант. Хотя, естественно, никогда нельзя будет это определить со 100%-ной точностью.

Кроме того, межвидовое сравнение покажет, чем отличается один вид от другого, как они разошлись на эволюционном древе. Межпопуляционное сравнение покажет, как этот вид эволюционирует. Сравнение ДНК отдельных особей внутри популяции покажет, чем объясняется различие особей одного вида, одной популяции. Наконец, сравнение ДНК различных клеток внутри одного организма поможет понять, как происходит дифференцирование тканей, как они развиваются и что идет не так в случае заболеваний, таких например, как рак.

Вскоре после расшифровки большей части генокода в 2003 г., ученые обнаружили, что существует гораздо меньше генов, чем они ожидали, но впоследствии убедились в противоположном. Традиционно ген определяли как участок ДНК, который кодирует белок. Однако, расшифровывая генокод, ученые выяснили, что 98,5% участков ДНК не кодируют белки, и назвали эту часть ДНК «бесполезной». И выяснилось, что эти 98,5% участков ДНК имеют едва ли не большее значение: именно эта часть ДНК отвечает за ее функционирование. Например, определенные участки ДНК содержат инструкции для получения похожих на ДНК, но небелковых молекул, так называемых двухцепочечных РНК. Эти молекулы являются частью молекулярно-генетического механизма, контролирующего активность гена (РНК-интерференция). Некоторые двухцепочечные РНК могут подавлять гены, препятствуя синтезу их белковых продуктов. Таким образом, если данные участки ДНК также считать генами, то их количество удвоится. В итоге исследования изменилось само представление о генах, и сейчас ученые считают, что ген - это единица наследственности, которую нельзя понимать как просто участок ДНК, кодирующий белки.

Можно сказать, что химический состав клетки - ее «хард», а информация, закодированная в ДНК, - предварительно загруженный «софт». Никто раньше и не предполагал, что клетка является чем-то большим, чем просто совокупностью составных частей, и что для ее построения недостаточно закодированной в ДНК информации, что столь же важным является процесс саморегулирования генома - и путем сообщения между соседними генами, и путем воздействия других молекул клетки.

Открытый доступ к информации позволит объединить опыт врачей, информацию о патологических случаях, результаты многолетнего изучения отдельных особей, и потому станет возможным соотнести генетическую информацию с данными анатомии, физиологии, поведения человека. И уже это сможет привести к лучшей медицинской диагностике и прогрессу в лечении.

Например, исследователь, изучающий определенную форму рака, сможет сузить круг поиска до одного гена. Сверив свои данные с данными открытой базы генома человека, он сможет проверить, что другие написали об этом гене, включая (потенциально) трехмерную структуру его производного белка, его функции, его эволюционную связь с другими генами человека или с генами мышей, дрожжей или дрозофилы, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела, в которых ген активируется, заболеваниями, связанными с этим геном, или другие данные.

Более того, понимание хода заболевания на уровне молекулярной биологии позволит создать новые терапевтические методы. Учитывая, что ДНК играет огромную роль в молекулярной биологии, а также ее центральное значение в функционировании и принципах работы живых клеток, углубление знаний в этой области откроет путь для новых методов лечения и открытий в различных областях медицины.

Наконец, и «персональная медицина» теперь кажется уже более реальной задачей. Д-р Уиллс выразил надежду, что лечение заболеваний путем замены поврежденного участка ДНК нормальным станет возможным уже в следующее десятилетие. Сейчас проблемой, препятствующей развитию такого метода лечения, является то, что ученые не умеют доставлять ген в клетку. Пока единственный известный способ доставки - заражение животного вирусом с необходимыми генами, но это опасный вариант. Однако д-р Уиллс предполагает, что в скором времени в этом направлении будет совершен прорыв.

Сегодня уже существуют простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак молочной железы, нарушение свертываемости крови, кистозный фиброз, заболевания печени и др. Такие заболевания, как рак, болезнь Альцгеймера, диабет, как было выяснено, связаны не с общими для всех, а с огромным количеством редких, практически индивидуальных мутаций (причем не в одном гене, а в нескольких; например, мышечную дистрофию Шарко-Мари-Тут может вызвать мутация 39 генов), в результате чего эти болезни трудно поддаются диагностике и воздействию медицинских препаратов. Именно это открытие является одним из камней преткновения «персональной медицины», поскольку, прочитав генокод человека, пока невозможно точно определить состояние его здоровья. Исследуя генокоды разных людей, ученые были разочарованы результатом. Около 2000 участков ДНК человека статистически относилось к «болезненным», которые при этом не всегда относились к работающим генам, т. е. не представляли угрозы. Похоже, что эволюция избавляется от мутаций, вызывающих болезнь, до того, как они станут общими.

Проводя исследования, группа ученых в Сиэтле обнаружила, что из всего человеческого генокода лишь 60 генов претерпевают спонтанную мутацию каждое поколение. При этом мутировавшие гены могут вызвать различные заболевания. Так, если у каждого из родителей было по одному «испорченному» и одному «неиспорченному» гену, то у детей болезнь может и не проявиться или проявится в очень слабой форме, если они получат один «испорченный» и один «неиспорченный» ген, но если ребенок унаследует оба «испорченных» гена, то это может привести к болезни. К тому же, поняв, что общечеловеческие болезни вызываются индивидуальным мутациями, ученые пришли к выводу, что необходимо исследовать полностью весь генокод человека, а не его отдельные участки.

Несмотря на все затруднения, уже созданы первые генетические лекарства против рака, которые блокируют эффекты генетических отклонений, приводящих к росту опухолей. Также недавно было одобрено лекарство компании «Amgen » от остеопороза, которое основывается на том, что болезнь вызывается гиперактивностью определенного гена. Последнее достижение - проведение анализа биологических жидкостей на присутствие мутации определенного гена для диагностики рака толстой кишки. Такой тест позволит избавить людей от неприятной процедуры колоноскопии.

Итак, привычная биология ушла в прошлое, наступил час новой эры науки: постгеномной биологии. Она полностью развенчала идею витализма, и хотя в него уже больше столетия не верил ни один биолог, новая биология не оставила места и для призраков.

Не только интеллектуальные озарения играют важную роль в науке. Такие технические прорывы, как телескоп в астрономии, микроскоп в биологии, спектроскоп в химии, приводят к неожиданным и замечательным открытиям. Похожую революцию в геномике производят сейчас мощные компьютеры и информация, содержащаяся в ДНК.

Закон Мура говорит о том, что компьютеры увеличивают свою мощность вдвое примерно каждые два года. Таким образом, за последнее десятилетие их мощность возросла более чем в 30 раз при постоянно снижающейся цене. В геномике пока нет имени для аналогичного закона, но его следовало бы назвать законом Эрика Лэндера - по имени главы Broad Institute (Cambridge , Massachusetts , крупнейший американский центр, занимающийся расшифровкой ДНК). Он подсчитал, что по сравнению с прошлым десятилетием цена расшифровки ДНК снизилась на сотни тысяч долларов. При расшифровке последовательности геномов в International Human Genome Sequencing Consortium использовали метод, разработанный еще в 1975 г. Ф. Сенджером, что заняло 13 лет и стоило 3 млрд долл. А значит, расшифровка генетического кода была под силу только мощным компаниям или центрам по исследованию генетической последовательности. Сейчас, используя последние устройства для расшифровки от фирмы «Illumina » (San Diego , California ), человеческий геном может быть прочитан за 8 дней, и стоить это будет около 10 тыс. долл. Но и это не предел. Другая калифорнийская фирма, «Pacific Biosciences» и з Менло Парка, разработала способы, позволяющие прочитать геном всего с одной молекулы ДНК. Вполне возможно, что скоро расшифровка генома будет занимать минут 15 и стоить менее 1000 долл. Аналогичные разработки существуют и в «Oxford Nanopore Technologies » (Великобритания). Раньше фирмы использовали решетки проб ДНК (ДНК-чипы) и искали определенные генетические символы - SNP. Сейчас известно несколько десятков таких символов, но есть основания предполагать, что среди трех миллиардов «букв» генетического кода их гораздо больше.

До недавнего времени полностью было расшифровано всего несколько генокодов (в проекте «Геном человека» были использованы кусочки генокода множества людей, а затем собраны в единое целое). Среди них генокоды К. Вентера, Дж. Уотсона, д-ра Ст. Куэйка, двух корейцев, китайца, африканца, а также больного лейкемией, национальность которого ныне уже трудно установить. Теперь, с постепенным усовершенствованием техники чтения последовательностей генов, станет возможным расшифровка генокода все большего и большего числа людей. В будущем свой генокод сможет прочитать любой человек.

Кроме стоимости расшифровки, важным показателем является его точность. Считается, что приемлемым уровнем является не более одной ошибки в 10 000–100 000 символов. Сейчас уровень точности находится на уровне 1 ошибки в 20 000 символов.

На настоящий момент в США ведутся споры по поводу патентования «расшифрованных» генов. Однако многие исследователи считают, что патентование генов станет препятствием для развития науки. Главная стратегическая задача будущего сформулирована следующим образом: изучить однонуклеотидные вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить различия между индивидуумами. Анализ таких вариаций даст возможность не только подойти к созданию индивидуальных генных «портретов» людей, что, в частности, позволит лучше лечить болезни, но и определить различия между популяциями, выявлять географические районы повышенного «генетического» риска, что поможет давать четкие рекомендации о необходимости очистки территорий от загрязнения и выявлять производства, на которых есть большая опасность поражения геномов персонала.

SNP - одиночный генетический символ, который меняется от человека к человеку. Его открыли специалисты «International HapMap Project », изучая такую мутацию генокода, как однонуклеотидный полиморфизм. Целью проекта по картированию участков ДНК, различных для разных этнических групп, был поиск уязвимости этих групп к отдельным заболеваниям и возможностей их преодоления. Эти исследования могут также подсказать, как человеческие популяции адаптировались к различным заболеваниям.

Введение ………………………………………………………………………...3

1. Сколько генов в человеческом организме?………………………...……… 5

2. Проект "Геном человека"…………. ……………………………………...…7

3. Результаты проекта "Геном человека"………………………………….….12

Заключение …………………………………………………………………….18

Список литературы………………………………………………………..….. 19

Введение

"...Но прежде прибери в комнатах, вымой окна, натри пол, выбели кухню, выполи грядки, посади под окнами семь розовых кустов, разбери семь мешков фасоли: белую отбери от коричневой, познай саму себя…"

Е.Л. Шварц. "Золушка"

Наверное, самым трудным для Золушки в заданиях злой и коварной мачехи было: «Познай саму себя!» Все остальное трудно, но понятно - действия привычные, выдумывать ничего не надо, только поспевай... А что значит: «Познай саму себя»? Узнать, как ты движешься, думаешь или дышишь, когда перебираешь фасоль? А может быть, первый шаг к настоящему пониманию человека - узнать, как он воспроизводит себе подобных?

Когда несколько американских ученых в 1986-1987 годах принялись неслыханно дерзко уговаривать руководителей Министерства энергетики США выделить несколько миллиардов долларов на фантастический проект: узнать строение всех генов человека - это был правильный шаг к познанию самих себя. Узнав строение генов, можно было посягнуть и на то, чтобы вторгнуться реально в понимание процессов мышления и реагирования на стимулы, приходящие из окружающей среды и т.д. Как только проект, названный «Геном человека», был объявлен, начались новые муки: множество людей во всем мире, причем не просто обыватели, а профессора и руководители институтов, стали его резко критиковать, называя его «завиральным», нереальным и попросту глупым. Вложенных средств он не оправдает, усилий потребует столько, что все ученые, забросив остальные дела, справиться с ним не смогут и т. п. Деньги затея поглотит, а толку все равно не будет. Рановато еще к этому приступать, твердили эти знатоки, наука не созрела для решения таких задач, технических возможностей не создано, лучше прекратить с самого начала нелепую выдумку, а деньги пустить на действительно реальные проекты.

Если бы на этом настаивали специалисты по ядерной физике или физической химии, было бы понятно, ведь из-за «Генома человека» приостановили другие дорогие проекты, прежде всего в области физики. Но в хоре протестов выделялись и голоса биологов, особенно из Западной Европы и СССР. Правда, в СССР были и другие ученые, в частности, академик А.А. Баев, которые сразу же постарались включиться в международный проект и извлечь из него максимальную пользу.

Когда проект только начинал свою работу, казалось, что для его завершения понадобится не менее 20 лет. Однако уже в 2000 г. усилиями ученых всего мира геном человека был прочитан. Его можно сравнить с книгой, которая содержит в себе последовательность знаков в 800 раз длиннее, чем Библия, однако смысл большинства «предложений» в тексте книги нам еще непонятен, и его предстоит расшифровывать еще долгие годы. Чем больше текста нашего генома удастся разгадать, тем больше появится возможностей для профилактики и лечения наследственных заболеваний, в том числе и таких, которые затрагивают психическую сферу человека.

Сколько генов в человеческом организме?

Молекулярную основу генома человека составляет молекула ДНК - знаменитая «нить жизни», двуспиральная модель структуры, которой была гениально предсказана и обоснована в работе нобелевских лауреатов Джеймса Уотсона и Фрэнсиса Крика еще в 1953 году. Спираль состоит из 4-х пар оснований (нуклеотидов); двух пуринов (аденин, гуанин) и двух пиримидинов (тимин и цитозин), соединенных между собой через дезоксирибозу и остатки фосфорной кислоты в длинную нить. Две нити соединяются между собой посредством водородных связей своих нуклеотидов, причем так, что аденин всегда соединен с тимином, а гуанин - с цитозином. В дальнейшем оказалось, что именно в чередовании пар оснований в ДНК и заложен генетический код для каждой из 20 аминокислот, причем этот код оказался трехбуквенным, то есть каждой аминокислоте соответствует свои три нуклеотида, свой триплет. Было так же установлено, что в каждой клетке человека длина молекулы ДНК около 1,5–2 м, а число нуклеотидов, составляющих эту уникальную «нить жизни» достигает 3.3 миллиарда. Фрагменты этой нити и составляют то, что называется генами, то есть кодирующими участками генома, определяющими структуру всех белков организма. Естественно, поэтому точное данные о структуре генома человеке, т.е. о первичной последовательности его нуклеотидов, равно как и данные обо всех генах человека давно привлекали и привлекают самое пристальное внимание ученых-биологов.

Как представить себе 3 млрд. оснований зримо? Чтобы воспроизвести информацию, содержащуюся в ДНК единственной клетки, даже самым мелким шрифтом (как в телефонных справочниках), понадобится тысяча 1000-страничных книг! Сколько же всего генов, то есть последовательностей нуклеотидов, кодирующих белки, в ДНК человека? Года три назад полагали, что около 100 тыс. , затем решили, что не более 80 тыс. В конце 1998 г. пришли к выводу, что в геноме человека 50–60 тыс. генов. На их долю приходится только 3% общей длины ДНК. Роль остальных 97% пока не ясна.

Проект «Геном человека»

Белки выполняют в организме самые различные функции. В качестве ферментов они служат катализаторами химических реакций; в роли гормонов они, наряду с нервной системой, управляют работой различных органов, передавая химические сигналы. Белки используются в организме и как строительный материал (например, в мышечной ткани), и как транспортные средства (гемоглобин крови переносит кислород).

Размах синтеза белка, происходящего в клетке, огромен. Геном человека (набор последовательностей ДНК, определяющих генетическую индивидуальность человека) содержит порядка 6 биллионов нуклеотидов, из которых сформировано примерно 100 000 генов, чьи Размеры варьируют в пределах от 1000 до 2 миллионов нуклеотидных пар.

Описание всех генов человека и расшифровка соответствующих последовательностей ДНК - основная задача международного исследовательского проекта «Геном Человека», который является самым крупным генетическим проектом в мире. Благодаря усилиям многих генетических лабораторий мира ученые будут иметь в своем распоряжении полное описание генома человека.

Цель проекта - выяснить последовательности азотистых оснований и положения генов (картирование) в каждой молекуле ДНК каждой клетки человека, что открыло бы причины наследственных заболеваний и пути к их лечению. В проекте заняты тысячи специалистов со всего мира: биологов, химиков, математиков, физиков и техников. Это один из самых дорогих научных проектов в истории. В 1990 г. на него потрачено 60 млн. долл., в 1991 г. - 135 млн., в 1992-1995 гг. - от 165 до 187 млн. в год, а в 1996-1998 гг. только США израсходовали 200, 225 и 253 млн.

Интерес к уже полученным результатам огромен: самые цитируемые в 1998 г. авторы (не только в генетике или биологии, но во всех областях науки) Марк Адамс и Крэйг Вентер из Института исследований генома в штате Мэриленд (США) - частной компании, занимающейся только составлением "генных карт".

Вехи проекта

Проект состоит из пяти основных этапов:

1. Составление карты, на которой помечены гены, отстоящие друг от друга не более, чем на 2 млн. оснований, на языке специалистов, с разрешением 2 Мб (Мегабаза - от английского слова "base" - основание);

2. Завершение физических карт каждой хромосомы с разрешением 0,1 Мб;

3. Получение карты всего генома в виде набора описанных по отдельности клонов (0,005 Мб);

4.К 2004 г. полное секвенирование ДНК (разрешение 1 основание);

5. Нанесение на карту с разрешением в 1 гб основание всех генов человека (к 2005 г.). Когда эти этапы будут завершены, исследователи определят все функции генов, а также биологические и медицинские применения результатов.

Три карты

В ходе проекта создают три типа карт хромосом: генетические, физические и секвенсовые (от англ. sequence - последовательность). Выявить все гены, присутствующие в геноме, и установить расстояния между ними - значит локализовать каждый ген в хромосомах. Такие генетические карты помимо инвентаризации генов и указания их положений ответят на исключительно важный вопрос о том, как гены определяют те или иные признаки организма. Ведь многие признаки зависят от нескольких генов, часто расположенных в разных хромосомах, и знание положения каждого из них позволит понять, как происходит дифференцировка (специализация) клеток, органов и тканей, а также успешнее лечить генетические заболевания. В 20-е и 30-е годы, когда создавалась хромосомная теория наследственности, выяснение положения каждого гена привело к тому, что на генетических картах сначала дрозофилы, а затем кукурузы и ряда других видов удалось отметить особые точки, как тогда говорили, "генетические маркеры" хромосом. Анализ их положения в хромосомах помог снабдить генетические карты хромосом человека новыми сведениями. Первые данные о положении отдельных генов появились еще в 60-е годы. С тех пор они множились лавинообразно, и в настоящее время известно положение уже десятков тысяч генов. Три года назад разрешение генетической карты составляло 10 Мб (для некоторых участков - даже 5 Мб).

Другое направление исследований - составление физических карт хромосом. Еще в 60-е годы цитогенетики стали окрашивать хромосомы, чтобы выявить на них особые поперечные полосы. После окрашивания полосы было видно в микроскоп. Между полосами и генами удалось установить соответствие, что позволило изучать хромосомы по-новому. Позже научились "метить" молекулы ДНК (радиоактивными или флуоресцентными метками) и следить за присоединением этих меток к хромосомам, что значительно повысило разрешение их структуры: до 2 Мб, а потом и до 0,1 Мб (при делении клеток). В 70-е годы научились "разрезать" ДНК на участки специальными «рестрикционными» ферментами, распознающими короткие отрезки ДНК, в которых информация записана в виде палиндромов - сочетаний, читаемых одинаково от начала к концу и от конца к началу. Так возникли «рестрикционные» карты хромосом. Использование современных физических и химических методов и средств улучшило разрешение физических карт в сотни раз.

Наконец, разработка методов секвенирования (изучения точных последовательностей нуклеотидов в ДНК) открыла путь к созданию секвенсовых карт с рекордным на сегодня разрешением (на этих картах будет указано положение всех нуклеотидов в ДНК).

Два подхода

Число хромосом и их длина различны у разных биологических видов. В клетках бактерий всего одна хромосома. Так, размер генома бактерии Mycoplasma genitalium 0,58 Мб (в нем 470 генов), у бактерии кишечной палочки (Escherichia coli) в геноме 4200 генов (4,2 Мб), у растения Arabi dopsis thaliana - 25 тыс. генов (100 Мб), у плодовой мушки Drosophila melanogaster - 10 тыс. генов (120 Мб). В ДНК мыши и человека 50-60 тыс. генов (3000 Мб). Конечно, для составления карт столь разных объектов одни и те же методы неприменимы, поэтому используют два разных по методологии подхода. В первом делят ДНК на небольшие куски и, изучив их по отдельности, воссоздают всю структуру, Этот подход увенчался успехом при составлении сравнительно простых карт. Для более сложных геномов эффективнее второй подход. В этих случаях неразумно делить молекулу ДНК на короткие куски, удобные для детального изучения. Их оказалось бы так много, что путаница в последовательностях была бы неразрешимой. Поэтому, принимаясь за расшифровку, молекулу делят, наоборот, на как можно более длинные куски и сравнивают их в надежде найти общие концевые участки. Если это удается, куски объединяют, после чего процедуру повторяют. С совершенствованием компьютеров и математических методов обработки информации объединенные по такому принципу куски становятся все крупнее, постепенно приближаясь к целой молекуле. Этот подход, в частности, позволил составить генетическую карту 3-й хромосомы дрозофилы.

Кладезь новых технологий

Важный аспект проекта «Геном человека» - разработка новых методов исследований. Еще до старта проекта был развит ряд весьма эффективных методов цитогенетических исследований (теперь их называют методами первого поколения). Среди них: создание и применение упомянутых рестрикционных ферментов. Получение гибридных молекул, их клонирование и перенос участков ДНК с помощью векторов в клетки-доноры (чаще всего - кишечной палочки или дрожжей). Синтез ДНК на матрицах информационной РНК. Секвенирование генов. Копирование генов с помощью специальных устройств. Способы анализа и классификации молекул ДНК по плотности, массе, структуре.

В последние 4-5 лет благодаря проекту "Геном человека" разработаны новые методы (методы второго поколения), в которых почти все процессы полностью автоматизированы. Почему это направление стало центральным? Самая маленькая хромосома клеток человека содержит ДНК длиной 50 Мб, самая большая (хромосома 1) - 250 Мб. До 1996 г. наибольший участок ДНК, выделяемый из хромосом с помощью реактивов, имел длину 0,35 Мб, а на лучшем оборудовании их структура расшифровывалась со скоростью 0,05-0,1 Мб в год при стоимости 1-2 долл. за основание. Иными словами, только на эту работу понадобилось бы примерно 30 тыс. дней (почти век) и 3 млрд. долларов.

Совершенствование технологии к 1998 г. повысило производительность до 0,1 Мб в день (36,5 Мб в год) и понизило стоимость до 0,5 долл. за основание. Использование новых электромеханических устройств, которые к тому же потребляют меньше реактивов, позволит уже в 1999 г. ускорить работы еще в 5 раз (к 2003 г. планируется довести скорость расшифровки до 500 Мб в год) и уменьшить стоимость до 0,25 долл. за основание (для человеческой ДНК еще дешевле).


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12