Найдите наименьшее значение производной функции. Применение производной для нахождения наибольшего и наименьшего значений непрерывной функции на промежутке. Следствия из области определения функции

Запоминание таблицы значений тригонометрических функцийактуальная тема не только для старшеклассников, но и для самих учителей и репетиторов по математике, которые часто не могут правильно расставить акценты на особенностях таблицы и тем самым вносят дополнительные препятствия для ее использования. Чего только я не насмотрелся в тетрадях учеников за годы моей практики. Такое впечатление, что сами учителя и репетиторы не знают, как лучше действовать. Кто-то предлагает отдельные таблицы для прямых и отдельно для обратных тригонометрических функций. Кто-то предлагает тригонометр, записи с неудобным представлением самих значений функций и используют, например, вместо числа выбивающегося из общего правила . По моей статистике примерно детей не могут самостоятельно отследить закономерности математических формул и свойств, упрощающие запоминание. Школьные преподаватели не всегда обращают на них внимание и часто именно репетитор по математике открывает ребенку глаза на очевидное.

Что должен делать репетитор по математике?

Я запускаю на занятие некоего помощника – навигатора, позволяющего облегчить ученику запоминание важной для практического решения задач информации. Продумываются сопроводительные подсказки в теоретических шпаргалках, при которых:

  • максимально широкий охват сведений обеспечивается минимальным объемом записей.
  • информацию можно будет получать при помощи неких выявленных особенностей и закономерностей в поведении чисел

Как этот принцип применить к запоминанию таблицы значений?

1) Репетитору по математике следует провести своего рода экскурсию по таблице и рассказать о ее особенностях. Важно заметить, что для перевода углов из градусов в радианы, достаточно вспомнить о том, какой у этих радианов должен получиться знаменатель. это , а это .Если у ребенка хотя бы немножко работает ассоциативная память, то он будет помнить, что в «радианных знаменателях» располагаются только числа и 6. Они же стоят в разряде десятков соответствующей им градусной меры. Только тройка соответствует шестерке, шестерка тройке, а четверка (промежуточная цифра) при переходе к сохраняется. Я говорю так — тройка меняется на шестерку, шестерку на тройку, а четверка замирает и остается первой цифрой градусной меры угла .

При переводе можно заметить, что данный угол 5 раз больше чем . Тогда, умножая радианы для на 5, получаем .

Значения синусов и косинусов для основных углов лучше всего по таблице не смотреть, а вспомнить определение для их функций через тригонометрический круг.

Модули значений функций углов больших cимметричны значениям для углов до . Надо только учесть отрицательные знаки косинуса, тангенса и котангенса во второй четверти.

Репетитору по математике остается выучить с учеником главную часть таблицы. И здесь есть красивые закономерности. Если репетитор дал ученику для тригонометрической таблицы числа , то можно заметить, что если мы представим в виде , то получим единую структуру дробей и заучивать придется числа и . В этот момент ученику станет просто смешно и удивительно: почему он раньше не видел таких закономерностей.

Осталось запомнить порядок. Так как синус в первой четверти возрастает, то большему углу соответствует большее число под корнем. Я говорю так: большему углу — больший синус. Слабому ученику я многократно повторяю: синус работает в прямом порядке: большему большее, а меньшему меньшее. Это повторение слов, как правило, откладывается в его голове.

Легко понять. что с косинусом все наоборот: меньшему углу — больший косинус. Тоже самое выявляется у тангенсов, и котангенсов.

В таблицу значений тангенсов репетитору по математике необходимо записать числа без выбивающегося числа , а именно так: , и . Тогда помимо соответствия меньшему — меньшее , а большему — большее тангенсы будут образованы всеми различными комбинациями действий деления чисел: 1 и . После таких аналогий 90-95 процентов учеников репетитора по математике не ошибаются в табличных значениях.

Вычисление арксинусов, арккосинусов, арктангенсов...

1. слово арксинус трудно и долго произносимое. Я намеренно проглатываю в некоторых ситуациях слово «синус» и говорю, например, так: для нахождения арка , требуется... Школьники понимают, о чем идет речь, а репетитор по математике при этом может акцентировать внимание на чем-то более важном.

2. В таблице, которую вы видите ниже, специально выделена область красным цветом. Она используется для нахождения арков .


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Гениальное- просто!

Чтобы запомнить значения синуса и косинуса, нам нужно создать табличку. Записываем в строчку градусную меру углов: ноль градусов, тридцать градусов, сорок пять градусов, шестьдесят градусов, девяносто градусов.

2 шаг

3 шаг

Теперь делим каждый из этих корней на два. Все гениальное просто! Выполняем нехитрый расчет, и вот Вам пожалуйста – значения синусов.
Согласитесь, нетрудно. Только нужно запомнить порядок выполнения действий. Записали градусы, извлекли корни и следующим этапом поделили все на два. Записываем числа, начиная с нуля.
То есть такая своеобразная мнемоника.

4 шаг

А как же косинусы? Ну куда же без них! С косинусами дело обстоит не сложнее, чем с синусами. В первой строчке записываем градусную меру углов: ноль градусов, тридцать градусов, сорок пять градусов, шестьдесят градусов, девяносто градусов. Далее, подобно методу нахождения синусов, извлекаем из каждого числа корень. Делим все значения на два. Получили значения косинусов.

5 шаг

Также теперь, имея эти данные, можно найти тангенс угла. Напоминаю тем, кто забыл: тангенс – это отношение синуса к косинусу.

  • Согласитесь, интересный способ нахождения синусов и косинусов. Надеюсь, пригодится!) Интересная мнемоника. Кстати, есть разные способы запоминания информации, формул, в частности, и в физике. Подняло настроение): V= корень из 3 KT/M. Эту формулу можно запомнить как три кота на мясо xD)

Как найти наибольшее и наименьшее значения функции на отрезке?

Для этого мы следуем известному алгоритму :

1 . Находим ОДЗ функции.

2 . Находим производную функции

3 . Приравниваем производную к нулю

4 . Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:

Если на промежутке I производная функции 0" title="f^{prime}(x)>0">, то функция возрастает на этом промежутке.

Если на промежутке I производная функции , то функция убывает на этом промежутке.

5 . Находим точки максимума и минимума функции .

В точке максимума функции производная меняет знак с "+" на "-" .

В точке минимума функции производная меняет знак с "-" на "+" .

6 . Находим значение функции в концах отрезка,

  • затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
  • или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции

Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.

Рассмотрим функцию . График этой функции выглядит так:

Рассмотрим несколько примеров решения задач из Открытого банка заданий для

1 . Задание B15 (№ 26695)

На отрезке .

1. Функция определена при всех действительных значениях х

Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.

Ответ: 5.

2 . Задание B15 (№ 26702)

Найдите наибольшее значение функции на отрезке .

1. ОДЗ функции title="x{pi}/2+{pi}k, k{in}{bbZ}">

Производная равна нулю при , однако, в этих точках она не меняет знак:

Следовательно, title="3/{cos^2{x}}>=3">, значит, title="3/{cos^2{x}}-3>=0">, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .

Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:

Title="y^{prime}=3/{cos^2{x}}-3={3-3cos^2{x}}/{cos^2{x}}={3sin^2{x}}/{cos^2{x}}=3tg^2{x}>=0">

Ответ: 5.

3 . Задание B15 (№ 26708)

Найдите наименьшее значение функции на отрезке .

1. ОДЗ функции : title="x{pi}/2+{pi}k, k{in}{bbZ}">

Расположим корни этого уравнения на тригонометрической окружности.

Промежутку принадлежат два числа: и

Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.

Изобразим смену знаков производной функции на координатной прямой:

Очевидно, что точка является точкой минимума (в ней производная меняет знак с "-" на "+"), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .

Иногда в задачах B14 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ. В этом случае работают другие приемы, один из которых монотонность. Определение Функция f (x) называется монотонно возрастающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее: x 1


Определение. Функция f (x) называется монотонно убывающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее: x 1 f (x 2). Другими словами, для возрастающей функции чем больше x, тем больше f (x). Для убывающей функции все наоборот: чем больше x, тем меньше f (x).


Примеры. Логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0) 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)" title="Примеры. Логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> title="Примеры. Логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)">




Примеры. Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 0: 1 и убывает при 0 0:"> 1 и убывает при 0 0:"> 1 и убывает при 0 0:" title="Примеры. Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 0:"> title="Примеры. Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 0:">






0) или вниз (a 0) или вниз (a 9 Координаты вершины параболы Чаще всего аргумент функции заменяется на квадратный трехчлен вида Его график стандартная парабола, в которой нас интересуют ветви: Ветви параболы могут уходить вверх (при a > 0) или вниз (a 0) или наибольшее (a 0) или вниз (a 0) или вниз (a 0) или наибольшее (a 0) или вниз (a 0) или вниз (a title="Координаты вершины параболы Чаще всего аргумент функции заменяется на квадратный трехчлен вида Его график стандартная парабола, в которой нас интересуют ветви: Ветви параболы могут уходить вверх (при a > 0) или вниз (a








Отрезок в условии задачи отсутствует. Следовательно, вычислять f (a) и f (b) не требуется. Остается рассмотреть лишь точки экстремума; Но таких точек всего одна это вершина параболы x 0, координаты которой вычисляются буквально устно и без всяких производных.


Таким образом, решение задачи резко упрощается и сводится всего к двум шагам: Выписать уравнение параболы и найти ее вершину по формуле: Найти значение исходной функции в этой точке: f (x 0). Если никаких дополнительных условий нет, это и будет ответом.




0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" class="link_thumb"> 18 Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> title="Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3">




Найдите наименьшее значение функции: Решение Под логарифмом снова квадратичная функция.График парабола ветвями вверх, т.к. a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1" title="Найдите наименьшее значение функции: Решение Под логарифмом снова квадратичная функция.График парабола ветвями вверх, т.к. a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> title="Найдите наименьшее значение функции: Решение Под логарифмом снова квадратичная функция.График парабола ветвями вверх, т.к. a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1">




Найдите наибольшее значение функции: Решение: В показателе стоит квадратичная функция Перепишем ее в нормальном виде: Очевидно, что график этой функции парабола, ветви вниз (a = 1



Следствия из области определения функции Иногда для решения задачи B14 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка, а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:


0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:" title="1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:" class="link_thumb"> 26 1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю: 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:"> 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:"> 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:" title="1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:"> title="1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:">


Решение Под корнем снова квадратичная функция. Ее график парабола, но ветви направлены вниз, поскольку a = 1
Теперь найдем вершину параболы: x 0 = b/(2a) = (2)/(2 · (1)) = 2/(2) = 1 Точка x 0 = 1 принадлежит отрезку ОДЗ и это хорошо. Теперь считаем значение функции в точке x 0, а также на концах ОДЗ: y(3) = y(1) = 0 Итак, получили числа 2 и 0. Нас просят найти наибольшее это число 2. Ответ: 2






Обратите внимание: неравенство строгое, поэтому концы не принадлежат ОДЗ. Этим логарифм отличается от корня, где концы отрезка нас вполне устраивают. Ищем вершину параболы: x 0 = b/(2a) = 6/(2 · (1)) = 6/(2) = 3 Вершина параболы подходит по ОДЗ: x 0 = 3 (1; 5). Но поскольку концы отрезка нас не интересуют, считаем значение функции только в точке x 0:


Y min = y(3) = log 0,5 (6 ·) = = log 0,5 (18 9 5) = log 0,5 4 = 2 Ответ: -2