Наука изучающая гены. Основные типы наследования признаков. Когда зародилась генетика

Содержание статьи

ГЕНЕТИКА, наука, изучающая наследственность и изменчивость – свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ – быть похожими на своих родителей и отличаться от них – и составляют суть понятий «наследственность» и «изменчивость».

Истоки генетики

Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 19 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности – это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней.

Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то «странных» количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки – генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки.

Законы генетики

Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина – другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм.

Гены – это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой – от отца. Имеются и внеядерные гены (в митохондриях, а у растений – еще и в хлоропластах).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз – это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз – это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине – другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом – образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.

Методические подходы.

Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster . На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. (см . КЛЕТКА; НАСЛЕДСТВЕННОСТЬ; МОЛЕКУЛЯРНАЯ БИОЛОГИЯ) . Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.

Достижения и проблемы современной генетики.

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина (см . ГЕННАЯ ИНЖЕНЕРИЯ) . Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы (см . ПОПУЛЯЦИОННАЯ ГЕНЕТИКА) , изучать наследственные болезни (см . ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ) , проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

Генетика - наука, изучающая наследственность и изменчивость организмов.
Наследственность - способность организмов передавать из поколения в поколение свои признаки (особенности строения, функций, развития).
Изменчивость - способность организмов приобретать новые признаки. Наследственность и изменчивость - два противоположных, но взаимосвязанных свойства организма.

Наследственность

Основные понятия
Ген и аллели. Единицей наследственной информации является ген.
Ген (с точки зрения генетики) - участок хромосомы, определяющий развитие у организма одного или нескольких признаков.
Аллели - различные состояния одного и того же гена, располагающиеся в определённом локусе (участке) гомологичных хромосом и определяющие развитие одного какого-то признака. Гомологичные хромосомы имеются только в клетках, содержащих диплоидный набор хромосом. Их нет в половых клетках (гаметах) эукариот и у прокариот.

Признак (фен) - некоторое качество или свойство, по которому можно отличить один организм от другого.
Доминирование - явление преобладания у гибрида признака одного из родителей.
Доминантный признак - признак, проявляющийся в первом поколении гибридов.
Рецессивный признак - признак, внешне исчезающий в первом поколении гибридов.

Доминантные и рецессивные признаки у человека

Признаки
доминантные рецессивные
Карликовость Нормальный рост
Полидактилия (многопалость) Норма
Курчавые волосы Прямые волосы
Не рыжие волосы Рыжие волосы
Раннее облысение Норма
Длинные ресницы Короткие ресницы
Крупные глаза Маленькие глаза
Карие глаза Голубые или серые глаза
Близорукость Норма
Сумеречное зрение (куриная слепота) Норма
Веснушки на лице Отсутствие веснушек
Нормальная свёртываемость крови Слабая свёртываемость крови (гемофилия)
Цветовое зрение Отсутствие цветового зрения (дальтонизм)

Доминантный аллель - аллель, определяющий доминантный признак. Обозначается латинской прописной буквой: А, B, С, … .
Рецессивный аллель - аллель, определяющий рецессивный признак. Обозначается латинской строчной буквой: а, b, с, … .
Доминантный аллель обеспечивает развитие признака как в гомо-, так и в гетерозиготном состоянии, рецессивный аллель проявляется только в гомозиготном состоянии.
Гомозигота и гетерозигота. Организмы (зиготы) могут быть гомозиготными и гетерозиготными.
Гомозиготные организмы имеют в своем генотипе два одинаковых аллеля - оба доминантные или оба рецессивные (АА или аа).
Гетерозиготные организмы имеют один из аллелей в доминантной форме, а другой - в рецессивной (Аа).
Гомозиготные особи не дают расщепления в следующем поколении, а гетерозиготные дают расщепление.
Разные аллельные формы генов возникают в результате мутаций. Ген может мутировать неоднократно, образуя много аллелей.
Множественный аллелизм - явление существования более двух альтернативных аллельных форм гена, имеющих различные проявления в фенотипе. Два и более состояний гена возникают в результате мутаций. Ряд мутаций вызывает появление серии аллелей (А, а1, а2, …, аn и т. д.), которые находятся в разных доминантно-рецессивных отношениях друг к другу.
Генотип - совокупность всех генов организма.
Фенотип - совокупность всех признаков организма. К ним относятся морфологические (внешние) признаки (цвет глаз, окраска цветков), биохимические (форма молекулы структурного белка или фермента), гистологические (форма и размер клеток), анатомические и т. д. С другой стороны, признаки можно разделить на качественные (цвет глаз) и количественные (масса тела). Фенотип зависит от генотипа и условий внешней среды. Он развивается в результате взаимодействия генотипа и условий внешней среды. Последние в меньшей степени влияют на качественные признаки и в большей степени - на количественные.
Скрещивание (гибридизация). Одним из основных методов генетики является скрещивание, или гибридизация.
Гибридологический метод - скрещивание (гибридизация) организмов, отличающихся друг от друга по одному или нескольким признакам.
Гибриды - потомки от скрещиваний организмов, отличающихся друг от друга по одному или нескольким признакам.
В зависимости от числа признаков, по которым различаются между собой родители, выделяют разные виды скрещивания.
Моногибридное скрещивание - скрещивание, при котором родители различаются только по одному признаку.
Дигибридное скрещивание - скрещивание, при котором родители различаются по двум признакам.
Полигибридное скрещивание - скрещивание, при котором родители различаются по нескольким признакам.
Для записи результатов скрещиваний используются следующие общепринятые обозначения:
Р - родители (от лат. parental - родитель);
F - потомство (от лат. filial - потомство): F 1 - гибриды первого поколения - прямые потомки родителей Р; F 2 - гибриды второго поколения - потомки от скрещивания между собой гибридов F 1 и т. д.
♂ - мужская особь (щит и копьё - знак Марса);
♀ - женская особь (зеркало с ручкой - знак Венеры);
X - значок скрещивания;
: - расщепление гибридов, разделяет цифровые соотношения отличающихся (по фенотипу или генотипу) классов потомков.
Гибридологический метод был разработан австрийским естествоиспытателем Г. Менделем (1865). Он использовал самоопыляющиеся растения гороха садового. Мендель провёл скрещивание чистых линий (гомозиготных особей), отличающихся друг от друга по одному, двум и более признакам. Им были получены гибриды первого, второго и т. д. поколений. Полученные данные Мендель обработал математически. Полученные результаты были сформулированы в виде законов наследственности.

Законы Г. Менделя

Первый закон Менделя. Г. Мендель скрестил растения гороха с жёлтыми семенами и растения гороха с зелёными семенами. И те и другие были чистыми линиями, то есть гомозиготами.

Первый закон Менделя - закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).
Второй закон Менделя. После этого Г. Мендель скрестил между собой гибридов первого поколения.

Второй закон Менделя - закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определённом числовом соотношении: особи с рецессивным проявлением признака составляют 1/4 часть от общего числа потомков.

Расщепление - явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный. В случае моногибридного скрещивания это соотношение выглядит следующим образом: 1АА:2Аа:1аа, то есть 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании). В случае дигибридного скрещивания - 9:3:3:1 или (3:1) 2 . При полигибридном - (3:1) n .
Неполное доминирование. Доминантный ген не всегда полностью подавляет рецессивный ген. Такое явление называется неполным доминированием . Примером неполного доминирования является наследование окраски цветков ночной красавицы.

Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении состоят в расхождении гомологичных хромосом и образовании гаплоидных половых клеток в мейозе.
Гипотеза (закон) чистоты гамет гласит: 1) при образовании половых клеток в каждую гамету попадает только один аллель из аллельной пары, то есть гаметы генетически чисты; 2) у гибридного организма гены не гибридизуются (не смешиваются) и находятся в чистом аллельном состоянии.
Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.
Анализ потомства. Анализирующее скрещивание позволяет установить, гомозиготен или гетерозиготен организм по доминантному гену. Для этого скрещивают особь, генотип которой следует определить, с особью, гомозиготной по рецессивному гену. Часто скрещивают одного из родителей с одним из потомков. Такое скрещивание называется возвратным .
В случае гомозиготности доминантной особи расщепления не произойдёт:

В случае гетерозиготности доминантной особи произойдёт расщепление:

Третий закон Менделя. Г. Мендель провёл дигибридное скрещивание растений гороха с жёлтыми и гладкими семенами и растений гороха с зелёными и морщинистыми семенами (и те и другие – чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведёт себя так же, как при моногибридном скрещивании (расщепляется 3:1), то есть независимо от другой пары признаков.

Третий закон Менделя - закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идёт независимо от других признаков.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

Сцепленное наследование. Нарушение сцепления

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.
Закономерности сцепленного наследования генов были изучены Т. Морганом и его учениками в начале 20-х гг. XX в. Объектом их исследований являлась плодовая мушка дрозофила (срок её жизни невелик, и за год можно получить несколько десятков поколений, её кариотип составляют всего четыре пары хромосом).
Закон Моргана: гены, локализованные в одной хромосоме, наследуются преимущественно вместе.
Сцепленные гены - гены, лежащие в одной хромосоме.
Группа сцепления - все гены одной хромосомы.
В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления - кроссинговер (перекрёст хромосом) - обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации . Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт - определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Генетика пола

Аутосомы - хромосомы, одинаковые у обоих полов.
Половые хромосомы (гетерохромосомы) - хромосомы, по которым мужской и женский пол отличаются друг от друга.
В клетке человека содержится 46 хромосом, или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Существует 5 типов хромосомного определения пола.

Типы хромосомного определения пола

Тип Примеры
♀ XX, ♂ ХY Характерен для млекопитающих (в том числе и для человека), червей, ракообразных, большинства насекомых (в том числе для дрозофил), большинства земноводных, некоторых рыб
♀ ХY, ♂ XX Характерен для птиц, пресмыкающихся, некоторых земноводных и рыб, некоторых насекомых (чешуекрылые)
♀ XX, ♂ Х0 Встречается у некоторых насекомых (прямокрылые); 0 обозначает отсутствие хромосом
♀ Х0, ♂ XX Встречается у некоторых насекомых (равнокрылые)
гапло-диплоидный тип (♀ 2n, ♂ n) Встречается, например, у пчёл и муравьёв: самцы развиваются из неоплодотворённых гаплоидных яйцеклеток (партеногенез), самки - из оплодотворённых диплоидных.

Наследование, сцепленное с полом - наследование признаков, гены которых находятся в Х- и Y-хромосомах. В половых хромосомах могут находиться гены, не имеющие отношения к развитию половых признаков.
При сочетании XY большинство генов, находящихся в X-хромосоме, не имеют аллельной пары в Y-хромосоме. Также гены, расположенные в Y-хромосоме, не имеют аллелей в X-хромосоме. Такие организмы называются гемизиготными . В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свёртываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.

Генетика крови

По системе АВ0 у людей 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена IА, IВ, I0. Два первых кодоминантны по отношению друг к другу, и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии - 4.

I группа 0 I 0 I 0 гомозигота
II группа А I А I А гомозигота
I А I 0 гетерозигота
III группа В I В I В гомозигота
I В I 0 гетерозигота
IV группа АВ I А I В гетерозигота

У разных народов соотношение групп крови в популяции различно.

Распределение групп крови по системе АВ0 у разных народов,%

Кроме того, кровь разных людей может отличаться резус-фактором. Кровь может иметь положительный резус-фактор (Rh +) или отрицательный резус-фактор (Rh -). У разных народов это соотношение различается.

Распределение резус-фактора у разных народов,%

Народность Резус-положительные Резус-отрицательные
Австралийские аборигены 100 0
Американские индейцы 90–98 2–10
Арабы 72 28
Баски 64 36
Китайцы 98–100 0–2
Мексиканцы 100 0
Норвежцы 85 15
Русские 86 14
Эскимосы 99–100 0–1
Японцы 99–100 0–1

Резус-фактор крови определяет ген R. R + дает информацию о выработке белка (резус-положительный белок), а ген R – не даёт. Первый ген доминирует над вторым. Если Rh + кровь перелить человеку с Rh – кровью, то у него образуются специфические агглютинины, и повторное введение такой крови вызовет агглютинацию. Когда у Rh – женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт. Первая беременность, как правило, заканчивается благополучно, а повторная - заболеванием ребёнка или мертворождением.

Взаимодействие генов

Генотип - это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки).
Взаимодействовать могут как аллельные гены, так и неаллельные.
Взаимодействие аллельных генов: полное доминирование, неполное доминирование, кодоминирование.
Полное доминирование - явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.
Неполное доминирование - явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.
Кодоминирование (независимое проявление) - явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и B, являются кодоминантными по отношению друг к другу, и оба доминантны по отношению к гену, определяющему группу крови 0.
Взаимодействие неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.
Кооперация - явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет своё собственное фенотипическое проявление, происходит формирование нового признака.
Комплементарность - явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.
Эпистаз - явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).
Полимерия - явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).
В противоположность полимерии наблюдается такое явление, как плейотропия - множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Хромосомная теория наследственности

Основные положения хромосомной теории наследственности:

  • ведущую роль в наследственности играют хромосомы;
  • гены расположены в хромосоме в определённой линейной последовательности;
  • каждый ген расположен в определённом месте (локусе) хромосомы; аллельные гены занимают одинаковые локусы в гомологичных хромосомах;
  • гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;
  • между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);
  • частота кроссинговера между генами пропорциональна расстоянию между ними.

Нехромосомное наследование

Согласно хромосомной теории наследственности ведущую роль в наследственности играют ДНК хромосом. Однако ДНК содержатся также в митохондриях, хлоропластах и в цитоплазме. Нехромосомные ДНК называются плазмидами . Клетки не имеют специальных механизмов равномерного распределения плазмид в процессе деления, поэтому одна дочерняя клетка может получить одну генетическую информацию, а вторая - совершенно другую. Наследование генов, содержащихся в плазмидах, не подчиняется менделевским закономерностям наследования, а их роль в формировании генотипа ещё мало изучена.

Генетика - наука, изучающая геном (последовательности цепей ДНК) человека. Наука, стоит сказать, достаточно молодая, поскольку и геном человека был расшифрован не так давно. Однако возможности генетики идут далеко за пределы обычной медицины. Зная причину болезни и человеческих характеристик на генетическом уровне, мы могли бы лечить их и изменять раз и навсегда, еще в самой юности человеческого зародыша. Конечно, такой подход не выдерживает этической критики, но в будущем все может измениться. В основе генетики лежит изучение генома человека - кода, зашифрованного в каждой клетке и определяющего ее развитие. Известно, что ДНК передается по наследству, видоизменяясь с каждым переходом. Зная ее досконально, мы могли бы проследить путь ее развития к самым корням и заглянуть в будущее генома отдельного человека или его детей.

Associated Press сообщает, что лауреат Нобелевской премии и биолог Крейг Мелло знал о беременности в Китае с участием за несколько месяцев до того, как новость стала публичной. То, что выдающийся ученый знал об этой крайне неэтичной работе, но предпочел молчать, является серьезным поводом для беспокойства и признаком того, что культура вокруг сомнительных исследований должна измениться.

Генетика

ГЕНЕ́ТИКА [нэ́], -и; ж. [от греч. genētikos - относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г.

гене́тика

(от греч. génesis - происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня исследования - молекулярную генетику, цитогенетику и др. Основы современной генетики заложены Г. Менделем, открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 20-30-х гг. выдающийся вклад в генетику внесли работы Н. И. Вавилова, Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др. С середины 30-х гг. и особенно после сессии ВАСХНИЛ 1948 в советской генетике возобладали антинаучные взгляды Т. Д. Лысенко (безосновательно названные им «мичуринским учением»), что до 1965 остановило её развитие и привело к уничтожению крупных генетических школ. Быстрое развитие генетики в этот период за рубежом, особенно молекулярной генетики во второй половине XX в., позволило раскрыть структуру генетического материала, понять механизм его работы. Идеи и методы генетики используются для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Её достижения привели к развитию генетической инженерии и биотехнологии.

ГЕНЕТИКА

ГЕНЕ́ТИКА (от греч. genesis - происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня исследования - молекулярную генетику, цитогенетику и др. Основы современной генетики заложены Г. Менделем (см. МЕНДЕЛЬ Грегор Иоганн) , открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 1920-1930-х годах выдающийся вклад в генетику внесли работы Н. И. Вавилова (см. ВАВИЛОВ Николай Иванович) , Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др. С сер. 1930-х годов, и особенно после сессии ВАСХНИЛ 1948, в советской генетике возобладали антинаучные взгляды Т. Д. Лысенко (безосновательно названные им «мичуринским учением»), что до 1965 остановило ее развитие и привело к уничтожению крупных генетических школ. Быстрое развитие генетики в этот период за рубежом, особенно молекулярной генетики во 2-й пол. 20 в., позволило раскрыть структуру генетического материала, понять механизм его работы. Идеи и методы генетики используются для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Ее достижения привели к развитию генетической инженерии (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ) и биотехнологии (см. БИОТЕХНОЛОГИЯ) .
* * *
ГЕНЕ́ТИКА (от греч. genesis - происхождение), наука, изучающая закономерности наследственности и изменчивости организмов.
Основные этапы истории генетики
Различные умозрительные представления о наследственности и изменчивости высказывались еще античными философами и врачами. В большинстве своем эти представления были ошибочными, но иногда среди них появлялись и гениальные догадки. Так, римский философ и поэт Лукреций Кар (см. ЛУКРЕЦИЙ) писал в своей знаменитой поэме «О природе вещей» о «первоначалах» (наследственных задатках), определяющих передачу из поколения в поколение признаков от предков к потомкам, о происходящем при этом случайном комбинировании («жеребьевке») этих признаков, отрицал возможность изменения наследственных признаков под влиянием внешних условий. Однако подлинно научное познание наследственности и изменчивости началось лишь спустя много столетий, когда было накоплено множество точных сведений о наследовании различных признаков у растений, животных и человека. Число таких наблюдений, проведенных преимущественно практиками-растениеводами и животноводами, особенно возросло в период с середины 18 до середины 19 века. Наиболее ценные данные были получены И. Кельрейтером и А. Гертнером (Германия), О. Сажрэ и Ш. Ноденом (Франция), Т. Найтом (Англия). На основании межвидовых и внутривидовых скрещиваний растений они обнаружили ряд важных факторов, касающихся усиления разнообразия признаков в потомстве гибридов, преобладания у потомков признаков одного из родителей и т. п. Сходные обобщения сделал во Франции П. Люка (1847-1850), собравший обширные сведения о наследовании различных признаков у человека. Тем не менее, четких представлений о закономерностях наследования и наследственности вплоть до конца 19 века не было за одним существенным исключением. Этим исключением была замечательная работа Г. Менделя (см. МЕНДЕЛЬ Грегор Иоганн) , установившего в опытах по гибридизации сортов гороха важнейший законы наследования признаков, которые впоследствии легли в основу генетики. Однако работа Г. Менделя [доложена им в 1865 на заседании общества естествоиспытателей г. Брюнн (Брно) и напечатана на следующий год в трудах этого общества] не была оценена современниками и, оставаясь забытой 35 лет, не повлияла на распространенные в 19 веке представления о наследственности и изменчивости. Появление эволюционных теорий Ж. Б. Ламарка (см. ЛАМАРК Жан Батист) , а затем Ч. Дарвина усилило во второй половине 19 века интерес к проблемам изменчивости и наследственности, т. к. эволюция возможна только на основе возникновения у живых существ изменений и их сохранения у потомков. Это побудило видных биологов того времени выдвинуть несколько гипотез о механизме наследственности, гораздо более детализированных, чем предлагавшиеся ранее. Хотя эти гипотезы были в значительной степени умозрительными и в дальнейшем были опровергнуты экспериментальными исследованиями, три из них наряду с ошибочными содержали также подтвердившиеся положения. Первая принадлежала Ч. Дарвину, назвавшему ее «временной гипотезой пангенезиса» (см. Пангенезис (см. ПАНГЕНЕЗИС) ). В этой гипотезе была правильная догадка о том, что половые клетки содержат особые частицы, определяющие развитие признаков потомков. Во второй гипотезе, выдвинутой немецким ботаником К. Негели, содержалась верная мысль о том, что каждая клетка организма содержит особое вещество («идиоплазму»), определяющее наследственные свойства организма. Наиболее детализированной была третья гипотеза, предложенная немецким зоологом А. Вейсманом (см. ВЕЙСМАН Август) . Он тоже считал, что в половых клетках есть особое вещество - носитель наследственности («зародышевая плазма»). Опираясь на сведения о механизме деления клетки, Вейсман отождествлял это вещество с хромосомами. Предположение о ведущей роли хромосом в передаче наследственных свойств было правильным и Вейсмана справедливо считают предтечей хромосомной теории наследственности (см. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ) . Верными были также его утверждения о большом значении скрещиваний, как причины изменчивости, и отрицание наследования приобретенных признаков.
Датой рождения генетики принято считать 1900, когда три ботаника - Г. де Фриз (см. ДЕ ФРИЗ Хуго) (Голландия), К. Корренс (см. КОРРЕНС Карл Эрих) (Германия) и Э. Чермак (см. ЧЕРМАК-ЗЕЙЗЕНЕГГ) (Австрия), проводившие опыты по гибридизации растений, натолкнулись независимо друг от друга на забытую работу Г. Менделя. Они были поражены сходством его результатов с полученными ими, оценили глубину, точность и значение сделанных им выводов и опубликовали свои данные, показав, что полностью подтверждают заключения Менделя. Дальнейшее развитие генетики связано с рядом этапов, каждый из которых характеризовался преобладающими в то время направлениями исследований. Границы между этими этапами в значительной мере условны - этапы тесно связаны друг с другом, и переход от одного этапа к другому становился возможным благодаря открытиям, сделанным в предыдущем. Наряду с разработкой наиболее характерных для каждого этапа новых направлений, продолжалось исследование тех проблем, которые были главными ранее, а затем в той или иной мере отодвинулись на второй план. С этой оговоркой можно разделить историю генетики на шесть основных этапов.
Первый этап (с 1900 приблизительно по 1912), получивший название менделизма (см. МЕНДЕЛИЗМ) , является периодом утверждения открытых Менделем законов наследования на основе гибридологических опытов, проведенных в разных странах на высших растениях и животных (лабораторные грызуны, куры, бабочки и др.), в результате чего выяснилось, что эти законы имеют универсальный характер. Название «генетика» развивающейся науке дал в 1906 английский ученый У. Бэтсон, а вскоре сложились и такие важные генетические понятия, как ген (см. ГЕН (наследственный фактор)) , генотип (см. ГЕНОТИП) , фенотип (см. ФЕНОТИП) , которые были предложены в 1909 датским генетиком В. Иогансеном (см. ИОГАНСЕН Вильгельм Людвиг) . Наряду с наиболее характерными для этого начального этапа истории генетики работами, подтверждающими на разных объектах справедливость законов Менделя, в те же годы зародились и некоторые новые направления исследований, получивших свое развитие в последующие периоды. Во-первых, это синтез сведений о хромосомах, митозе и мейозе с данными генетики. Уже в 1902 Т. Бовери (Германия) и У. Сеттон (США) обратили внимание на полный параллелизм расхождения хромосом и их перекомбинирования при мейозе и оплодотворении с расщеплением и перекомбинированием наследственных признаков по законам Менделя, что послужило важной предпосылкой возникновения хромосомной теории наследственности.
Во-вторых, выяснилось, что, хотя большинство изученных к тому времени наследственных признаков самых разных организмов передавалось из поколения в поколение в полном соответствии с законами Менделя, были и исключения. Так, английские генетики У. Бэтсон и Р. Пеннет в 1906 в опытах с душистым горошком обнаружили явление сцепленного наследования некоторых признаков, а другой английский генетик Л. Донкастер в том же году в опытах с крыжовниковой пяденицей открыл сцепленное с полом наследование. И в том и в другом случае наследование признаков происходило иначе, чем предсказывали законы Менделя. Число примеров обоих типов отклонения от менделевского наследования стало затем быстро увеличиваться, но только на следующем этапе истории генетики выяснилось, что принципиального противоречия с менделизмом в этих случаях нет и что это кажущееся противоречие объяснимо в рамках хромосомной теории наследственности. В-третьих, началось изучение внезапно возникающих и стойко наследуемых изменений - мутаций. В этом особенно большие заслуги принадлежали Г. де Фризу (1901, 1903), а в России С. Н. Коржинскому (1892). На первом этапе развития генетики появились также первые попытки рассмотреть в свете ее данных проблемы эволюционного учения. Три такие попытки, предпринятые У. Бэтсоном (Англия), Г. де Фризом и Я. Лотси (Голландия), отражали стремление авторов использовать основы генетики для ревизии положений дарвинизма. На несостоятельность этих попыток уже тогда указал в ряде критических статей К. А. Тимирязев, который одним из первых отметил, что менделизм не только не противоречит дарвинизму, но, наоборот, подкрепляет его, снимая некоторые важные возражения, выдвигавшиеся против теории Дарвина.
Отличительной чертой второго этапа развития генетики (приблизительно 1912-1925) было создание и утверждение хромосомной теории наследственности. Ведущую роль в этом сыграли экспериментальные работы американского генетика Т. Моргана и его учеников (А. Стертевант, К. Бриджес и Г. Меллер), проведенные в период с 1909 по 1919 на дрозофиле. Эти работы, подтвержденные затем в др. лабораториях и на др. организмах, показали, что гены лежат в хромосомах клеточного ядра и что передача наследственных признаков, в т. ч. и таких, наследование которых, на первый взгляд, не укладывается в законы Менделя, определяется поведением хромосом при созревании половых клеток и оплодотворении. Данный вывод вытекал из исследований, проводившихся двумя независимыми методами - гибридологическим и цитологическим, дававшими взаимно подтверждающие результаты. Генетические работы школы Моргана показали возможность строить карты хромосом с указанием точного расположения различных генов (см. Генетические карты (см. ГЕНЕТИЧЕСКИЕ КАРТЫ ХРОМОСОМ) ). На основе хромосомной теории наследственности был выяснен и доказан хромосомный механизм определения пола. Большие заслуги в этом принадлежали, кроме Моргана, американскому цитологу Э. Вильсону. Тогда же начались и другие работы по генетике пола, среди которых особое значение имели исследования немецкого генетика Р. Гольдшмидта. Хромосомная теория наследственности была крупнейшим достижением этого этапа развития генетики и во многом определила путь дальнейших генетических исследований.
Если в первые годы развития менделизма было распространено упрощенное представление, что каждый наследственный признак организма определяется особым геном, то в рассматриваемый период стало ясно, что любой такой признак определяется взаимодействием мн. генов (эпистаз (см. ЭПИСТАЗ) , полимерия (см. ПОЛИМЕРИЯ) и др.), а каждый ген в той или иной мере влияет на разные признаки (плейотропия (см. ПЛЕЙОТРОПИЯ) ). Кроме того, оказалось, что способность гена проявляться в фенотипе организма (пенетрантность (см. ПЕНЕТРАНТНОСТЬ) ) и степень его действия на фенотип (экспрессивность (см. ЭКСПРЕССИВНОСТЬ) ) могут зависеть, иногда в большой степени, от влияния окружающей среды или действия др. генов. Представления о пенетрантности и экспрессивности генов были впервые сформулированы в 1925 Н. В. Тимофеевым-Ресовским (см. ТИМОФЕЕВ-РЕСОВСКИЙ Николай Владимирович) на основании результатов его опытов с дрозофилой.
В этот же период быстро развиваются некоторые направления генетики, важные для разработки генетических основ селекции, семеноводства и племенного дела: изучение закономерностей наследования количественных признаков (особенно важны исследования шведского генетика Г. Нильсона-Эле), выяснение природы гетерозиса (см. ГЕТЕРОЗИС) (работы американских генетиков Э. Иста и Д. Джонса), исследования сравнительной генетики культурных растений (выдающиеся труды Н. И. Вавилова, которые легли в основу его закона гомологичных рядов в наследственной изменчивости), по межвидовой гибридизации плодовых растений (работы И. В. Мичурина в СССР, Л. Бербанка в США), по частной генетике возделываемых растений и домашних животных.
К рассматриваемому периоду относится и становление генетики в СССР, причем ее быстрое развитие началось в 1920-х годах, когда сложились три генетических школы, возглавляемые Н. К. Кольцовым в Москве, Ю. А. Филипченко и Н. И. Вавиловым в Ленинграде.
Следующий этап (приблизительно 1925-1940) связан с открытием искусственного мутагенеза. До 1925 довольно широко было распространено мнение, восходившее к высказыванием Вейсмана и особенно к взглядам де Фриза, о том, что мутации возникают в организме самопроизвольно под влиянием каких-то чисто внутренних причин и не зависят от внешних воздействий. Эта ошибочная концепция была опровергнута в 1925 работами Г. А. Надсона и Г. С. Филиппова по искусственному вызыванию мутаций, а затем экспериментально доказана опытами Г. Меллера (1927) по воздействию рентгеновских лучей на дрозофилу. Работа Г. Меллера стимулировала многочисленные исследования по мутагенезу на разных объектах, которые показали, что ионизирующие излучения - универсальные мутагены. Благодаря этому началось изучение закономерностей мутагенного действия излучений; особенно ценными были исследования Н. В. Тимофеева-Ресовского и М. Дельбрюка, обнаруживших прямую зависимость частоты индуцированных мутаций от дозы радиации и предположивших в 1935, что эти мутации вызываются непосредственным попаданием в ген кванта или ионизирующей частицы (теория мишени). В дальнейшем показано, что мутагенным действием обладают ультрафиолетовые лучи, химические вещества. Первые химические мутагены были открыты в 1930-х годах в СССР В. В. Сахаровым, М. Е. Лобашевым и С. М. Гершензоном. Благодаря исследованиям И. А. Раппопорта в СССР и Ш. Ауэрбах и Дж. Робсона в Великобритании, в 1946 обнаружены супермутагены этиленимин и азотистый иприт.
Исследования в этой области привели к быстрому прогрессу в познании закономерностей мутационного процесса и к выяснению некоторых вопросов, касающихся тонкого строения гена. В конце 1920-х - начале 1930-х годов А. С. Серебровский и его ученики получили первые данные, указывающие на сложное строение гена из частей, способных мутировать порознь или вместе. Возможность индукции мутаций открыла новые перспективы практического использования достижений генетики. В разных странах начались работы по применению радиационного мутагенеза для получения исходного материала при создании новых форм культурных растений. В СССР инициаторами такой «радиационной селекции» были А. А. Сапегин и Л. Н. Делоне.
На этом же этапе развития генетики возникло направление, изучающее роль генетических процессов в эволюции. Основополагающими в этой отрасли знаний были теоретические работы английских генетиков Р. Фишера и Дж. Холдейна, американского генетика С. Райта и экспериментальные исследования С. С. Четверикова и его сотрудников, впервые исследовавших на нескольких видах дрозофил генетическую структуру природных популяций. В отличие от некоторых ранних менделистов, выступавших против дарвинизма, эти ученые, опираясь на большой фактический материал, накопленный с тех пор генетикой, убедительно показали, что генетические данные подтверждают и конкретизируют ряд основных принципов дарвинизма, способствуют выяснению соотносительного значения в эволюции естественного отбора, разных типов изменчивости, изоляции и т. д. Н. И. Вавиловым и его учениками продолжалось успешное изучение сравнительной генетики и эволюции возделываемых растений. Особенно яркой была работа его талантливого сотрудника Г. Д. Карпеченко, который на основе межродовой гибридизации получил плодовитый редечно-капустный гибрид. Он экспериментально доказал возможность преодоления бесплодия у отдаленных гибридов и воспроизвел один из способов образования новых видов у растений.
Большого расцвета в этот период достигла генетика в СССР. Помимо выдающихся работ, указанных выше, в разных областях генетики были получены важные результаты, признанные генетиками всего мира. Среди них работы Б. Л. Астаурова, который в опытах на тутовом шелкопряде разработанными им генетическими методами впервые доказал возможность регулировать частоту особей определенного пола у потомства, М. М. Завадовского по развитию половых признаков у позвоночных, Г. А. Левитского по классификации и изменчивости кариотипов и их эволюции. Широко известны в этот период исследования А. А. Сапегина, К. К. Мейстера, А. Р. Жебрака по частной генетике и генетическим основам селекции растений, работы А. С. Серебровского, С. Г. Давыдова, Д. А. Кисловского по частной генетике и генетическим основам селекции домашних животных. Н. К. Кольцов (см. КОЛЬЦОВ Николай Константинович) выдвинул в 1927 концепцию о том, что хромосома с генами представляет одну гигантскую органическую молекулу и что воспроизведение этой наследственной молекулы осуществляется матричным путем. То и другое было позже подтверждено, когда генетические процессы начали изучать на молекулярном уровне (правда оказалось, что генетическим материалом служит не белок, как считал Кольцов, а ДНК).
В конце 1920-х годов в СССР происходила оживленная дискуссия о том, могут ли наследоваться модификации (их тогда называли «приобретенными признаками»), т. е. фенотипические изменения, вызванные в теле организма воздействием внешних условий (пищей, температурой, влажностью, освещением и т. п.) и упражнением либо неупражнением органов. Представление о возможности наследования модификаций было в ту пору практически полностью отвергнуто в зарубежной генетике на основании многочисленных опытных данных, но в СССР некоторые биологи, особенно Е. С. Смирнов, Е. М. Вермель и А. М. Кузин, эту возможность разделяли и пропагандировали. Их поддерживали московские философы М. Б. Митин, П. Ф. Юдин и др., утверждавшие, что эта неоламаркистская концепция якобы соответствует философии диалектического материализма. Спор этот продолжался несколько лет, хотя ошибочность теории наследования модификаций была убедительно продемонстрирована и сов. генетиками Н. К. Кольцовым, Ю. А. Филипченко, А. С. Серебровским, С. С. Четвериковым и зоологами А. С. Северцовым и И. И. Шмальгаузеном. Последний позже выдвинул важные соображения о том, что размах и характер модификаций, хотя они и не наследуются, зависят не только от внешних воздействий, но и от «нормы реакции» организма, определяемой его генотипом. Ошибочной идее наследования приобретенных признаков суждено было впоследствии возродиться в антинаучных воззрениях Т. Д. Лысенко.
Наиболее характерными чертами четвертого этапа истории генетики (приблизительно 1940-1955) было бурное развитие работ по генетике физиологических и биохимических признаков, обусловленное вовлечением в круг генетических опытов новых для генетики объектов - микроорганизмов и вирусов. Возможность получения у этих объектов огромного по численности потомства за короткое время резко повысила разрешающую способность генетического анализа и позволила исследовать многие ранее недоступные стороны генетических явлений.
Изучение биохимических процессов, лежащих в основе формирования наследственных признаков разных организмов, в т. ч. дрозофилы и особенно плесени нейроспоры, пролило свет на то, как действуют гены и, в частности, как влияют генные мутации на синтезируемые в организме ферменты. Это привело к обобщению, сделанному в 1940-х годах американскими генетиками Дж. Бидлом и Э. Тейтемом, согласно которому всякий ген определяет синтез одного фермента (формула «один ген - один фермент» была впоследствии уточнена «один ген - один белок» или даже «один ген - один полипептид»).
В конце 30-х и начале 40-х годов работами американских генетиков М. Грина и Э. Льюиса в опытах на дрозофиле было четко доказано сложное строение и дробимость гена, т. е. подтверждены и углублены аналогичные данные, полученные А. С. Серебровским (см. СЕРЕБРОВСКИЙ Александр Сергеевич) .
В 1944 американский генетик О. Эйвери с сотрудниками в работе по выяснению природы генетической трансформации у бактерий показала, что носителем наследственных потенций (генетической информации) организма служит дезоксирибонуклеиновая кислота (ДНК) хромосом. Это открытие послужило мощным толчком к изучению тонкого химического строения, путей биосинтеза и биологических функций нуклеиновых кислот и явилось отправной точкой, с которой началось развитие молекулярной генетики и всей молекулярной биологии. Наиболее важными достижениями конца четвертого периода является установление того факта, что инфекционным элементом вирусов служит их нуклеиновая кислота (ДНК или РНК), а также открытие в 1952 американскими генетиками Дж. Ледербергом и М. Зиндером трансдукции (см. ТРАНСДУКЦИЯ) , т. е. переноса вирусами генов хозяина, и выяснение структуры молекул ДНК (т. н. двойной спирали) английским физиком Ф. Криком и американским генетиком Дж. Уотсоном в 1953. Последняя работа сыграла выдающуюся роль во всем последующем развитии генетики и всей биологии.
Благодаря прогрессу биохимической генетики большие успехи были достигнуты в генетических и цитологических исследованиях наследственных болезней (см. НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ) человека. В результате сложилось новое направление - медицинская генетика.
Дальнейшее развитие получили работы по генетике природных популяций. Особенно интенсивно они проводились в СССР Н. П. Дубининым с сотрудниками и С. М. Гершензоном с сотрудниками, а в США Ф. Г. Добржанским. В ходе этих исследований показаны роль различных типов мутаций в эволюции, действие естественного отбора, изоляции и генетического дрейфа на генетическую структуру природных популяций. Открытие ряда сильных химических мутагенов послужило толчком к быстрому прогрессу химического мутагенеза. В эти же годы появились первые высокопродуктивные сорта культурных растений, созданные на основе мутаций, искусственно вызванных радиацией, началось применение с той же целью химических мутагенов; были внедрены в практику методы использования гетерозиса, особенно у кукурузы и тутового шелкопряда.
До 1940-х годов генетические исследования в СССР развивались в целом успешно и занимали одно из ведущих мест в мире. С установлением в сов. биологии полновластного господства Т. Д. Лысенко и его сподвижников, быстрое выдвижение которого началось в середине 1930-х годов и достигло апогея в 1948, генетика в СССР была фактически разгромлена.
Пятый этап истории генетики (приблизительно с середины 1950-х годов до начала 1970-х годов) характеризуется исследованием генетических явлений преимущественно на молекулярном уровне, что стало возможным благодаря быстрому внедрению в генетику, как и в др. области биологии, новых химических, физических и математических методов.
Было установлено, что гены представляют собой участки гигантских полимерных молекул ДНК и различаются числом и порядком чередования составляющих их пар нуклеотидов. Совместными усилиями генетиков, физиков и химиков было выяснено, что наследственная информация, передаваемая от родителей потомкам, закодирована последовательностью нуклеотидных пар в генах. С помощью ферментов она переписывается (транскрипция) в нуклеотидную последовательность однонитевых молекул матричных (информационных) РНК, определяющих аминокислотную последовательность синтезируемых белках (трансляция), обуславливающих основные свойства организма (у РНК-содержащих вирусов генетическая информация закодирована в нуклеотидной последовательности их РНК). В расшифровке генетического кода (см. КОД ГЕНЕТИЧЕСКИЙ) , оказавшегося универсальным для всех живых существ, главные заслуги принадлежат Ф. Крику, С. Бреннеру (Великобритания), С. Очоа и М. Ниренбергу (США).
В эти же годы благодаря открытию ряда ферментов (рестриктаз), разрезающих нить ДНК в определенных точках на мелкие фрагменты, научились выделять гены из ДНК хромосом. В 1969 в США Х. Г. Корана с сотрудниками осуществил химический синтез гена.
В 1961 французские генетики Ф. Жакоб и Ж. Моно открыли регуляторные механизмы включения и выключения работы некоторых генов белкового синтеза у кишечной палочки и разработали на основе этих данных концепцию оперона (см. ОПЕРОН) , которая позже была подтверждена и на др. организмах.
В результате выяснения молекулярных механизмов мутаций были достигнуты большие успехи в изыскании и изучении действия новых мощных химических мутагенов («супермутагенов») и в использовании их в селективной практике. Значительно продвинулись работы и во мн. других областях генетики - в разработке методов защиты генома человека от воздействия физических и химических мутагенов окружающей среды, в раскрытии молекулярно-генетических механизмов регуляции индивидуального развития организмов, в исследовании ранее малоизученных явлений внеядерной наследственности, осуществляемой через пластиды, митохондрии, плазмиды. К концу этого периода относится широкое возрождение генетических исследований в СССР (начиная с 1965).
На современном этапе истории генетики, начавшемся в начале 1970-х годов, наряду с прогрессом почти всех ранее сложившихся направлений, особенно интенсивно развивалась молекулярная генетика, что привело к фундаментальным открытиям и, как следствие, к возникновению и успешной разработке принципиально новых форм прикладной генетики.
Так, еще в 1960-х годах в СССР С. М. Гершензон с сотрудниками, изучавшими репродукцию одного из вирусов насекомых, получили новые данные в пользу того, что генетическая информация может передаваться от РНК к ДНК (обратная транскрипция), а не только от ДНК к РНК, что ранее считалось единственным путем транскрипции. В 1970 американские генетики Г. Темин и Д. Балтимор в опытах с некоторыми РНК-содержащими опухолеродными вирусами животных доказали существование обратной транскрипции, выявили ее молекулярный механизм и выделили осуществляющий ее фермент - обратную транскриптазу (ревертазу (см. РЕВЕРТАЗА) ), кодируемую вирусным геном. Открытие обратной транскрипции позволило искусственно синтезировать многие физиологически активные гены на основе их матричной РНК и создавать банки генов (см. БАНК ГЕНОВ) , как искусственно синтезированных, так и естественных. Большинство этих генов уже секвенированы, т. е. в них определена последовательность нуклеотидных пар. Полученные при секвенировании данные привели к открытию интрон-экзонной структуры большинства генов эукариот.
Выяснение того, что репродукция РНК-содержащих онкогенных вирусов происходит с использованием обратной транскрипции (такие вирусы стали называть ретровирусами (см. РЕТРОВИРУСЫ) ), сыграло важную роль в создании современной молекулярно-генетической концепции онкогенеза (см. ОНКОГЕНЕЗ) - возникновения злокачественных опухолей. Вирусогенетическая природа возникновения опухолей была выдвинута еще в сер. 1940-х годов советским вирусологом Л. А. Зильбером, работавшим с ДНК-содержавшим онкогенным вирусом. Однако ее признанию в те годы помешало то, что она не могла объяснить, как РНК-содержащие вирусы вызывают злокачественные опухоли. После открытия обратной транскрипции стало ясно, что вирусогенетическая теория применима к ретровирусам в такой же мере, как и к ДНК-содержащим онкогенным вирусам. В дальнейшем вирусогенетическая теория злокачественного роста стала развиваться гл. обр. на основе гипотезы онкогенов (см. ОНКОГЕНЫ) , впервые выдвинутой американскими учеными Р. Хюбнером и Дж. Тодаро и подтвержденной затем многочисленными экспериментальными исследованиями.
Фундаментальное значение для развития генетики имело также открытие и исследование мобильных генетических элементов (см. МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ) , впервые предсказанных Б. Мак-Клинток (см. МАК-КЛИНТОК Барбара) еще в конце 1940-х годов на основе генетических экспериментов на кукурузе. Эти данные не были должным образом оценены до тех пор, пока в конце 1960-х годов широко развернувшиеся работы по генетике бактерий не привели к открытию у них двух классов мобильных генетических элементов. Десятилетие спустя Д. Хогнесс с сотрудниками (США) и независимо от них Г. П. Георгиев с сотрудниками (СССР) выявили мобильные генетические элементы, получившие название мобильных диспергированных генов (МДГ) у дрозофилы. Вскоре было установлено, что подвижные генетические элементы имеются и у других эукариот.
Некоторые мобильные генетические элементы способны захватывать близлежащие гены и переносить их в др. места генома. Такая способность мобильного Р-элемента дрозофилы была использована американскими генетиками Г. Рубиным и А. Спрэдлингом для разработки техники переноса любого выделенного с помощью рестриктаз гена или его части в несвойственное ему место хромосом. Этот метод стал широко применяться для изучения роли регуляторных генов в работе структурных генов, для конструирования мозаичных генов и т. д.
Молекулярно-генетический подход углубил понимание механизма синтеза антител (иммуноглобулинов (см. ИММУНОГЛОБУЛИНЫ) ). Выявление структурных генов, кодирующих константные и вариабельные цепи молекул иммуноглобулинов, и регуляторных генов, обеспечивающих согласованное действие этих структурных генов, позволило объяснить, как обеспечивается возможность синтеза огромного числа различных иммуноглобулинов на основе ограниченного набора соответствующих генов.
Уже на начальных этапах развития генетики сложилось представление о двух основных типах изменчивости: наследственной, или генотипической, изменчивости, обусловленной генными и хромосомными мутациями и рекомбинацией генов, и ненаследственной, или модификационной, обусловленной воздействиями на признаки развивающегося организма различных факторов окружающей среды. В соответствии с этим было принято рассматривать фенотип организма как результат взаимодействия генотипа и факторов окружающей среды. Однако, эта концепция потребовала существенного дополнения. Еще в 1928 Б. Л. Астауров на основании изучения изменчивости некоторых мутантных признаков дрозофилы высказал мысль, что одной из причин изменчивости могут быть случайные отклонения в ходе развития тех или иных признаков (органов). В 1980-е годы эта мысль получила дополнительные подтверждения. Опытами Г. Стента (США) и В. А. Струнникова (СССР), проведенными на разных животных (нематодах, пиявках, дрозофиле, тутовом шелкопряде), было показано, что выраженная изменчивость структурных и физиологических признаков наблюдается даже среди генетически идентичных (изогенных) особей, воспитываемых в идеально однородных условиях среды. Эта изменчивость, очевидно, обусловлена случайными отклонениями в протекании различных внутриклеточных и межклеточных онтогенетических процессов, т. е. тем, что можно охарактеризовать, как «онтогенетический шум». В связи с этим В. А. Струнников развил представление о «реализационной изменчивости», которая участвует в формировании фенотипа наряду с генотипической и модификационной (подробнее см. Изменчивость (см. ИЗМЕНЧИВОСТЬ) ).
Успехи молекулярной генетики создали предпосылки для возникновения четырех новых направлений генетических исследований преимущественно прикладного характера, основная цель которых изменять геном организма в желаемую сторону. Наиболее быстро из этих направлений развивались генетическая инженерия (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ) и генетика соматических клетоڮ Генетическая инженерия подразделяется на генную (искусственный перенос отдельных генов) и хромосомную (искусственный перенос хромосом и их фрагментов). Методы генной инженерии, развитие которых началось в 1972 в США в лаборатории П. Берга, широко используются для промышленного производства высококачественных биопрепаратов, используемых в медицине (инсулин человека, интерферон, вакцины против гепатитов В, для диагностики СПИД и т. д.). С их помощью получены разнообразные трансгенные животные (см. ТРАНСГЕННЫЕ ЖИВОТНЫЕ) . Получены растения картофеля и подсолнечника, обогащенные запасным белком, кодируемым геном бобовых, растения подсолнечника, обогащенные белком, кодируемым геном кукурузы. Очень перспективны работы, ведущиеся во многих лабораториях мира, по переносу генов азотфиксации из почвенных бактерий в сельскохозяйственные растения. Делаются попытки излечения наследственных заболеваний путем введения в организм пациента «здорового» гена для замещения им мутантного, являющегося причиной болезни. Достижения в технологии рекомбинантных ДНК, сделавшие возможным выделение многих генов др. организмов, а также расширение знаний о регуляции их экспрессии позволяют надеяться на реализацию этой, казавшейся прежде фантастической, идеи.
Метод хромосомной инженерии позволяет пересадить в яйцеклетку млекопитающего с удаленным ядром диплоидное ядро соматической клетки и ввести такую яйцеклетку в матку самки, гормонально подготовленную к имплантации. В этом случае родится потомок, генетически идентичный особи, от которой взята соматическая клетка. Таких потомков можно получить от этой особи неограниченное число, т. е. генетически клонировать ее (см. Клонирование животных (см. КЛОНИРОВАНИЕ ЖИВОТНЫХ) ).
Практическое значение имеют исследования, проводимые на соматических клетках растений, животных и человека. Селекцией клеток растений - продуцентов лекарственных алкалоидов (руты душистой, раувольфии), в сочетании с мутагенезом содержание этих алкалоидов в клеточной массе повышено в 10-20 раз. Селекцией клеток на питательных средах и последующей регенерацией целых растений из клеточного каллуса выведены сорта ряда возделываемых растений, устойчивые к различным гербицидам и засолению почвы. Гибридизацией соматических клеток разных видов и родов растений, половая гибридизация которых невозможна или очень затруднена, и последующей регенерацией из клеточного каллуса созданы разные гибридные формы (капуста - турнепс, культурный картофель - дикие его виды и т. п.).
Другое важное достижение генетики соматических клеток животных - создание гибридом (см. ГИБРИДОМА) , на основе которых получают моноклональные антитела, служащие для создания высокоспецифических вакцин, а также для выделения необходимого фермента из смеси ферментов.
Весьма перспективны для практики еще два молекулярно-генетических направления - сайт-специфичный мутагенез и создание антисмысловых РНК. Сайт-специфичный мутагенез (индукция мутаций определенного выделенного рестриктазами гена или его комплементарной ДНК, и затем включение мутировавшего гена в геном для замены им его немутантного аллеля) впервые позволил индуцировать желательные, а не случайные генные мутации, и уже успешно применяется для получения направленных генных мутаций у бактерий и дрожжей.
Антисмысловые РНК, возможность получения которых впервые была показана в 1981 работающим в США японским иммунологом Д. Томизавой, могут использоваться для целенаправленного регулирования уровня синтеза определенных белков, а также для направленного ингибирования онкогенов и вирусных геномов. Исследования, проведенные по этим новым генетическим направлениям, были нацелены преимущественно на решение прикладных задач. Вместе с тем они внесли фундаментальный вклад в представления об организации генома, структуре и функциях генов, взаимоотношениях генов ядра и клеточных органелл и др.
Основные задачи генетики
Генетические исследования преследуют цели двоякого рода: познание закономерностей наследственности и изменчивости и изыскание путей практического использования этих закономерностей. То и другое тесно связано: решение практических задач основывается на заключениях, полученных при изучении фундаментальных генетических проблем и в то же время доставляет фактические данные, важные для расширения и углубления теоретических представлений.
От поколения к поколению передается (хотя иногда и в несколько искаженном виде) информация о всех многообразных морфологических, физиологических и биохимических признаках, которые должны реализоваться у потомков. Исходя из такого кибернетического характера генетических процессов, удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой:
Во-первых, проблема хранения генетической информации. Изучается, в каких материальных структурах клетки заключена генетическая информация и как она там закодирована (см. Генетический код (см. КОД ГЕНЕТИЧЕСКИЙ) ).
Во-вторых, проблема передачи генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению.
В-третьих, проблема реализации генетической информации. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно.
В-четвертых, проблема изменения генетической информации. Изучаются типы, причины и механизмы этих изменений.
Заключения, полученные при изучении фундаментальных проблем наследственности и изменчивости, служат основой решения стоящих перед генетикой прикладных задач.
Достижения генетики используются для выбора типов скрещиваний, наилучшим образом влияющих на генотипическую структуру (расщепление) у потомков, для выбора наиболее эффективных способов отбора, для регуляции развития наследственных признаков, управления мутационным процессом, направленного изменения генома организма с помощью генетической инженерии и сайт-специфичного мутагенеза. Знание того, как разные способы отбора влияют на генотипическую структуру исходной популяции (породу, сорт), позволяет использовать те приемы отбора, которые наиболее быстро изменят эту структуру в желаемую сторону. Понимание путей реализации генетической информации в ходе онтогенеза и влияния, оказываемого на эти процессы окружающей средой, помогают подбирать условия, способствующие наиболее полному проявлению у данного организма ценных признаков и «подавлению» нежелательных. Это имеет важное значение для повышения продуктивности домашних животных, культурных растений и промышленных микроорганизмов, а также для медицины, так как позволяет предупреждать проявление ряда наследственных болезней человека.
Исследование физических и химических мутагенов и механизма их действия делает возможным искусственно получать множество наследственно измененных форм, что способствует созданию улучшенных штаммов полезных микроорганизмов и сортов культурных растений. Познание закономерностей мутационного процесса необходимо для разработки мер по защите генома человека и животных от повреждений физическими (гл. обр. радиацией) и химическими мутагенами.
Успех любых генетических исследований определяется не только знанием общих законов наследственности и изменчивости, но и знанием частной генетики организмов, с которыми ведется работа. Хотя основные законы генетики универсальны, они имеют у разных организмов и особенности, обусловленные различиями, например, в биологии размножения и строении генетического аппарата. Кроме того, для практических целей необходимо знать, какие гены участвуют в определении признаков данного организма. Поэтому изучение генетики конкретных признаков организма представляет собой обязательный элемент прикладных исследований.
Основные разделы генетики
Современная генетика представлена множеством разделов, представляющих как теоретический, так и практический интерес. Среди разделов общей, или «классической», генетики основными являются: генетический анализ, основы хромосомной теории наследственности, цитогенетика, цитоплазматическая (внеядерная) наследственность, мутации, модификации. Интенсивно развиваются молекулярная генетика, генетика онтогенеза (феногенетика), популяционная генетика (генетическое строение популяций, роль генетических факторов в микроэволюции), эволюционная генетика (роль генетических факторов в видообразовании и макроэволюции), генетическая инженерия, генетика соматических клеток, иммуногенетика, частная генетика - генетика бактерий, генетика вирусов, генетика животных, генетика растений, генетика человека, медицинская генетика и мн. др. Новейшая отрасль генетики - геномика - изучает процессы становления и эволюции геномов.
Влияние генетики на другие отрасли биологии
Генетика занимает центральное место в современной биологии, изучая явления наследственности и изменчивости, в большей степени определяющие все главные свойства живых существ. Универсальность генетического материала и генетического кода лежит в основе единства всего живого, а многообразие форм жизни есть результат особенностей его реализации в ходе индивидуального и исторического развития живых существ. Достижения генетики входят важной составной частью почти во все современные биологические дисциплины. Синтетическая теория эволюции представляет собою теснейшее сочетание дарвинизма и генетики. То же можно сказать о современной биохимии, основные положения которой о том, как контролируется синтез главнейших компонентов живой материи - белков и нуклеиновых кислот, основаны на достижениях молекулярной генетики. Цитология главное внимание уделяет строению, репродукции и функционированию хромосом, пластид и митохондрий, т. е. элементам, в которых записана генетическая информация. Систематика животных, растений и микроорганизмов все шире пользуется сравнением генов, кодирующих ферменты и другие белки, а также прямым сопоставлением нуклеотидных последовательностей хромосом для установления степени родства таксонов и выяснения их филогении. Разные физиологические процессы растений и животных исследуются на генетических моделях; в частности, при исследованиях физиологии мозга и нервной системы пользуются специальными генетическими методами, линиями дрозофилы и лабораторных млекопитающих. Современная иммунология целиком построена на генетических данных о механизме синтеза антител. Достижения генетики, в той или иной мере, часто очень значительной, входят составной частью в вирусологию, микробиологию, эмбриологию. С полным правом можно сказать, что современная генетика занимает центральное место среди биологических дисциплин.

- (от греч. genesis происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. В её основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании разл. сортов гороха (1865), а также… … Биологический энциклопедический словарь

  • ВВЕДЕНИЕ В ГЕНЕТИКУ

      Генетика – наука о наследственности и изменчивости. Предмет, объекты и задачи генетики

      Генетическая информация; её свойства

      Разделы генетики. Генетика – фундамент современной биологии

      Методы генетики

      Краткая история генетики. Особенности развития отечественной генетики

    1. Генетика – наука о наследственности и изменчивости.

    Предмет, объекты и задачи генетики

    Способность к воспроизведению с изменением – это одно из основных свойств биологических систем. Принцип Франческо Реди – «подобное порождает подобное» – проявляется на всех уровнях организации жизни:

    Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими; это наука, изучающая наследственность и изменчивость признаков.

    Понятия «наследственность» и «изменчивость» неразрывно связаны между собой.

    Изменчивость – это…

    1) существование признаков в различных формах (вариантах);

    2) появление различий между организмами (частями организма или группами организмов) по отдельным признакам.

    Наследственность – это…

    1) способность организмов порождать себе подобных;

    2) способность организмов передавать (наследовать) свои признаки и качества из поколения в поколение;

    3) сохранение определенных вариантов признаков при смене поколений.

    2. Генетическая информация; её свойства

    Существует множество подходов к определению понятия «информация». Мы будем рассматривать информацию как некоторую программу, при выполнении которой можно получить определенный результат.

    Генетическая информация – это такая наследственная информация, носителем которой является ДНК (у части вирусов – РНК).

    Минимальный набор хромосом и одновременно минимальный объем ДНК определенного биологического вида называется геномом (имен. падеж, ед. число – геном).

    Участок ДНК, который несет информацию о некотором элементарном признаке – фене, называется геном. Многие гены могут существовать в виде двух и более вариантов – аллелей.

    АЛЛЕЛЬ (от греч. allelon - друг друга, взаимно), аллеломорфа, одно из возможных структурных состояний гена. Любое изменение структуры гена в результате мутаций или за счёт внутригенных рекомбинаций у гетерозигот по двум мутантным аллелям приводит к появлению новых аллелей этого гена (число аллелей каждого гена практически неисчислимо).

    Аллели одного гена могут обусловливать существование отличающихся друг от друга форм одного и того же заболевания, например, различные аллели гена, контролирующего синтез бета-цепи гемоглобина, вызывают различные формы анемий.

    Совокупность всех генов (точнее, аллелей) определенного организма называется генотипом (имен. падеж, ед. число – генотип).

    ФЕНОТИП (от греч. phaino - являю, обнаруживаю и typos - отпечаток, форма, образец), особенности строения и жизнедеятельности организма, обусловленные взаимодействием его генотипа с условиями среды.

    Термин “Фенотип” предложен датским биологом В. Иогансеном в 1909 и обозначает совокупность проявления генотипа (общий облик организма), в узком - совокупность отдельных признаков (фенов), контролируемых определенными генами.

    Термин геном (нем. Genom) предложил немецкий ботаник Ганс Винклер в 1920 г. для обозначения минимального набора хромосом. Такое представление о геноме сохраняется и в современной цитогенетике. Однако вскоре было доказано, что в состав хромосом входит ДНК (Фёльген, 1924), а к середине XX в. было установлено, что именно ДНК является носителем наследственной информации (О.Эвери с сотр., 1944; Дж.Уотсон и Ф.Крик, 1953). Поэтому в настоящее время в молекулярной генетике термином геном все чаще обозначают минимальную упорядоченную совокупность всех молекул ДНК в клетке.

    3. Разделы генетики.

    Вся генетика (как и любая наука) подразделяется на фундаментальную и прикладную.

    Фундаментальная генетика изучает общие закономерности наследования признаков у лабораторных, или модельных видов: вирусов (например, Т-чётных фагов), прокариот (например, кишечной палочки), плесневых и дрожжевых грибов, дрозофилы, мышей и некоторых других.

    К фундаментальной генетике относятся следующие разделы:

    – классическая (формальная) генетика,

    – цитогенетика,

    – молекулярная генетика (в т.ч., генетика ферментов и иммуногенетика),

    – генетика мутагенеза (в т. ч., радиационная и химическая генетика),

    – эволюционная генетика,

    – геномика и эпигеномика,

    – генетика индивидуального развития и эпигенетика,

    – генетика поведения,

    – генетика популяций,

    – экологическая генетика (в т.ч., генетическая токсикология),

    – математическая генетика.

    Прикладная генетика разрабатывает рекомендации для применения генетических знаний в селекции, генной инженерии и других разделах биотехнологии, в деле охраны природы. Идеи и методы генетики находят применение во всех областях человеческой деятельности, связанной с живыми организмами. Они имеют большое значение для решения проблем медицины, сельского хозяйства, микробиологической промышленности.

    Генетическая (генная) инженерия – это раздел молекулярной генетики, связанный с целенаправленным созданием in vitro новых комбинаций генетического материала, способного размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

    Генная инженерия возникла в 1972, когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.

    В прикладной генетике в зависимости от объекта исследования выделяют следующие разделы частной генетики:

      Генетика растений: дикорастущих и культурных: (пшеница, рожь, ячмень, кукуруза; яблони, груши, сливы, абрикосы – всего около 150 видов).

      Генетика животных: диких и домашних животных (коров, лошадей, свиней, овец, кур – всего около 20 видов)

      Генетика микроорганизмов (вирусов, прокариот, низших эукариот – десятки видов).

    В особый раздел частной генетики выделяется генетика человека (существует специальный Институт медицинской генетики АМН России)

    4. Методы генетики

    Совокупность методов исследования наследственных свойств организма (его генотипа) называется генетический анализ. В зависимости от задачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях.

    Основу генетического анализа составляет гибридологический анализ, основанный на анализе наследования признаков при скрещиваниях.

    Однако в некоторых случаях метод прямого гибридологического анализа оказывается неприменим. Например, при изучении наследования признаков у человека необходимо учитывать ряд обстоятельств: невозможность планирования скрещиваний, низкая плодовитость, длительный период полового созревания. Поэтому кроме гибридологического анализа, в генетике используется множество других методов.

    5. Краткая история генетики. Особенности развития отечественной генетики

    Явления наследственности и изменчивости признаков были известны с древнейших времен. Сущность этих явлений была сформулирована в виде эмпирических правил: «Яблочко от яблони недалеко падает», «От худого семени не жди доброго племени», «Не в мать, не в отца, а в прохожего молодца» и т.д.

    Натурфилософы античного мира пытались объяснить причины сходства и различия между родителями и их потомками, между братьями и сестрами, механизмы определения пола, причины рождения близнецов. Преемственность поколений описывалась терминами «генус» (род), «геннао» (рождаю), «генетикос» (имеющий отношение к происхождению), «генезис» (происхождение).

    В Новое время в Англии (Т. Найт), Германии (Й. Кёльрейтер), Франции (О. Сажрэ) были разработаны методики постановки опытов по гибридологическому анализу, были открыты явления доминантности и рецессивности, сформулированы представления об элементарных наследуемых признаках. Однако раскрыть механизмы наследственности и изменчивости долгое время не удавалось. Для объяснения феноменов наследственности и изменчивости использовались концепции наследования благоприобретенных признаков, панспермии, изменчивости признаков под прямым влиянием среды и др.

    ЦИТОГЕНЕТИКА. ПРИРОДА ГЕНА. ЭВОЛЮЦИЯ ПРЕДСТАВЛЕНИЙ О ГЕНЕ.

    В основе воспроизведения биологических систем лежит деление клеток.

    В 1831–1833 гг. Р. Браун доказал, что одним из основных компонентов эукариотической клети является ядро.

    В конце XIX в. была установлена ведущая роль ядра в хранении и передаче наследственной информации

    В 1924 г. Фёльген доказал, что в состав хромосом входит ДНК.

    Число хромосом постоянно для каждого вида организмов.

    На этом основании в 1903г. американский цитолог Уильям Сэттон пришел к выводу, что в хромосомах локализованы носители наследственной информации, которые датский генетик Иоганнсен в 1909 г. назвал генами.

    Раздел генетики, изучающий хромосомы как носители наследственной информации, называется цитогенетикой.

    В 1944 г. О. Эйвери, К. Мак-Лауд, М. Мак-Карти доказали, что веществом, ответственным за передачу наследственных детерминант у бактерий, является ДНК. В 1953 г. Дж. Уотсон и Ф. Крик расшифровали структуру молекулы ДНК и раскрыли генетический код, благодаря которому выявлена закономерность механизмов синтеза полипептидов и белков всех живых существ.

    Химический состав и строение молекулы ДНК

    Уотсон и Крик предположили, что молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали.

    Основная структурная единица одной цепи - нуклеотид.

    Принцип комплементарности

    Сцепление между цепями обеспечивается особыми водородными связями между

    аденином и тимином (2 связи)

    гуанином и цитозином (3 связи)

    Для любой последовательности азотистых оснований возможна равная ей по длине комплементарная последовательность, составляющая вторую цепь двойной спирали.

    Конкретная последовательность пар А-Т и Г-Ц не влияет на структуру молекулы ДНК.

    Возможное число различных последовательностей пар оснований в молекуле ДНК практически бесконечно и способно кодировать колоссальное количество информации.

    Правило Э.Чаргаффа- биологический закон, в соответствии с которым в любых молекулах ДНК молярная сумма пуриновых оснований (Аденин + Гуанин) равна сумме пиримидиновых оснований (Цитозин + Тимин).

    Из правила Э.Чаргаффа следует, что нуклеотидный состав ДНК разных видов может варьировать лишь по суммам комплементарных оснований.

    Поскольку цепи ДНК комплементарны, каждая из них при расплетании двойной спирали способна служить матрицей для синтеза новой комплементарной цепи.

    Кариотип – это совокупность метафазных хромосом, характерных для определенного вида организмов.

    Постоянство кариотипа поддерживается с помощью точных механизмов митоза и мейоза.

    Изучение кариотипов и их изменчивости важно для

    здравоохранения (многие генетические заболевания связаны с изменением кариотипа),

    селекции (многие сорта растений различаются по кариотипу)

    экологического биомониторинга (кариотип может изменяться под воздействием экологических факторов).

    Кариотип используется в качестве видовой характеристики (существует особый раздел систематики – кариосистематика).

    Кариотипический критерий является одним из важнейших критериев вида. Сущность этого критерия заключается в том, что все особи данного вида характеризуются определенным кариотипом.

    В понятие «кариотип» включается число хромосом, их размеры, морфология, особенности продольной дифференцировки.

    Число хромосом в геноме называется основным хромосомным числом и обозначается символом х.

    Изучение геномов важно с точки зрения медицины, теории селекционного процесса и теории эволюции.