Наука о генетике человека название. Доминантные и рецессивные признаки у человека. Начальный этап развития молекулярной биологии

Согласно последним исследованиям в человеческом теле находится от 24 000 до 25 000 генов. Гены наследуются от биологических родителей и определяют такие вещи, как цвет кожи, наличие веснушек и скорость загара. Каждый ген вашего тела является сегментом ДНК и подает сигналы клеткам.

Ученые, врачи и диетологи в один голос утверждают, что гены играют важную роль в подверженности кожи различным заболеваниям. Мы постоянно слышим истории о людях с «хорошими» генами, которые могут литрами пить шоколадное молоко и при этом наслаждаться прекрасной кожей. В прошлом я проклинала свои «плохие» гены каждый раз, когда моя кожа покрывалась красной сыпью. Гены важны, и, без сомнения, они оказывают влияние на состояние кожи. Но стоит ли причину видеть только в них?

Исследователи по всему миру заметили, что наша определенная генами биология не в силах угнаться за коренными изменениями в питании, произошедшими на Западе за последнее время. Что это означает для вашего здоровья? Давайте подумаем о питании наших предков. Очевидно, что они проводили большую часть времени в поисках пищи и обустройстве жилья. О полуфабрикатах и газированных напитках никто и понятия не имел, а искусственные красители и ароматизаторы не существовали вовсе. Рацион наших предков зависел от региона проживания, но ученым удалось выявить основные характеристики их питания. Они перекусывали орехами, семенами, фруктами, овощами, охотились на дичь, ловили рыбу, шоколадного печенья в их рационе не было. Конечно, может быть, рацион ваших предков отличался от этого, особенно если они были эскимосами. Древние эскимосы питались морепродуктами и рыбой, поэтому они потребляли больше жира и омега-3 жирных кислот. Зерновые не были неотъемлемой частью их питания.

Какими бы ни были ваши предки, в современном мире вам не нужно собирать орехи и ловить кабанов. Сегодня вы просто идете в магазин и выбираете все необходимое.

Питание современного человека:

    обработанное мясо, например ветчина, салями и сосиски

    молочные продукты (жирное и обезжиренное молоко, сыр и масло)

    белый хлеб, мучные изделия, торты, печенье, рафинированный сахар и сиропы

    рафинированные масла и маргарин

    кофе, чай, алкогольные напитки

    фрукты, овощи, рыба, орехи, крупы и бобовые



Как правило, чем больше полуфабрикатов ест человек, тем меньше он в результате потребляет фруктов и овощей. Признайтесь, что полуфабрикаты - самый удобный вариант ужина в конце рабочего дня, когда вы слишком устали, чтобы готовить. Удобство - важная часть современного общества, но зачастую подобное питание негативно отражается на состоянии кожи.

В Американском журнале клинического питания Лорен Кордэйн и ее коллеги высказали свое мнение о том, что перемены в рационе человека произошли еще десять тысяч лет назад, с зарождением земледелия и животноводства, но последние изменения, связанные с потреблением слишком большого количества обработанной пищи и полуфабрикатов, произошли совсем недавно, чтобы генетика человека могла к ним адаптироваться. Возможно, многие из нас вообще не являются жертвами плохой генетики, просто мы запутываем наши бедные гены, потребляя пищу, которую наши тела не могут распознать.

Многие ученые предполагают, что медленная генетическая адаптация к современному рациону питания может стать причиной возникновения рака, сердечных болезней и акне. Исследования показали, что такое заболевание как акне встречается очень редко или вообще отсутствует в традиционных культурах, где люди едят необработанную пищу.

С возникновением обработки еды появились семь ключевых изменений в рационе человека:

1. Гликемическая нагрузка возросла. Обработанная пища отличается более высоким гликемическим индексом, поднимающим уровень глюкозы в крови. Это может повредить кровеносные сосуды и привести к развитию диабета II типа.

2. Изменилось соотношение жирных кислот. Животные, выращенные в искусственных условиях, не получают достаточной физической нагрузки, поэтому в их мясе практически нет омега-3 жирных кислот, но зато в нем содержится большое количество насыщенных жиров.

3. Изменились пропорции белков, жиров и углеводов. Люди стали потреблять больше насыщенных жиров и рафинированных углеводов.

4. Сократилось количество питательных микроэлементов. В таких прошедших обработку продуктах, как белый хлеб и пшеничная мука, практически нет витаминов и минералов.

5. Изменился кислотно-щелочной баланс. Ставший привычным рацион питания может вызвать метаболический ацидоз (смещение кислотно-щелочного баланса организма в сторону увеличения кислотности), который с возрастом будет лишь возрастать. Слишком большое содержание кислоты в организме пагубно сказывается на здоровье.

6. Изменился натриево-калиевый баланс. Большое содержание соли в продуктах и потребление фруктов и овощей в недостаточном количестве означает, что у большинства из нас наблюдается дефицит калия. Исследователи выяснили, что люди стали потреблять на 400% больше соли, но значительно меньше овощей и фруктов.

7. Сократилось содержание клетчатки. Рафинированные сахара и масла, алкогольные напитки и молочные продукты не содержат клетчатку. Чем меньше в мучных изделиях полезных веществ, тем белее они выглядят.

В настоящее время лишь небольшое число примитивных культур продолжают есть натуральные продукты, не потребляя фастфуд, белую муку и сахар. Изучать такие культуры невероятно интересно, так как они на своем примере демонстрируют зависимость здоровья кожи от питания.

    В современном обществе, где люди потребляют белую муку, молочные продукты и сахар, более 79% подростков страдают от акне.

    Удивительно, но более чем у 40% мужчин и женщин старше 25 лет, проживающих в странах Запада, есть акне.

    Эскимосы, чей рацион состоит из натуральных продуктов, не подвержены акне, однако эскимосы, чье питание приближено к западному, точно так же страдают от этого заболевания.

    Жители японского острова Окинава питаются натуральными продуктами и не страдают акне.

О генах

У вас может быть генетическая предрасположенность к экземе, псориазу, темным кругам под глазами и целлюлиту, но это не означает, что вам придется страдать ими всю жизнь. Здоровое питание и ежедневный правильный образ жизни оказывают влияние на гены. Оказывается, сбалансированный рацион может «выключить» проблемные гены. Ген псориаза может перестать быть активным и просто начать пребывание в спящем состоянии после прохождения программы против этого заболевания.

Если вы страдаете от акне, целлюлита, перхоти, экземы/дерматита, псориаза или розацеа, вам будет приятно узнать о том, что в этой книге есть специальные программы, которые помогут вам избавиться от этих проблем (см. Часть III). Если у вашего ребенка есть кожные заболевания, от которых вы хотите его избавить, обратитесь к Главе 16. Информацию о том, как лечить себорейный дерматит у новорожденных, вы найдете в Главе 14. Кроме того, вы можете незамедлительно обратиться к Части III «Специализированные программы», перед тем как начнете изучать главы Части II «Восемь правил здоровой кожи».

Если же вы страдаете другим кожным заболеванием или у вас отсутствуют явные проблемы (и вы просто хотите предотвратить преждевременное старение), то вам подойдет Часть II - «Восемь правил здоровой кожи». Там вы найдете основные рекомендации, которые следует соблюдать, чтобы стать обладателем красивой кожи.

ПРЕДУПРЕЖДЕНИЕ

Не занимайтесь самодиагностикой! Существует множество кожных заболеваний,в том числе и серьезных, требующих постоянного медицинского наблюдения.

Если вы еще не консультировались с врачом по поводу состояния вашей кожи, сделайте это перед тем, как приступать к Диете для здоровой кожи. Убедитесь в том, что рекомендации подойдут именно вам.

Генетика – это такая наука, которая занимается изучением законов, механизмов изменчивости и наследственности. Существует генетика человека, растений, микроорганизмов, животных, классификация зависит от исследуемого объекта. Генетические исследования играют очень существенную роль в сельском хозяйстве и медицине.

Изначально эта наука была призвана для изучения законов наследственности и видоизменяемости, основой которых служили фенотипические (внешние и внутренние признаки, которые приобретаются в результате индивидуального развития) данные.

На сегодняшний день доподлинно известно, что на самом деле гены существуют и никуда от них не деться. Собственная ДНК есть и у растений, и у человека, и у любого организма.

Название этой науке дал натуралист Уильям Бэтсон в 1906 году. Датский ботаник Вильгельм Йохансен ввел в употребление в 1909 году термин «ген».

Благодаря теории наследственности, которую разработал генетик Томас Хант и его сотрудники, генетика стала развиваться в усиленном темпе. С 1910 по 1913 годы изучая закономерности сцепленного наследования, анализируя результаты скрещивания, ученые составили карты на которых было указано расположение генов, а так же сопоставили группы сцепления с хромосомами.

Когда в 1940 – 1950 годах появились работы, которые смогли доказать главную роль ДНК в наследственности, началось развитие молекулярной генетики. Важным прорывом в этой науке стало то, что ученые смогли расшифровать структуру ДНК, механизм действия белкового биосинтеза, триплетного кода.

На территории России, если не брать во внимание опыты с растениями в XVIII, впервые генетические работы были проведены в начале ХХ века. В основном они проводились в кругу биологов, которые занимались экспериментальной зоологией и ботаникой.

Стремительно развиваться эта наука начала после революции (1917 – 1922) в начале тридцатых годов. В СССР создавалась сеть опытных станций. Лидерами в этом направлении были признаны А. С. Серебровский, Н. К. Кольцов, С. С. Четвериков.

К концу тридцатых среди рядов селекционеров и генетиков стал намечаться раскол, который был связан с деятельностью Т. Д. Лысенко (основатель мичуринской агробиологии).

В сороковых годах, многие сотрудники ЦК ВКП, которые занимались курированием генетических исследований, были арестованы, многие попали под расстрел или умерли в тюрьмах. Среди них был и Н.И. Вавилов (советский ученый, генетик, селекционер).

В 1948 году Лысенко воспользовавшись поддержкой И. В. Сталина, заявил, что генетика является лженаукой. Начался период гонения этой науки, который в дальнейшем получил название лысековщина.

Лисенко получил полный контроль над биологическими отделениями АН СССР, вузовскими кафедрами. Велась усиленная пропаганда «Мичуринской биологии». Люди, которые посвятили свою жизнь генетике, вынуждены были оставлять научную деятельность или радикально менять профиль работы.

Лишь к середине шестидесятых годов началось постепенное восстановление генетики как науки.

Современная генетика является и спасением, и самым страшным оружием массового уничтожения. Польза генетических исследований для медицины огромна, но вот употребление в пищу трансгенных продуктов питания уже негативно сказываются на здоровье многих людей.

Исследования на подопытных крысах показали, что питание генномодифицированными продуктами приводит к онкологическим заболеваниям и негативно сказывается на иммунной системе животных.

Природа, так или иначе, отсекает все лишнее.

(греч. γεννώ - порождать) - это наука о генах, наследственность и вариативность организмов.

Генетика - наука о наследственности и изменчивости организмов и организацию наследственного материала. Через универсальность генетического кода генетика лежит в основе изучения всех форм жизни от вирусов до человека.

Происхождение термина

Слово «генетика» был впервые предложен для того, чтобы описать знания о наследственности и изменчивости выдающимся Британским ученым Уильямом Батесон (William Bateson) в личном письме Адама Седжвика Adam Sedgwick (18 апреля 1905). Впервые Батесон употребил слово «генетика» публично на Третьей международной конференции по гибридизации растений (Лондон, Англия) в 1906.

Задача генетики

Основной задачей генетики является разработка методов управления наследственностью и изменчивостью в целях получения необходимых человечеству форм организмов, регуляции формирования их естественных и искусственных популяций, изучение природы генетических болезней, решение проблем устойчивости природных и искусственных популяций видов.

Генетика представляет теоретический фундамент современной биологической науки.

Направления исследований

Основные направления исследований:

Генетика человека.
Генетика растений.
Генетика животных.
Генетика микроорганизмов.
Генетика индивидуального развития.
Молекулярно-генетические механизмы.
Цитогенетические механизмы.
Генетика адаптационных процессов.
Генетика популяций.
Эволюционная генетика.
Генетика соматических клеток и клеточных популяций.
Разработка новых методов генетики.
Генетическая инженерия.
Наследственность и изменчивость - основы генетики

Начальные знания по генетике связанные с такими процессами, как одомашнивание и скрещивание животных и растений еще в древние времена. Сегодня методы генетики позволяют изучать свойства конкретных генов и анализировать связи между различными генами. Обычно в организме генетическая информация хранится в виде хромосом, которые, в свою очередь состоят из белков и носителей генетической информации - молекул ДНК.

В генах закодирована информация, необходимая для синтеза аминокислотной последовательности белков. Белки же играют важнейшую роль в формировании фенотипа, или, другими словами, белки определяют, каким будет физическое состояние, общий вид организма. В диплоидных организмах доминантные аллели на одной хромосоме будут маскировать экспрессию рецессивных генов на другой (гомологичные) хромосоме. Единственная возможность проявиться рецессивной аллели - гомозиготное состояние (когда обе копии гена рецессивные и доминантного гена нет в конкретно взятой личности. Кодоминантнисть - это такое свойство генов, когда обе черты доминантные одновременно, и оба качества в этом случае будут присутствовать в фенотипе.

Фраза «закодировать» довольно часто употребляется, чтобы обозначить информацию, содержащуюся в генах, и необходима для определенной структуры белка: «гены кодируют белки». Простейшая концепция - «один ген - один полипептид (один белок)». Но один ген может кодировать и большое количество различных полипептидов в зависимости от регуляции его транскрипции (альтернативный сплайсинг). Гены кодируют нуклеотидную последовательность мессенджер-РНК, или мРНК, транспортных РНК (тРНК) и рибосомальных РНК (рРНК). Все эти виды РНК необходимые для синтеза белков.

Гены влияют на внешность всех организмов, в том числе и людей, а также и на поведение. На эти характеристики также влияют условия внешней среды и другие разные факторы. Идентичные генетически близнецы, которые по сути являются «клонами» вследствие раннего разделения эмбриона, имеют одинаковую ДНК, но разные черты характера, различные отпечатки пальцев и т.д. Генетически идентичные растения накапливают различные по размеру и насичнистю жирные кислоты в зависимости от температуры внешней среды.

История

Зарождение генетики можно проследить еще в доисторические времена. Уже на Вавилонских глиняных плитках указывались возможные черты при скрещивании лошадей. Но основы современных представлений о механизмах наследственности были заложены только в середине 19 века.

Работы Грегора Менделя

В 1865 году монах Грегор Мендель изучал горох гибридизицию растений в августинский монастырь в Брюнне (Брно, теперь на территории Чехии). Исследователь обнародовал свои результаты на заседании местного общества ученых. Работа "Опыты над растительными гибридами» была опубликована в 1866 году. Сформулированы закономерности наследования позже получили название Законы Менделя. При жизни автора эти работы были малоизвестны, воспринимались весьма критически. Результаты исследований другого растения, «Ночной красавицы», противоречили на первый взгляд выводам Менделя, и этим весьма охотно пользовались критики.

Классическая генетика

В начале 20 века работы Менделя обратили на себя внимание в связи с исследованиями Карла Корреса, Эриха фон Чермака и Гуго де Фриза в сфере гибридизиции растений. Они подтвердили основные выводы о независимом наследования признаков и о численных соотношение о расщеплении признаков у потомков.

Вскоре английский натуралист Уильям Бэтсон предложил название новой научной дисциплины - Генетика. В 1909 году ботаник из Дании предложил слово ген.

Важным достижением является также Хромосомная теория наследственности Томаса Ганта Моргана и его учеников. Эти авторы работали с дрозофилы (Drosophila melanogaster). Изучение закономерностей стиснутые наследования позволило путем анализа результатов скрещивания составить карты расположения генов в «группах сцепления», а также сопоставить группы сцепления с хромосомами (одна тысяча девятьсот десять-+1913 года).

Молекулярная генетика

Эпоха молекулярной генетики начинается в +1940 - 1950 годах. В то время была доказана роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, создание теории о триплетнисть генетического кода, описание механизма биосинтеза белков, открытие рестриктаз и сиквенса (установление последовательности нуклеотидов) ДНК.

В СССР с 1930-х до 1960-х генетика считалась запретной наукой.


Генетика – это биологическая наука о наследственности и изменчивости организмов и методах управления ими.

Генетика по праву может считаться одной из самых важных областей биологии. Она является научной основой для разработки практических методов селекции, т.е. создания новых пород животных, видов растений, культур микроорганизмов с нужными человеку признаками.

На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Элементарными дискретными единицами наследственности и изменчивости являются гены.

Отцом генетики принято считать чешского монаха Грегора Менделя. Он был учителем физики и естествознания в обычной средней школе, а всё своё свободное время отдавал выращиванию растений в саду монастыря. Мендель занимался этим не из гастрономических интересов, а для изучения закономерностей наследования признаков. Опыты по гибридизации растений проводились и до Менделя, но никто из его предшественников не делал попыток как-то проанализировать свои результаты.

Мендель взял семена гороха с пурпурными цветками и семена сорта, у которого цветки были белые. Когда из них выросли растения и зацвели, он удалил из пурпурного цветка тычинки и перенёс на его пестик пыльцу белого цветка. Через положенное время образовались семена, которые Мендель следующей весной опять посадил на своём огороде. Вскоре взошли новые растения. Результат превзошёл все ожидания: растения оказались с пурпурными цветками, среди них не было ни одного белого. Мендель ни один раз повторял свои опыты, но результат был один и тот же. Итак, гибриды всегда приобретают один из родительских признаков.

Важнейший результат опытов Менделя: в гибридах, полученных от скрещивания растений с разными признаками, не происходит никакого растворения признаков, а один признак (более сильный, или, как назвал его Мендель, доминантный) подавляет другой (более слабый или рецессивный).

Но Мендель не остановился на достигнутом. Он взял и скрестил между собой пурпурные растения гороха, полученные в результате этого опыта. В результате из бутонов появились и пурпурные и белые цветки. Признак белой окраски, исчезнувшей после первого скрещивания, вновь проявил себя. Самым интересным было то, что растений с пурпурными цветками было ровно в 3 раза больше, чем с белыми.

Похожие результаты были получены ещё в четырёх опытах, и во всех случаях отношение доминантных и рецессивных признаков после второго скрещивания составляло в среднем 3:1

Знания, которыми обладал Мендель, были ничтожны, но сделанные им выводы намного опережали свой век. Мендель высказал предположение, которое вскоре стало самым важным из открытых им законов. Он приходит к мысли, что половые клетки (гаметы) несут только по одному задатку каждого из признаков и чисты от других задатков этого же признака. Этот закон получил название закона чистоты гамет, который не потерял своего значения даже сейчас. Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

а) ген как единица рекомбинации.

На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

б) ген как единица мутирования.

В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

в) ген как единица функции.

Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

Но как часто бывает в науке, исследования, которые могли означать рождение нового направления в биологии, были забыты на несколько десятилетий. Настоящая история генетики началась в 1900 году, когда закономерности, обнаруженные ещё Менделем, были снова «открыты» учёными. Три ботаника, голландец Гуго Де Фриз, немец К. Корренс и австриец К. Чермак, занимались изучением закономерностей наследования признаков при скрещивании.

Де Фриз исследовал энотеру, мак и дурман и открыл закон расщепления признаков у гибридов. Корренс открыл тот же закон расщепления, но только на кукурузе, а Чермак - на горохе. Затем, учёные решили изучать мировую литературу по этим вопросам и натолкнулись на исследования Менделя. Оказалось, что ничего нового они не открыли, более того, выводы Менделя были глубже их собственных.

Слава Менделя распространилась моментально. Во всём мире сразу же нашлось множество последователей, которые повторили его опыт на различных объектах. В научном обиходе появился даже особый термин – «менделирующие признаки», - то есть признаки, подчиняющиеся законам Менделя.

Генетика как наука решает следующие задачи: изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и её материальные носители; анализирует способы передачи наследственной информации от одного поколения клеток и организмов к другому; выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на них условий среды обитания; изучает закономерности и механизмы изменчивости и её роль в эволюционном процессе; изыскивает способы исправления повреждённой генетической информации.

Для решения задач используются разные методы исследования.

1. Метод гибридологического анализа. Он позволяет выявлять закономерности наследования отдельных признаков при половом размножении организмов.

2. Цитогенетический метод позволяет изучать кариотип клеток организма и выявлять геномные и хромосомные мутации.

3. Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях.

4. Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.

В сегодняшний век интеграции очень сложно определить границы практически любой науки. Это касается в том числе и генетики. Мы, конечно, можем использовать заштампованное «наука о наследственности и изменчивости » но это не передает всей сути и масштаба этой дисциплины. При том, что генетика присутствует везде – медицине, истории, криминалистике и даже спорте. А что уж говорить о современной биологии.

Однако еще относительно недавно эта молодая наука была чуть ли не самой обособленной областью биологической науки. И лишь в последней трети прошлого века начался её бурный прогресс.

Как генетика стала всеобъемлющей

Особенностью генетики всегда являлась её синтетическая методология, отличающая её от аналитической методологии остальных направлений биологии. Так, исследуя объект своего изучения, она не делила его на части, а косвенно, наблюдая за целым (соотношение признаков при скрещиваниях) и основываясь на математике, изучала его. Подтверждением же верности её выводов были живые организмы с предсказанными признаками. И как же обособленная наука заняла, возможно, центральное место в современной биологии?

Начиная с 50-х годов ХХ века бурно развивалась другая новая наука - молекулярная биология. Аналитическая наука изначально совершено противоположна генетике. Однако предметы этих двух дисциплин во многом пересекались: они обе занимались изучением передачи и реализации наследственной информации, однако двигались они с противоположных сторон. Генетика, если можно так сказать, «снаружи», молекулярная биология - «изнутри».

И наконец в конце ХХ века генетика и молекулярная биология «встретились», и умозрительные объекты генетических исследований обрели конкретную физико-химическую форму, а молекулярная биология стала синтетической наукой. И именно с этого момента до неразличимости стерлись границы генетики как науки – было невозможно определить, где кончается молекулярная биология или начинается генетика. А для обозначения новой зародившейся синтетической науки появилось название «молекулярная генетика».

А где же классическая генетика?

Титулом «классическая генетика» стали называть генетику домолекулярного периода вместе со всеми её подходами, основанными на теории вероятности и скрещиваниях. Но вместе с этим титулом её отправили в «почетную отставку». Классическая генетика – это наука, в которой не совершается больше открытий, но крайне необходимая для понимания основных закономерностей наследственности и изменчивости, без понимания которых многие области научного знания не достигли бы тех высот, которые им уже покорились.

Когда зародилась генетика?

Принято говорить, что генетика зародилась, когда чешский монах-августинец Грегор Мендель провел свои опыты на горохе. Стоит отметить что научное сообщество того периода не придало значения работам Менделя, и признание они получили спустя не один десяток лет. Но вопросами наследственности и изменчивости ученые занимались и до него, но о их работах вспоминают очень редко.

Так еще в XVIII веке ботаники начали заниматься экспериментальным изучением наследования признаков растений. Стоит упомянуть Йозефа Готлиба Кельрейтера, с 1756 по 1761 г.г., работавшего в Академии наук в Санкт-Петербурге. Именно там он провел первые опыты по искусственной гибридизации растений, результаты 136 были опубликованы.

В опытах с дурманом, табаком и гвоздиками Кельрейтор установил равноправие "матери"и "отца" при передаче признаков потомкам, а также доказал существование пола у растений. Но самым важным вкладом его в науку стал новый метод изучения наследственности - метод искусственной гибридизации. Используя его, французы Огюстен Сажрэ и Шарль Виктор Ноден в середине XIX в., открыли явление доминантности. Все накопленные факты требовали своего осмысления. Именно в осмысление этих фактов и заключается главная залуга Грегора Менделя.

Современная генетика

Современная генетика уже очень далеко шагнула от классического учения Менделя и приобретает все большее значение в сферах медицины, биологии, сельского хозяйства и животноводства. Современная генетика - это прежде всего молекулярная генетика. На ее основе производится селекция полезных микроорганизмов, растений и животных. Генетически модифицированные организмы обладают полезными свойствами, не характерными для их родственников из "дикой" природы. Например, листья генетически модифицированного картофеля являются несъедобными для колорадского жука - злейшего врага картошки и тех, кто ее выращивает. Количество генетически модифицированных продуктов, потребляемых человечеством, растет с каждым годом.

Учитывая тот факт, что огромное количество заболеваний человека являются генетически обусловленными, невозможно переоценить значение генетики для медицины. После того, как в начале 21 века был расшифрован геном человека, методы профилактики наследственных патологий и борьбы с негативным воздействием генов становятся все эффективнее. Например, вероятность и риск развития хронических заболеваний может быть предсказан задолго до рождения ребенка, также появляются методы, позволяющие свести этот риск к минимуму.

Если Вам нужно разобраться с решением задач или по генетике в короткий срок - не стесняйтесь обращаться к нашим авторам. Мы поможем решить любой вопрос с учебой, даже если ситуация кажется безнадежной!