Общая формула кислородсодержащих. Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров. Способы получения карбоновых кислот

Кислород придает органическим веществам целый комплекс характерных свойств.

Кислород двухвалентен, имеет две валентные электронные пары и характеризуется высокой электроотрицателыюстью (х = 3,5). Между атомами углерода и кислорода образуются прочные химические связи, что видно уже на примере молекул С0 2 . Одинарная связь С-0 (£ св = 344 кДж/моль) почти так же прочна, как связь С-С (Е са = 348 кДж/моль), а двойная связь С=0 (Е св = 708 кДж/моль) существенно прочнее, чем связь С=С (Е св = = 620 кДж/моль). Поэтому в молекулах органических веществ обычны превращения, ведущие к образованию двойных связей С=0. По этой же причине неустойчива угольная кислота:

Гидроксогруппа, находящаяся при двойной связи, превращается в окси- группу (см. выше).

Кислород придаст полярность молекулам органических веществ. Между молекулами усиливается притяжение, значительно повышаются температуры плавления и кипения. При обычных условиях среди кислородсодержащих веществ очень мачо газов - только эфир СН 3 ОСН 3 , формальдегид СН 2 0 и оксид этилена СН 2 СН 2 0.

Кислород способствует образованию водородных связей и как донор, и как акцептор водорода. Водородные связи усиливают притяжение молекул, а в случае достаточно сложных молекул придают им определенную пространственную структуру. Влияние полярности и водородных связей на свойства вещества видно на примере углеводорода, кетона и спирта

Полярностью и образованием водородных связей обусловлена хорошая растворимость кислородсодержащих органических веществ в воде.

Кислород в той или иной мере придает органическим веществам кислотные свойства. Кроме класса кислот, свойства которых очевидны из названия, кислотные свойства проявляют фенолы и спирты.

Еще одно общее свойство кислородсодержащих веществ заключается в легкой окисляемости атома углерода, связанного одновременно с кислородом и водородом. Это очевидно из следующих цепочек реакций, которые обрываются при потере углеводом последнего атома водовода:

содержит оксигруппу и считается гетерофункциональной кислотой.

Спирты и простые эфиры

Название целого класса органических веществ спирты (от лат. "spiritus" - дух) происходит от "действующего начала" смеси, получающейся при сбраживании плодовых соков и других систем, содержащих сахар. Это действующее начало - винный спирт, этанол С2Н5ОН, отделяется от воды и нелетучих растворенных веществ при перегонке смеси. Другое название спирта - алкоголь - арабского происхождения.

Спиртами называются органические соединения, в которых имеется гидроксогруппа, связанная с $р 3 -атомом углерода углеводородного радикала.

Спирты можно также рассматривать как продукты замещения одного атома водорода в воде на углеводородный радикал. Спирты образуют гомологические ряды (табл. 22.5), различающиеся по природе радикалов и числу гидроксогрупп.

Таблица 22.5

Некоторые гомологические ряды спиртов

"Тликолями и глицеринами называются полифункциональные спирты с ОН-группами у соседних атомов углерода.

Гидроксогруппа при ненасыщенных атомах углерода неустойчива, так как превращается в карбонильную группу. Виниловый спирт находится в ничтожном количестве в равновесии с альдегидом:

Есть вещества, в которых гидроксогруппа связана с я/г-атомом углерода ароматического кольца, по они рассматриваются в качестве особого класса соединений - фенолов.

В спиртах возможна изомерия углеродного скелета и положения функциональной группы. У непредельных спиртов возникает также изомерия положения кратной связи и пространственная изомерия. Изомерны спиртам соединения класса простых эфиров. Среди спиртов различают разновидности, называемые первичными, вторичными и третичными спиртами. Это связано с характером углеродного атома, при котором находится функциональная группа.

Пример 22.12. Напишите формулы первичного, вторичного и третичного спиртов с четырьмя атомами углерода.

Решение.

Рассмотрим подробнее гомологический ряд предельных спиртов. Первые 12 членов этого ряда представляют собой жидкости. Метанол, этанол и пропанол смешиваются с водой в любых соотношениях вследствие структурного сходства с водой. Далее по гомологическому ряду растворимость спиртов уменьшается, так как большие (по числу атомов) углеводородные радикалы все сильнее вытесняются из водной среды, подобно углеводородам. Это свойство называют гидрофобностъю. В противоположность радикалу гидроксогруппа притягивается к воде, образуя водородную связь с водой, т.е. проявляет гидрофильность. У высших спиртов (пять и более атомов углерода) проявляется свойство поверхностной активности - способность концентрироваться у поверхности воды за счет выталкивания гидрофобного радикала (рис. 22.3).

Рис. 22.3.

Поверхностно-активные вещества обволакивают капли жидкостей и способствуют образованию устойчивых эмульсий. На этом основано действие моющих средств. Поверхностную активность могут проявлять не только спирты, но и вещества других классов.

Большинство растворимых в воде спиртов ядовиты. К наименее ядовитым относятся этанол и глицерин. Но, как известно, этанол опасен тем, что вызывает привыкание человека к его употреблению. Простейший из спиртов метанол похож на этанол по запаху, но крайне ядовит. Известно множество случаев отравления людей в результате ошибочного приема внутрь

метанола вместо этанола. Этому способствует и огромный объем промышленного применения метанола. Простейший двухатомный спирт этиленгликоль С 2 Н 4 (ОН) 2 в большом количестве используется для производства полимерных волокон. Раствор его применяется в качестве антифриза для охлаждения автомобильных двигателей.

Получение спиртов. Рассмотрим несколько общих способов.

1. Гидролиз галогенпроизводных углеводородов. Реакции проводят в щелочной среде:

Пример 22.13. Напишите реакции получения этиленгликоля методом гидролиза галогенпроизводных, взяв исходное вещество этилен.

2. Присоединение воды к алкенам. Наибольшее значение имеет реакция присоединения воды к этилену с образованием этанола. Реакция достаточно быстро идет при высокой температуре, но при этом равновесие сильно смещается влево и понижается выход спирта. Поэтому необходимо создание высокого давления и применение катализатора, позволяющего достичь той же скорости процесса при более низкой температуре (подобно условиям синтеза аммиака). Этанол получают гидратацией этилена при -300°С и давлении 60-70 атм:

Катализатором служит фосфорная кислота, нанесенная на оксид алюминия.

3. Имеются особые способы получения этанола и метанола. Первый получается широко известным биохимическим способом сбраживания углеводов, которые сначала расщепляются до глюкозы:

Метанол получают синтетическим путем из неорганических веществ:

Реакцию проводят при 200-300°С и давлении 40- 150 атм с применением сложного катализатора Си0/2п0/А1 2 0 3 /Сг 2 0 3 . Важность этого промышленного процесса понятна из того, что ежегодно производится более 14 млн т метанола. Он используется главным образом в органическом синтезе для метилирования органических веществ. Приблизительно в таком же количестве производится и этанол.

Химические свойства спиртов. Спирты могут горсть и окисляться. Смесь этилового спирта с углеводородами иногда используется в качестве горючего для автомобильных двигателей. Окисление спиртов без нарушения углеродной структуры сводится к потере водорода и присоединению атомов кислорода. В промышленных процессах пары спиртов окисляются кислородом. В растворах спирты окисляются перманганатом калия, дихроматом калия и другими окислителями. Из первичного спирта при окислении получается альдегид:

При избытке окислителя альдегид сразу же окисляется до органической кислоты:

Вторичные спирты окисляются до кетонов:

Третичные спирты могут окисляться только в жестких условиях с частичной деструкцией углеродного скелета.

Кислотные свойства. Спирты реагируют с активными металлами с выделением водорода и образованием производных с общим названием алкоксиды (метоксиды, этоксиды и т.д.):

Реакция идет более спокойно, чем аналогичная реакция с водой. Выделяющийся водород не загорается. Этим способом уничтожают остатки натрия после химических экспериментов. Реакция такого рода означает, что спирты проявляют кислотные свойства. Это следствие полярности связи О-Н. Однако спирт практически не реагирует со щелочью. Данный факт позволяет уточнить силу кислотных свойств спиртов: это более слабые кислоты, чем вода. Этоксид натрия практически полностью гидролизуется с образованием раствора спирта и щелочи. Несколько сильнее кислотные свойства гликолей и глицеринов вследствие взаимного индуктивного эффекта ОН-групп.

Многоатомные спирты образуют комплексные соединения с ионами некоторых ^/-элементов. В щелочной среде ион меди замещает сразу два иона водорода в молекуле глицерина с образованием комплекса синего цвета:

При повышении концентрации ионов Н + (для этого добавляют кислоту) равновесие смещается влево и окраска исчезает.

Реакции нуклеофильного замещения гидроксогруппы. Спирты реагируют с хлороводородом и другими галогеноводородами:

Реакция катализируется ионом водорода. Сначала Н + присоединяется к кислороду, акцептируя его электронную пару. В этом проявляются основные свойства спирта:

Образующийся ион неустойчив. Он не может быть выделен из раствора в составе твердой соли подобно иону аммония. Присоединение Н + вызывает дополнительное смещение электронной пары от углерода к кислороду, что облегчает атаку нуклеофильной частицы на углерод:

Связь углерода с хлорид-ионом усиливается по мере разрыва связи углерода с кислородом. Реакция заканчивается освобождением молекулы воды. Однако реакция обратима, и при нейтрализации хлороводорода равновесие смещается влево. Происходит гидролиз.

Гидроксогруппа в спиртах замещается также в реакциях с кислородсодержащими кислотами с образованием эфиров. Глицерин с азотной кислотой образует нитроглицерин , применяемый как средство, снимающее спазмы сосудов сердца:

Из формулы понятно, что традиционное название вещества неточно, так как фактически это нитрат глицерина - эфир азотной кислоты и глицерина.

При нагревании этанола с серной кислотой одна молекула спирта выступает как нуклеофильный реагент по отношению к другой. В результате реакции образуется простой эфир этоксиэтан:

На схеме выделены некоторые атомы, чтобы легче было проследить их переход в продукты реакции. Одна молекула спирта сначала присоединяет катализатор - ион Н + , а кислородный атом другой молекулы передает электронную пару углероду. После отщепления воды и диссоциации Н 4 получается молекула простого эфира. Эту реакцию называют еще межмолекулярной дегидратацией спирта. Есть также метод получения простых эфиров с разными радикалами:

Простые эфиры более летучие вещества, чем спирты, так как между их молекулами не образуются водородные связи. Этанол кипит при 78°С, а его изомер эфир СН3ОСН3 - при -23,6°С. Простые эфиры не гидролизуются до спиртов при кипячении с растворами щелочей.

Дегидратация спиртов. Спирты могут разлагаться с отщеплением воды так же, как разлагаются галоген производные углеводородов с отщеплением гало- геноводорода. В получении спиртов из алкена и воды (см. выше) присутствует и обратная реакция элиминирования воды. Разница в условиях присоединения и отщепления воды заключается в том, что присоединение идет под давлением при избытке паров воды относительно алкена, а отщепление происходит от отдельно взятого спирта. Такая дегидратация называется внутримолекулярной. Она идет также в смеси спирта с серной кислотой при ~150°С.

Данный видеоурок создан специально для самостоятельного изучения темы "Кислородсодержащие органические вещества". В ходе этого занятия вы сможете узнать о новом виде органических веществ, содержащих в своем составе углерод, водород и кислород. Учитель расскажет о свойствах и составе кислородосодержащих органических веществ.

Тема: Органические вещества

Урок: Кислородсодержащие органические вещества

Свойства кислородсодержащих органических веществ очень разнообразны, и они определяются тем, в состав какой группы атомов входит атом кислорода. Эта группа называется функциональной.

Группу атомов, которая существенным образом определяет свойства органического вещества, называют функциональной группой.

Существует несколько различных кислородсодержащих групп.

Производные углеводородов, в которых один или несколько атомов водорода замещены на функциональную группу, относят к определенному классу органических веществ (Таб. 1).

Таб. 1. Принадлежность вещества к определенному классу определяется функциональной группой

Одноатомные предельные спирты

Рассмотрим отдельных представителей и общие свойства спиртов.

Простейший представитель этого класса органических веществ - метанол, или метиловый спирт. Его формула - СН 3 ОН . Это бесцветная жидкость с характерным спиртовым запахом, хорошо растворимая в воде. Метанол - это очень ядовитое вещество. Несколько капель, принятых внутрь, приводят к слепоте человека, а немного большее его количество - к смерти! Раньше метанол выделяли из продуктов пиролиза древесины, поэтому сохранилось его старое название - древесный спирт. Метиловый спирт широко применяется в промышленности. Из него изготавливают лекарственные препараты, уксусную кислоту, формальдегид. Его применяют также в качестве растворителя лаков и красок.

Не менее распространенным является и второй представитель класса спиртов - этиловый спирт, или этанол. Его формула - С 2 Н 5 ОН . По своим физическим свойствам этанол практически ничем не отличается от метанола. Этиловый спирт широко применяют в медицине, также он входит в состав спиртных напитков. Из этанола получают в органическом синтезе достаточное большое количество органических соединений.

Получение этанола. Основным способом получения этанола является гидратация этилена. Реакция происходит при высокой температуре и давлении, в присутствии катализатора.

СН 2 =СН 2 + Н 2 О → С 2 Н 5 ОН

Реакция взаимодействия веществ с водой называется гидратацией.

Многоатомные спирты

К многоатомным спиртам относятся органические соединения, в молекулах которых содержится несколько гидроксильных групп, соединенных с углеводородным радикалом.

Одним из представителей многоатомных спиртов является глицерин (1,2,3-пропантриол). В состав молекулы глицерина входят три гидроксильных группы, каждая из которых находится у своего атома углерода. Глицерин - это очень гигроскопичное вещество. Он способен поглощать влагу из воздуха. Благодаря такому свойству, глицерин широко используется в косметологии и медицине. Глицерин обладает всеми свойствами спиртов. Представителем двух атомных спиртов является этиленгликоль. Его формулу можно рассматривать, как формулу этана, в которой атомы водорода у каждого атома замещены на гидроксильные группы. Этиленгликоль - это сиропообразная жидкость, сладковатая на вкус. Но она очень ядовита, и ни в коем случае ее нельзя пробовать на вкус! Этиленгликоль используется в качестве антифриза. Одним из общих свойств спиртов является их взаимодействие с активными металлами. В составе гидроксильной группы атом водорода способен замещаться на атом активного металла.

2С 2 Н 5 ОН + 2 Na → 2С 2 Н 5 О Na + H 2

Получается этилат натрия, и выделяется водород. Этилат натрия - солеподобное соединение, которое относится к классу алкоголятов. В силу своих слабых кислотных свойств спирты не взаимодействуют с растворами щелочей.

Карбонильные соединения

Рис. 2. Отдельные представители карбонильных соединений

К карбонильным соединениям относятся альдегиды и кетоны. В составе карбонильных соединений находится карбонильная группа (см. Таб. 1). Простейшим альдегидом является формальдегид. Формальдегид - это газ с резким запахом, чрезвычайно ядовитое вещество! Раствор формальдегида в воде называется формалином и применяется для сохранения биологических препаратов (см. Рис. 2).

Формальдегид широко используют в промышленности для изготовления пластмасс, которые не размягчаются при нагревании.

Простейшим представителем кетонов является ацетон . Это жидкость, которая хорошо растворяется в воде, и в основном его применяют в качестве растворителя. Ацетон обладает очень резким запахом.

Карбоновые кислоты

В составе карбоновых кислот находится карбоксильная группа (см. Рис. 1). Простейшим представителем этого класса является метановая, или муравьиная кислота. Муравьиная кислота содержится в муравьях, в крапиве и хвое ели. Ожог крапивой - это результат раздражающего действия муравьиной кислоты.


Таб. 2.

Наибольшее значение имеет уксусная кислота. Она необходима для синтеза красителей, медикаментов (например, аспирина), сложных эфиров, ацетатного волокна. 3-9%-ный водный раствор уксусной кислоты - уксус, вкусовое и консервирующее средство.

Кроме муравьиной и уксусной карбоновых кислот, существует целый ряд природных карбоновых кислот. К ним относятся лимонная и молочная, щавелевая кислоты. Лимонная кислота содержится в соке лимона, малины, крыжовника, в ягодах рябины и т.д. Широко применяется в пищевой промышленности и медицины. Лимонную и молочную кислоты используют в качестве консервантов. Молочную кислоту получают путем брожения глюкозы. Щавелевая кислота используется для удаления ржавчины и в качестве красителя. Формулы отдельных представителей карбоновых кислот приведены в Таб. 2.

В высших жирных карбоновых кислотах содержится, как правило, 15 и более атомов углерода. Например, стеариновая кислота содержит 18 атомов углерода. Соли высших карбонов кислот натрия и калия называются мылами. Стеарат натрия С 17 Н 35 СОО Na входит в состав твердого мыла.

Между классами кислородсодержащих органических веществ существует генетическая связь.

Подведение итога урока

Вы узнали, что свойства кислородсодержащих органических веществ зависят от того, какая функциональная группа входит в состав их молекул. Функциональная группа определяет принадлежность вещества к определенному классу органических соединений. Между кислородсодержащими классами органических веществ существует генетическая связь.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009.

2. Попель П.П. Химия. 9 класс: Учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С. Кривля. - К.: ИЦ «Академия», 2009. - 248 с.: ил.

3. Габриелян О.С. Химия. 9 класс: Учебник. - М.: Дрофа, 2001. - 224с.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009. - №№ 2-4, 5 (с. 173).

2. Приведите формулы двух гомологов этанола и общую формулу гомологического ряда предельных одноатомных спиртов.

    Органические вещества класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов). Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя ученые … Википедия

    Один из важнейших типов органических соединений. В их состав входит азот. Они содержат в молекуле связь углерод водород и азот углерод. В нефти содержится азотсодержащий гетероцикл пиридин. Азот входит в состав белков,нуклеиновых кислот и… … Википедия

    Германийорганические соединения металлоорганические соединения содержащие связь «германий углерод». Иногда ими называются любые органические соединения, содержащие германий. Первое германоорганическое соединение тетраэтилгерман, было… … Википедия

    Кремнийорганические соединения соединения, в молекулах которых имеется непосредственная связь кремний углерод. Кремнийорганические соединения иногда называют силиконами, от латинского названия кремния силициум. Кремнийорганические соединения… … Википедия

    Органические соединения, органические вещества класс химических соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Содержание 1 История 2 Класси … Википедия

    Металлорганические соединения (МОС) органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода. Содержание 1 Типы металлоорганических соединений 2 … Википедия

    Галогенорганические соединения органические вещества, содержащие хотя бы одну связь C Hal углерод галоген. Галогенорганические соединения, в зависимости от природы галогена, подразделяют на: Фторорганические соединения;… … Википедия

    Металлоорганические соединения(МОС) органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода. Содержание 1 Типы металлоорганических соединений 2 Способы получения … Википедия

    Органические соединения, в которых присутствует связь олово углерод, могут содержать как двухвалентное, итак и четырёхвалентное олово. Содержание 1 Методы синтеза 2 Типы 3 … Википедия

    - (гетероциклы) органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее… … Википедия

Фенолы

Фенолами называются производные ароматических углеводородов, молекулы которых содержат одну или несколько гидроксильных групп, непосредственно соединенных с бензольным кольцом.

Простейший представитель этого класса С 6 Н 5 ОН – фенол.

Строение фенола. Одна из двух неподеленных электронных пар атома кислорода втягивается в - электронную систему бензольного кольца. Это приводит к двум эффектам: а) увеличивается электронная плотность в бензольном кольце, причем максимумы электронной плотности находятся в орто – и пара – положениях по отношению к группе ОН;

б) электронная плотность на атоме кислорода напротив, уменьшается, что приводит к ослаблению связи О-Н. Первый эффект проявляется в высокой активности фенола в реакциях электрофильного замещения, а второй – в повышенной кислотности фенола по сравнению с предельными спиртами.

Монозамещенные производные фенола, например метилфенол (крезол), могут существовать в виде трех структурных изомеров орто - , мета - , пара - крезолов:

ОН ОН ОН

о – крезол м – крезол п – крезол

Получение . Фенолы и крезолы содержатся в каменноугольной смоле, а также в нефти. Кроме того, образуются при крекинге нефти.

В промышленности фенол получают:

1) из галогенбензолов . При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол: С 6 Н 5 Сl + 2NaOH → С 6 Н 5 ONa + NaCl + H 2 O;

С 6 Н 5 Сl + H 2 SO 4 → С 6 Н 5 OH + NaHSO 4 ;

2) при каталитическом окислении изопропилбензола (кумола) кислородом воздуха, при этом образуются фенол и ацетон.

СН 3 ―СН―СН 3 ОН

О 2 + СН 3 ―С―СН 3 .

Это основной промышленный способ получения фенола.

3)фенол получают из ароматических сульфокислот . Реакция проводится при сплавлении сульфокислот со щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов.

SO 3 H ONa

3NaOH → + Na 2 SO 3 + 2H 2 O.

феноксид натрия

Физические свойства . Простейшие фенолы – вязкие жидкости или низкоплавкие твердые вещества с характерным карболовым запахом. Фенол растворим в воде (особенно в горячей), другие фенолы – мало растворимы. Большинство фенолов – бесцветные вещества, однако при хранении на воздухе темнеют за счет продуктов окисления.

Химические свойства .

1. Кислотность фенола выше, чем у предельных спиртов; он реагирует как со щелочными металлами

2С 6 Н 5 ОН + 2Na → 2С 6 Н 5 ОNa + Н 2 ,

так и с их гидроксидами:

С 6 Н 5 ОН + NaОН → С 6 Н 5 ОNa + Н 2 О.

Фенол, однако, является очень слабой кислотой. При пропускании через раствор фенолятов углекислого или сернистого газов выделяется фенол. Это доказывает, что фенол – более слабая кислота, чем угольная или сернистая.

С 6 Н 5 ОNa + СО 2 + Н 2 О → С 6 Н 5 ОН + NaНСО 3 .

2. Образование сложных эфиров . Они образуются при действии на фенол хлорангидридов карбоновых кислот (а не самих кислот, как в случае спиртов). O

С 6 Н 5 ОН + СН 3 СОСl → C 6 H 5 ―C―CH 3 + HCl.

фенилацетат

3. Образование простых эфиров происходит при взаимодействии фенола с галогеналканами.

С 6 Н 5 ОН + С 2 Н 5 Сl → С 6 Н 5 ―О― С 2 Н 5.

фенилэтиловый эфир

5. Реакции электрофильного замещения с фенолом протекают значительно легче, чем с ароматическими углеводородами. Поскольку ОН группа является ориентантом I рода, то в молекуле фенола увеличивается реакционная способность бензольного кольца в орто – и пара – положениях.

а) бромирование. При действии бромной воды на фенол три атома водорода замещаются на бром и образуется осадок 2, 4, 6 – трибромфенола: ОН

ОН Br Br

3Вr 2 → + 3HBr.

Это качественная реакция на фенол.

б) нитрование. ОН

ОН

В материале рассмотрена класиификация кислородсодержащих органических веществ. Разобрны вопросы гомологии, изомерии и номенклатуры веществ. Презнтация насыщена заданиями по данным вопросам. Закрепление материала предлагается в тестового упражнения на соответствие.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи урока: познакомиться с классификацией кислородсодержащих органических соединений; построение гомологических рядов веществ; выявление возможных видов изомерии; построение структурных формул изомеров веществ, номенклатура веществ.

Классификация веществ С х Н у О z карбоновые кислоты альдегиды кетоны эфиры спирты фенолы одно- атомные -много R – OH R–(OH) n простые сложные OH = R – C - O OH = R – C - O H - овая кислота -аль R – C – R || O -он R – O – R = R – C - O O – R - ол - n ол

Гомологический ряд СН 3 – ОН С 2 Н 5 – ОН С 3 Н 7 – ОН С 4 Н 9 – ОН С 5 Н 11 – ОН метан ол этан ол пропан ол-1 бутан ол-1 пентан ол-1 Спирты С n H 2n+2 O

Карбоновые кислоты = Н – C - O OH = СН 3 – C - O OH = СН 3 – СН 2 – C - O OH метан овая кислота (муравьиная) этан овая кислота (уксусная) пропан овая кислота (пропионовая) С n H 2n O 2

Альдегиды = Н – C - O H = СН 3 – C - O H = СН 3 – СН 2 – C - O H метан аль муравьиный альдегид (формальдегид) этан аль уксусный альдегид (ацетальдегид) пропан аль пропионовый альдегид С n H 2n O

Кетоны СН 3 – C – СН 3 || O СН 3 – СН 2 – C – СН 3 || O СН 3 – СН 2 – СН 2 – C – СН 3 || O пропан он (ацетон) бутан он пентан он-2 С n H 2n O

Простые эфиры СН 3 – О –СН 3 С 2 Н 5 – О –СН 3 С 2 Н 5 – О –С 2 Н 5 С 3 Н 7 – О –С 2 Н 5 С 3 Н 7 – О –С 3 Н 7 диметил овый эфир метиэтил овый эфир диэтил овый эфир этилпропил овый эфир дипропил овый эфир С n H 2n+2 O Вывод: простые эфиры – производные предельных одноатомных спиртов.

Сложные эфиры = Н – C - O O – СН 3 = СН 3 – C - O O – С Н 3 = СН 3 – СН 2 – C - O O – СН 3 метиловый эфир муравьиной кислоты (метил формиат) метиловый эфир уксусной кислоты (метил ацетат) метиловый эфир пропионовой кислоты С n H 2n O 2 Вывод: сложные эфиры – производные карбоновых кислот и спиртов.

спирты эфиры кетоны альдегиды карбоновые кислоты Изомерия и номенклатура изомерия углеродного скелета межклассовая (сложные эфиры) углеродного скелета межклассовая (кетоны) углеродного скелета положения f- группы (-С =О) межклассовая (альдегиды) углеродного скелета положения f- группы (-ОН) межклассовая (простые эфиры) углеродного скелета межклассовая

Составление формул изомеров. Номенклатура веществ. Задание: составьте структурные формулы возможных изомеров для веществ состава С 4 Н 10 О; С 4 Н 8 О 2 ; С 4 Н 8 О. К каким классам они принадлежат? Назовите все вещества по систематической номенклатуре. С 4 Н 10 О С 4 Н 8 О 2 С 4 Н 8 О С n H 2n+2 O С n H 2n O 2 С n H 2n O спирты и простые эфиры карбоновые кислоты и сложные эфиры альдегиды и кетоны

СН 3 – СН 2 – СН – СН 3 | ОН СН 3 | СН 3 – С – СН 3 | ОН СН 3 – О – СН 2 – СН 2 – СН 3 СН 3 – СН 2 – О – СН 2 – СН 3 бутанол-1 2-метилпропанол-1 бутанол-2 2-метилпропанол-2 метилпропиловый эфир диэтиловый эфир I спирты II спирт III спирт

СН 3 – СН 2 – СН 2 – C - O OH = СН 3 – СН – C - O OH | СН3 = СН 3 – СН 2 – C - O O – СН 3 = СН 3 – C - O O – СН 2 – СН 3 бутановая кислота 2-метилпропановая кислота метиловый эфир пропионовой к-ты этиловый эфир уксусной кислоты

СН 3 – СН 2 – СН 2 – C - O H = СН 3 – СН – C - O H | СН3 СН 3 – СН 2 – C – СН 3 || O бутаналь 2-метилпропаналь бутанон-2

Проверь себя! 1. Установите соответствие: общая формула класс вещество R – COOH R – O – R R – COH R – OH R – COOR 1 R – C – R || O сл. эфиры спирты карб. к-ты кетоны альдегиды пр. эфиры а) С 5 Н 11 –ОН б) С 6 Н 13 –СОН в) С 4 Н 9 –О–СН 3 г) С 5 Н 11 –СООН д) СН 3 –СО–СН 3 е) СН 3 –СООС 2 Н 5 2. Назовите вещества по систематической номенклатуре.

Проверь себя! I II III IV V VI 3 6 5 2 1 4 Г В Б А Е Д

Домашнее задание Параграф (17-21) – 1 и 2 части упр. 1,2,4,5 стр. 153-154 2 стр. 174 Урок окончен!