Свет как электромагнитная волна кратко. Свет - электромагнитная волна. Наиболее существенные свойства света как электромагнитной волны

Свет – электромагнитная волна. В конце XVII века возникли две научные гипотезы о природе света - корпускулярная и волновая . Согласно корпускулярной теории, свет представляет собой поток мельчайших световых частиц (корпускул), которые летят с огромной скоростью. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости частиц при переходе из одной среды в другую. Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам. Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта, - корпускулярные. Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» - ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров. Одной из характеристик света является его цвет , который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими. Согласно самым новым измерениям скорость света в вакууме Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

Интерференция света - опыт Юнга. Свет от лампочки со светофильтpом, котоpый создает пpактически монохpоматический свет, пpоходит чеpез две узкие, pядом pасположенные щели, за котоpыми установлен экpан. На экpане будет наблюдаться система светлых и темных полос - полос интеpфеpенции. В данном случае единая световая волна pазбивается на две, идущие от pазличных щелей. Эти две волны когеpентны между собой и пpи наложении дpуг на дpуга дают систему максимумов и минимумов интенсивности света в виде темных и светлых полос соответствующего цвета.

Интерференция света - условия max и min. Условие максимума : Если в оптической разности хода волн укладывается четное число полуволн или целое число волн, то в данной точке экрана наблюдается усиление интенсивности света (max). , где - pазность фаз складываемых волн. Условие минимума: Если в оптической разности хода волн укладывается нечетное число полуволн, то в точке минимум.

Максвеллу создать электромагнитную теорию поля. Он доказал, что в природе должны существовать электромагнитные волны. Максвелл рассчитал скорость распро­странения электромагнитных волн в вакууме и в среде: υ=с/ . где с - скорость их распространения в вакууме, ε и μ -диэлектрическая и магнитная проницаемость среды. Свет - это электромагнитные волны.

Таким образом, волновая теория о при­роде света эволюционировала в электромагнитную теорию света. Согласно этой теории свет - это электромагнитные волны опре­деленного оптического диапазона. Оптическое излучение в пределах длин волн от 760 нм до 380 нм способно непосредственно вызывать зрительное ощущение в человеческом глазе. Следовательно, оно является видимым. Оптическое излуче­ние с λ > 760 нм называется инфракрасным, а с λ < 380 нм - ультрафиолетовым.Как любые электромагнитные волны, световые волны могут быть описаны с помощью вектора напряженности Ё электриче­ского поля и вектора магнитной индукции В магнитного поля волны. Но при действии света на вещество, основное значение имеет электрическая составляющая поля волны, действующая на электроны атомов вещества, поэтому световые волны описывают­ся уравнением:E=E 0 cos(ωt-2πr/λ).Где E 0 -амплитуда напряжонности, ω-циклическая честота, λ-длина волны,r- расстояние до источника света.

Скорость света

Скорость света в вакууме - одна из наиболее важных фи­зических констант..Поскольку скорость рас­пространения света очень ве­лика, свет затрачивает замет­ное время лишь на прохождение очень больших расстояний. Следовательно, для определения скорости света следует определять либо очень малые промежутки времени, либо астрономические расстояния.Впервые скорость света измерил датский астроном Ремер в 1676 г., Первое наблюдение было проведено в то время когда Земля, дви­гаясь вокруг Солнца, находилась ближе всего к Юпитеру. По­вторное наблюдение, проведенное через 6 месяцев, когда Земля удалилась от Юпитера примерно на диаметр своей орбиты, пока­зало, что Ио опоздал появиться из тени Юпитера на 22 мин. Это запаздывание вызвано тем, что свет тратит 22 мин на прохожде­ние расстояния, примерно равное диаметру земной орбиты. Раз­делив это расстояние на время запаздывания, Ремер нашел ско­рость света (215000 км/с). Впоследствии были разработаны другие, более точные методы лабораторных измерений скорости света.

В 1881 г. Майкельсон определил скорость света с помощью вращающейся восьмигранной зеркаль­ной призмы Для своих измерений Майкельсон воспользо­вался двумя горными вершинами: Антонио и Вильсон (в Калифорнии), расстояние между кото­рыми (35,426 км) было тщательно измерено. На вершине горы Вильсон был установлен сильный источник 5, свет от которого, проходя через щель, падал на восьмигранную зеркальную призму А. От­раженный от зеркальной грани призмы свет попадал на вогнутое зеркало В, установленное на вершине горы Антонио. Далее свет падал на зеркало т и, отражаясь от него, падал на другую точку зеркала В, после чего попадал на вторую грань зеркальной приз­мы А и отражался. Отраженный свет улавливался с помощью зрительной трубы С. Вышедший из щели свет мог попасть в зри­тельную трубу только при том условии, если за время распростра­нения света с одной горы на другую и обратно в расположении зеркал ничего не изменилось.


Зеркальная призма А при помощи мотора приводилась во вращение, причем скорость мотора регулировалась так, чтобы че­рез зрительную трубу щель S была видна непрерывно. Это могло быть только при том условии, если за время поворота призмы на 1/8 оборота свет проходил путь, равный двойному расстоянию между вершинами гор. Зная число оборотов зеркала в секунду и пройденный светом путь, Майкельсон нашел, что скорость света в воздухе

Скорость света в различных веществах, как показывают опыты, неодинакова. В воде, например, скорость света около 225000 км/с, в стекле около 200000 км/с.

В современной физике свет описывается либо как электромагнитные волны, либо как фотоны.

2.5.1. Электромагнитные волны

Электромагнитные волны включают в себя комбинацию электрических и магнитных полей. Рассмотрим электрический заряд. Он создает вокруг себя электрическое поле. Если заряд движется, он создает магнитное поле. Было теоретически показано и экспериментально подтверждено, что эти электрические и магнитные поля объединяются и вызывают возмущение, которое распространяется через пространство и называется электромагнитной волной. Эта волна является самораспространяющейся, поскольку изменяющееся электрическое поле вызывает изменение магнитного поля, которое затем вызывает новое изменение электрического поля и т. д. Таким образом, происходит постоянный обмен энергией между электрическим и магнитным полями.

Когда электромагнитная волна сталкивается с материей, ее электрические и магнитные поля заставляют заряженные частицы этой материи колебаться таким же образом, как в исходной волне. Это позволяет энергии передаваться через материал без перемещения самой материи. Все электромагнитные волны обладают следующими свойствами.

Они создаются движущимися зарядами.

Они являются поперечными волнами, в которых электрическое и магнитное поля взаимно перпендикулярны и перпендикулярны направлению распространения волн.

Они не требуют для своего распространения какого-либо материала, но могут распространяться сквозь материал без перемещения вещества.

Они все движутся в свободном пространстве с одинаковой относительной скоростью, которая называется скоростью света.

Количественно поведение электромагнитных волн описывается уравнениями Максвелла, однако их рассмотрение выходит за рамки данной книги, где мы концентрируемся на практических приложениях, а не на отвлеченной теории.

2.5.2. Фотоны

Фотоны рассматриваются как дискретные частицы электромагнитной энергии. Планк предположил, что энергия излучается вспышками, называемыми "квантами", в которых количество энергии пропорционально частоте. Это выражается формулой

где h - постоянная Планка (6,63 х 10 -34 Джоуль/сек.).

Квант света называется фотоном. У фотона есть некоторые свойства частицы, поскольку он дискретен и конечен. Свет, однако, это также и волна, что можно наблюдать в эффектах дифракции и интерференции. Таким образом оказывается, что свет одновременно частица и волна. Это противоречие, поскольку частица конечная и дискретная, тогда как волна бесконечная и непрерывная. Физики рассматривают обе теории как взаимно дополняющие друг друга, но не применяют их одновременно. Этот эффект известен как партикулярно-волновой дуализм света, а обе физические модели равно верны и полезны в описании различных оптических эффектов. Интересно заметить, что в обоих моделях имеются части, не согласующиеся друг с другом.

Свет в виде фотонов или волн движется в свободном пространстве со скоростью примерно 300000 км/с (3 х 10 8 м/с). Многие эффекты можно лучше рассмотреть, представляя свет как лучи, движущиеся по прямым линиям между оптическими компонентами или через них. Лучи изменяются (отражаются, преломляются, рассеиваются и т. д.) на оптических поверхностях утих устройств. Такое оптическое поведение

Большую часть информации об окружающем мире человек воспринимает через органы зрения. Но сами глаза способны видеть лишь один вид энергии - электромагнитную, да и то в очень узком световом диапазоне. Так что такое свет? Какие известные источники видимого излучения использует человек? В чем заключается двойственная природа света? И каковы его основные свойства? Сейчас выясним ответы на эти вопросы.

Свет как электромагнитная волна

Светом считают электромагнитную волну, которую способен видеть глаз человека. Для этого длина этой волны не должна выходить за границы от 380-400 нм до 760-780 нм. После 780 нм начинается инфракрасный диапазон, который человек может ощущать, как тепло, а перед видимым спектром идет ультрафиолетовое излучение. Его способны видеть некоторые насекомые и птицы, а кожа человека может отреагировать на него загаром. Сам видимый диапазон электромагнитного излучения разделен на отрезки, каждый из которых человек воспринимает как свет определенного цвета. К примеру, фиолетовый соответствует длине волны 380-440 нм, зеленый - 500-565 нм, а красный - 625-740 нм. Всего выделяют 7 основных цветов видимого спектра, их можно наблюдать, глядя на радугу. А вот белый свет - это смешение всех цветов спектра.

Источники света

Источником света является нагретое до определенной температуры или возбужденное вещество. На Землю свет поступает с Солнца, других звезд, некоторых разогретых планет, комет и иных небесных тел. На нашей планете источником света может быть огонь - костер, пламя свечи, факела или масляной лампы, а также разогретое вещество. Человек изобрел и искусственные источники видимого излучения, в частности, лампу накаливания, где свет излучает разогретая электротоком вольфрамовая спираль, люминесцентную лампу, в которой светится слой люминофора, возбужденный электроразрядом в наполняющем колбу газе, галогенную лампу, ртутную и другие.

Свойства света

Отражение

Видимое электромагнитное излучение распространяется в вакууме и однородных прозрачных средах прямолинейно со , равной примерно 300 000 км/с. При этом свет имеет множество иных свойств. Например, свет отражается от непрозрачных поверхностей, причем угол падения равен углу отражения. В результате отраженный от предметов свет воспринимается глазом и позволяет видеть эти предметы. Также заметим, что Луна и некоторые планеты - не источники света, а видим их мы потому, что эти небесные тела отражают излучение Солнца.

Преломление

При переходе между двумя средами с разной оптической плотностью свет способен преломляться. Скажем, когда луч переходит из воздуха в воду, из-за разной оптической плотности этих сред меняется скорость и направление движения в них света. Именно поэтому ложка в стакане воды кажется немного переломанной, а камешки на дне озера представляются ближе, чем на самом деле.

Интерференция и дифракция

Волновая природа света проявляется в таких его свойствах, как интерференция и дифракция. Первое свойство заключается в способности нескольких волн складываться в результирующую волну, параметры которой в разных точках заметно усиливаются или ослабевают. Результат интерференции света можно наблюдать в виде игры радужных разводов на мыльных пузырях, масляных пятнах или крыльях насекомых. А дифракция - это способность волны света огибать препятствие и попадать в область его геометрической тени, например, рассеивание света на капельках воды в виде радужных облаков.

Свет как поток частиц

При этом свет имеет не только волновые свойства, а в некоторых случаях ведет себя как поток частиц - фотонов. В частности, закономерности явления фотоэффекта, когда падающий на вещество свет вырывает из него электроны, можно объяснить лишь с точки зрения корпускулярной теории света, представляющей электромагнитное излучение в виде потока фотонов. Однако волновая и фотонная теории света не только не противоречат друг другу, а взаимно дополняют. В научной среде говорят о корпускулярно-волновой двойственности света, которая объясняет, что такое свет, выявляет его свойства как волны и как потока частиц.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой.

Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» — ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров.

Одной из характеристик света является его цвет, который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими.

Скорость света

Согласно самым новым измерениям скорость света в вакууме

Измерения скорости света в различных прозрачных веществах показали, что она всегда меньше, чем в вакууме. Например, в воде скорость света уменьшается в 4/3 раза.

Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

(25)

При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

Рассмотрим основные свойства электромагнитных волн.1. Электромагнитные волны излучаются колеблющимися зарядами.
Наличие ускорения - главное условие излучения электромагнитных волн.
2. Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.
3. Электромагнитная волна является поперечной.

4. Скорость электромагнитных волн в вакууме с=300000 км/с.

5. При переходе из одной среды в другую частота волны не изменяется .
6. Электромагнитные волны могут поглощаться веществом. Это обусловлено (25) резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

7. Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду,преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

Для электромагнитных волн, так же, как и для механических, справедливы свойства дифракции, интерференции, поляризации и другие.