Транзистор автор и год создания. Кто изобрел транзистор. Решение проблем и доработка

1941 года ученые Уильям Шокли, Уолтер Браттейн и Джон Бардин объявили о создании транзистора , а 1947 года изобретение было официальное представлено публике. Именно эту дату принято считать днем изобретения транзистора . Но великий поход в «страну Полупроводников» начался еще в 1833, когда Майкл Фарадей обнаружил, что электропроводность сульфида серебра увеличивается при нагревании. И только через 125 лет в Америке на основе другого полупроводника, германия, была создана микросхема.

Новое изобретение

О первой демонстрации транзистора газета «New York Times» сообщила 1948 года на предпоследней странице: «Вчера Bell Telephone Laboratories впервые продемонстрировала изобретенный ею прибор под названием «транзистор» , его в некоторых случаях можно использовать в области радиотехники вместо электронных ламп. Было также показано его использование в телефонной системе и телевизионном устройстве. В каждом из этих случаев транзистор работал в качестве усилителя, хотя фирма заявляет, что он может применяться и как генератор, способный создавать и передавать радиоволны».

Новость, по мнению редактора, не походила на сенсацию. Публика не проявила поначалу интереса к новому прибору, и Bell пыталась продвинуть новинку, раздавая лицензии на использование транзистора всем желающим. А инвесторы между тем делали миллионные вложения в радиолампы, которые после тридцати лет развития переживали бум, – конец ему положит именно новое изобретение.

Потесненная лампа

До середины ХХ века казалось, что электронная лампа навсегда заняла место в радиоэлектронике. Она работала везде: в радиоприемниках и телевизорах, магнитофонах и радарах. Радиоэлектронная лампа сильно потеснила кристаллический детектор Брауна, оставив ему место только в детекторных приемниках. Удалось ей также составить конкуренцию и кристадину Лосева, – это был прообраз будущих полупроводниковых транзисторов .

Но у лампы был большой недостаток – ограниченный срок службы. Необходимость создания нового элемента с неограниченным временем действия становилась в радиоэлектронике все острее. Но, как не парадоксально, разработка полупроводниковых приборов тормозилась, кроме объективных причин, еще и субъективными – инерцией мышления самих ученых. Достаточно сказать, что лабораторию американской компании «Bell telefon», где проводились исследования со сверхчистым германием, коллеги пренебрежительно называли «хижиной ненужных материалов».

Давние конкуренты

Эксперты, впервые увидев пластинку германия с присоединенными к ней проводниками, заявили: «Такой примитив никогда не сможет заменить лампу». И все же, не обращая внимания на все преграды, 1948 года компания «Bell telefon» впервые публично продемонстрировала твердотельный усилитель – точечный транзистор . Его годом раньше разработали сотрудники Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли.

На вопрос журналиста: «Как вы этого достигли?», Уильям Шокли ответил: «Транзистор создан в результате соединения человеческих усилий, потребностей и обстоятельств».

Название «транзистор» происходит от английского слова TRANsferreSISTance, а окончание слова – «OR« соответствует раннее появившимся радиоэлементам – «термистор и варистор» и дал его Джон Пирс. В основе названия заложен тот факт, что прибором можно управлять путем изменения его сопротивления.

Бардин Шокли и Браттейн в лаборатории Bell, 1948 год

В 1956 году трем американским ученым за это открытие была присуждена Нобелевская премия в области физики. Интересно, что когда Джон Бардин опоздал на пресс-конференцию по поводу присуждения ему этой премии, то войдя в зал, в свое оправдание сказал: «Прошу извинить меня, но я не виноват, так как не мог попасть в гараж: отказал транзистор в электронном замке».

Транзисторы в музыке

Уильям Шокли не остановился на достигнутом и разработал еще несколько новых типов транзисторов . К этим трудам своего сотрудника эксперты компании проявили скепсис. Более дальновидными оказались специалисты японской фирмы «SONY», она приобрела лицензию на эти транзисторы .

Полностью вытеснить радиолампу транзистору пока еще не удалось. Можно, наверное, утверждать, что полупроводниковые приборы и электронные лампы будут сосуществовать еще долго, не заменяя друг друга, а дополняя, и занимать то место в радиоэлектронике, где они дают наибольший эффект.

Не составляет исключение и музыкальная индустрия, так как звучание транзисторов и ламп серьезно отличается друг от друга. Очевидно то, что и варианты применения техники, построенной на столь несхожих компонентах, должны отличаться. Видимо, в каких-то случаях предпочтительней лампа, а в каких-то – транзистор .

При современном развитии электроники существует возможность сделать звук транзисторного прибора теплым, а лампового – достоверным. Такая техника существует, но стоит очень дорого.

Все же есть надежда, что в будущем лампа и транзистор станут жить дружно, дополняя друг друга и радуя потребителей. Отзывы же о комбинированной аппаратуре на сегодня очень обнадеживающие.

Транзистор обновлено: Ноябрь 20, 2017 автором: Елена

Транзистор изготавливается на основе полупроводников. Долгое время их не признавали, используя для создания различных устройств только проводники и диэлектрики. Подобные устройства имели множество недостатков: низкий КПД, высокое энергопотребление и недолговечность. Изучение свойств полупроводников стало переломным моментом в истории электроники.

Электронная проводимость различных веществ

Все вещества по своей способности проводить электрический ток делятся на три большие группы: металлы, диэлектрики и полупроводники. Диэлектрики названы так потому, что практически не способны проводить ток. Металлы обладают лучшей проводимостью благодаря наличию в них свободных электронов, которые хаотически движутся среди атомов. При приложении внешнего электрического поля эти электроны начнут двигаться в сторону положительного потенциала. По металлу пройдет ток.

Полупроводники способны проводить ток хуже металлов, но лучше диэлектриков. В таких веществах существуют основные (электроны) и неосновные (дырки) носители электрического заряда. Что ? Это отсутствие одного электрона на внешней атомной орбитали. Дырка способна перемещаться по материалу. С помощью специальных примесей, донорных или акцепторных, можно существенно увеличивать количество электронов и дырок в исходном веществе. N-полупроводник можно получить, создав избыток электронов, а p-проводник - с помощью избытка дырок.

Диод и транзистор

Диод - это прибор, полученный соединением n- и p-полупроводников. Он сыграл огромную роль в развитии радиолокации в 40 годах прошлого века. Изучением его возможностей активно занималась команда сотрудников американской фирмы Bell во главе с У.Б. Шоккли. Эти люди в 1948 году, присоединив к кристаллу два контакта. На концах кристалла находились крошечные медные острия. Возможности такого прибора совершили настоящую революцию в электронике. Было выяснено, что током, проходящим через второй контакт можно управлять (усиливать или ослаблять его) при помощи входного тока первого контакта. Это было возможно при условии, что кристалл германия намного тоньше, чем медные острия.

Первые транзисторы имели несовершенную конструкцию и довольно слабые характеристики. Несмотря на это, они были гораздо лучше электронных ламп. За это изобретение Шоккли и его команда удостоились Нобелевской премии. Уже в 1955 году появились диффузионные транзисторы, которые по своим характеристикам превосходили германиевые в несколько раз.

3 ноября 1957 года Советский Союз запустил Второй искусственный спутник Земли с первым живым «пассажиром» - собакой Лайкой. Сенсационный успех и секретность проектов до сих пор оставляют «за кадром» выдающиеся достижения специалистов в области радиоэлектронной аппаратуры, чьё участие в космической гонке отечественной литературой практически не рассматривается, что совершенно несправедливо.

О чём речь?

- Где бревно?
- Чёрт его знает, говорят, на спутнике макаку чешет.
Перевод:
- Где капитан Деревянко?
- Не знаю, но, говорят, что работает по закрытому каналу связи и отслеживает американские испытания прототипа торпеды Мk-48.

За время, прошедшее после изобретения транзистора Шокли, Бардином и Браттейном в конце 1940-х и до начала космической эры, транзисторы изменились довольно заметно. Точечные транзисторы были вытеснены плоскостными, плоскостные - сплавными, и так далее, пока их все не вытеснили планарные . Кремниевые транзисторы вытеснили германиевые, хотя и далеко не сразу. Первый кремниевый транзистор сделала в 1954 году компания Texas Instruments , и, забегая вперёд, транзисторы именно этой компании использовали в первых американских спутниках .



Рис. 3 Бардин, Шокли и Браттейн в лаборатории Bell



Рис. 4 Сплавной транзистор. Квадратная пластина - база, с одной стороны к ней приварена бусина эмиттера, с другой - бусина коллектора (из Википедии)

Полупроводниковое производство в СССР началось в 1947 году с линии по производству германиевых детекторов для радиолокации, вывезенной из Германии. Разработками занималась группа под руководством А. В. Красилова в НИИ-160 (ныне - АО «НПП «Исток» им. Шокина). С. Г. Мадоян - выпускница Московского химико-технологического института - в 1948-1949 гг. разработала макет первого точечного германиевого транзистора в СССР , . Первый лабораторный образец работал не больше часа, а затем требовал новой настройки


Рис. 5 Александр Викторович Красилов


Рис. 6 Сусанна Гукасовна Мадоян. 1950 г.


Рис. 7 Вадим Евгеньевич Лашкарёв


Рис. 8 Академик Аксель Иванович Берг

В 1950 году транзисторная тематика появилась в ЦНИИ-108 МО (ныне АО «Центральный научно-исследовательский радиотехнический институт имени академика А. И. Берга»), Физическом институте Академии наук, Ленинградском физико-техническом институте и других организациях. Первые точечные транзисторы изготовлены В.Е. Лашкарёвым в лаборатории при Институте физики АН Украинской ССР. Из-за секретности исследований часто в тот период разные научные группы делали практически одно и то же, получали схожие результаты и делали открытия независимо друг от друга. Такая ситуация продолжалась до ноября 1952 года, когда вышел специальный номер американского журнала «Труды института радиоинженеров» (Proceedings of IRE, ныне Proceedings of IEEE), полностью посвященный транзисторам . В начале 1953 года заместитель министра обороны академик А. И. Берг подготовил письмо в ЦК КПСС о развитии работ по транзисторам, и в мае министр промышленности средств связи М. Г. Первухин провел в Кремле совещание, посвященное полупроводникам, на котором приняли решение об организации специализированного НИИ полупроводниковой электроники (НИИ-35, ныне НПП «Пульсар»). В «Пульсар» перевели лабораторию А.В. Красилова, в которой создали первый в СССР опытный образец германиевого плоскостного («слоистого») транзистора. Эта разработка легла в основу серийных приборов П1-П3 (1955 г.) и их модификаций .

Рис. 9 Первые германиевые и кремниевые советские транзисторы

Первые кремниевые сплавные транзисторы появились в СССР в 1956 году (П104-П106), затем в 1956-1957 гг. - германиевые П401-П-403 (30-120 МГц), а также П418 (500 МГц). Как видим, к запуску первого искусственного спутника Земли в СССР было производство как германиевых, так и кремниевых транзисторов, хотя даже 1960-е годы процент выхода годных кремниевых транзисторов составлял всего 19,3% . По данным , в 1957 году советская промышленность выпустила 2,7 миллионов транзисторов (для сравнения, в США выпуск транзисторов в этом году составил 28 миллионов штук, а число различных типов достигло 600). Первые германиевые транзисторы работали в диапазоне температур до +85 o C и их характеристики были нестабильны, что отвращало от транзисторов как военных, так и политическое руководство СССР.

Транзисторы и военные

В среде «транзисторостроителей» популярна история, согласно которой транзисторы получили широкое распространение, благодаря находчивости изобретателей, заявивших, что транзистор нельзя использовать для «спецприменений», и недальновидности военных . По всей видимости, эта история имеет под собой реальное основание.

Создатели первого транзистора не могли знать всё, на что он окажется способен, но администрация Bell Labs понимала, что значение этого открытия - огромно, и делала всё от неё зависящее, чтобы об открытии узнали в научных кругах . На 30 июня 1948 года назначили большую пресс-конференцию для того, чтобы объявить об открытии. Но перед тем, как показать транзистор публике, его нужно было показать военным. Была надежда на то, что военные не станут засекречивать эту разработку, но было понятно, что они могут это сделать. 23 июня Ральф Боун (Ralph Bown) показывал транзистор группе офицеров. Он показал кристалл с проводами и то, что он может усиливать электрический сигнал эффективнее, чем массивная вакуумная лампа. Он также рассказал им, что ровно такую же демонстрацию собираются провести через неделю, при этом формально не спросив у них на это разрешения. Военные обсудили этот вопрос между собой после демонстрации, но, в конце концов, никто из них не высказался в пользу засекречивания этой темы. То ли уже из-за собственной недальновидности, то ли в виде дополнительной защиты от посягательств военных было заявлено, что «the transistor is expected to be used primarily in hearing aids for the deaf» («ожидается, что транзистор будет использоваться, главным образом, в слуховых аппаратах для глухих») . В результате пресс-конференция прошла без помех . Журнал New York Times поместил заметку о транзисторе на странице 46 в разделе «Новости радио» после «пространной заметки о возобновлении репортажей некой несравненной мисс Брукс» .

В начале сентября 1951 года Bell Labs провели симпозиумы в Мюррей Хилл, штат Нью-Джерси, в ходе которых инженеры в довольно общих чертах объясняли, как сделать точечные транзисторы, и рассказывали о текущем прогрессе со сплавными транзисторами. При этом ничего не говорили о конкретном процессе изготовления и о военных применениях. Первый симпозиум посетили свыше 300 человек (в основном, военные), каждый из которых заплатил взнос $25000 (двадцать пять тысяч долларов 1951 года ) . Многие фирмы хотели производить транзисторы самостоятельно, а не покупать их, и многие в этом преуспели. Фирма Philips и вовсе изготовила транзистор без посещения этих семинаров, пользуясь только информацией из американских газет. Надо отметить, что AT&T не способствовала, но и не препятствовала тому, чтобы другие фирмы производили транзисторы .

В 1951 году было всего лишь четыре американских компании, изготавливающих транзисторы для коммерческих применений: Texas Instruments, International Business Machines (IBM), Hewlett-Packard и Motorola. Они получили лицензии за те самые $25000 с низким роялти. Их пригласили на второй симпозиум в апреле 1952 года, где секреты изготовления транзисторов были полностью раскрыты. К 1952 году фирм-производителей стало восемь, к 1953 - пятнадцать, а к 1956 году было, по крайней мере, двадцать шесть компаний, производящих германиевые транзисторы, с доходом более 14 миллионов долларов в год. При этом американские военные были основным потребителем транзисторов. В 1952 году производители полупроводников из Bell Labs подписали военных контрактов на сумму свыше 5 миллионов долларов . Доля финансирования исследований (R&D, Research and Development) со стороны военных с 1953 по 1955 гг выросла до 50% .

При всём этом, будущее полупроводников для военных оставалось неясным, т.к. транзистор был «шумным», по сравнению с лампами, он выдерживал меньшие нагрузки, мог быть повреждён от внезапных скачков напряжений, его характеристики были нестабильны в температурном диапазоне, а частотный диапазон был относительно узок. Усугублял ситуацию большой разброс параметров между двумя транзисторами. Цена транзисторов также была высока: первые образцы стоили $20, к 1953 году они подешевели до $8, в то время как лампы стоили около $1 . Кремниевые меза-транзисторы компании Fairchild Semiconductor были проданы IBM в количестве 100 штук по цене $150 (каждый) в 1958 году - в то время как германиевые транзисторы стоили тогда менее $5 . В середине 1960-х эти же транзисторы стали стоить менее 10 центов за штуку .

А что со слуховыми аппаратами? Они действительно появились в США в 1952-1953 годах , , и это стало первым невоенным использованием транзистора. AT&T выдала бесплатные лицензии на использование в слуховых аппаратах в память о работе Александра Белла с глухими .

К сожалению, у этой истории есть малоизвестное печальное продолжение, которое касается уже Советского Союза. Профессор Я.А. Федотов (автор одной из первых монографий по транзисторам 1955 года ) в 1994 году в статье «Электроника шлёт SOS!» упоминает «убийственный» приговор, который вынесли на одном из заседаний Совмина СССР в 1956 году: «Транзистор никогда не войдёт в серьёзную аппаратуру. Единственно перспективная для него область применения - это аппараты для тугоухих...». Знакомые выражения, не правда ли? Федотов пишет: «Это недоверие к транзистору и тяга к старой ламповой технике объяснялись непониманием новой ситуации в электронике». И это за год до запуска первого спутника! Таким образом, всё то, чего избегали и успешно избежали американские «транзисторостроители», навалилось на отечественных: секретность, отсутствие централизации, непонимание перспектив высшим политическим руководством СССР. Очевидно, в таких условиях у транзисторов было мало шансов попасть на борт.

Если не транзистор, то что?

Была ли альтернатива транзисторам? Ведь, повторимся, «на борт» можно поставить не любой прибор, а только с требуемыми характеристиками по надёжности. Альтернатива появилась в конце 1940-х годов, т.е. практически одновременно с транзисторами, в виде стержневых радиоламп. Ввиду секретности темы, отследить историю изобретения и развития этого типа радиоламп довольно сложно, и часто приходится довольствоваться информацией с интернет-форумов .

Июнь 1946 года. Совмин СССР поручает Заводу 617 (в скором будущем - Союзному научно-исследовательский институт № 617 (НИИ-617) с опытным заводом Госкомитета Совета Министров СССР по радиоэлектронике) в Новосибирске разработку сверхминиатюрных и особопрочных ламп для бортовых вычислительных комплексов авиационной техники. Руководить работами назначили В.Н. Авдеева.



Рис. 10 Валентин Николаевич Авдеев

Валентин Николаевич Авдеев родился 16 мая 1915 года в г. Котельниче Вятской губернии. После получения начального образования работал на заводе «Светлана» (ныне ПАО «Светлана») в Ленинграде. Окончил заводской техникум, затем учился во Всесоюзном заочном институте технического образования в 1934-1938 гг. В 1941 году на полгода был отправлен на стажировку в США (на заводы Radio Corporation of America, RCA) для изучения производства радиоламп. Когда началась Великая Отечественная война, вместе с коллективом завода был эвакуирован в Новосибирск. Там работал сначала мастером участка, с 1942 года - главным инженером завода, с 1943 - заместителем начальника лаборатории. Сверхминиатюрные радиолампы были разработаны ОКБ завода 617 к 1947 году, а с 1948 года началось секретное производство. С 1949 года открыта работа «Молекула» по созданию сверхминиатюрных ламп повышенной виброустойчивости. На базе лаборатории № 1 создаётся НИИ-617, директором которого назначается Авдеев.

Стержневые радиолампы были практически свободны от недостатков, присущих «обычным» радиолампам и, в отличие от транзисторов того времени, могли работать в полном температурном диапазоне. Создана серия радиоламп: 1Ж17Б, 1Ж18Б, 1Ж24Б, 1Ж29Б и 1П24Б. В 1960 году в журнале «Радио» опубликована статья , посвящённая принципам работы стержневых радиоламп, в которой отмечены преимущества этого типа, а также заявлена граничная частота - более 200 МГц, что более чем соответствовало требованиям по частоте приёма радиосигналов с первого искусственного спутника Земли (см. ).



Рис. 11 Сравнение «обычных» и стержневых радиоламп из статьи в журнале «Радио»

За создание стержневых радиоламп В.Н. Авдеев был избран членом-корреспондентом АН СССР в 1958 году (в тот же год, когда С.П. Королёва избрали действительным членом). Это при том, что В.Н. Авдеев никогда не защищал диссертаций - ни кандидатской, ни тем более докторской.

Авторы статьи в журнале «Радио» сетуют: «Несколько лет назад, когда появились полупроводниковые приборы, некоторые радиоспециалисты склонны были сразу же «похоронить» электронную лампу. У лампы, которая на протяжении десятков лет приносила радиоэлектронике один триумф за другим, вдруг обнаружилось множество недостатков… Электронная лампа по сравнению с полупроводниковым триодом несомненно имеет ряд недостатков, но ведь общеизвестны и замечательные достоинства лампы...». И добавляют: «К сожалению, приходится отметить, что вопрос о масштабах применения, а следовательно, и производства стержневых ламп решается недостаточно оперативно, несмотря на то, что эти лампы существуют уже много лет и получили высокую оценку». В этих словах - явное недоверие к «новомодным» транзисторам.

Стержневые радиолампы использовались не только в космосе и авиации - на их основе созданы радиостанции для спецназа ГРУ и КГБ СССР (Р-353 «Протон»), переносная УКВ-радиостанция Р-126, комплекс радиостанций «МАРС» для МВД и др. .

Транзисторы в первых спутниках

Soviet Army"s RED STAR:
Uncle Sam thought of launching a Sputnik into the sky.
He announced it to the whole world, not two days but two years in advance.
The boastful and rich uncle called his Sputnik Vanguard.
The name was beautiful and quite chic,
But it turned out to be pshik.

Из подборки журнала Time о реакции мировых СМИ на неудачный запуск американского спутника «Авангард» 16 декабря 1957 года. VANGUARD"S AFTERMATH: JEERS AND TEARS Monday, Dec. 16, 1957

Наша страна запустила не просто первый искусственный спутник Земли (а потом и вывела первого человека в космос), но после первого спутника в течение 7 месяцев были запущены 2 полноценных космических лаборатории - Спутник-2 с Лайкой и Спутник-3, с помощью аппаратуры которого, в частности, были открыты естественные радиационные пояса Замли . Американский первый спутник Explorer 1 на 3 месяца опередил Спутник-3, однако по своим «функциональным» характеристикам был ближе к Спутнику-1, а по весу был меньше его почти в 4 раза. Запуск Спутника-1 вызвал заслуженное уважение учёных, недоумение и даже страх обывателей на Западе, всеобщую радость и торжество в СССР и бурю эмоций политиков. Приведу лишь два характерных высказывания советских и американских политиков (цитирую по ). Первый секретарь ЦК КПСС Н.С. Хрущёв: «Кажется, название „Авангард“ отражало уверенность американцев в том, что именно их спутник будет первым в мире. Но… наш советский спутник стал первым, именно он оказался в авангарде...». Сенатор и будущий президент США Линдон Джонсон: «Я не верю, что это поколение американцев желает примириться с положением, когда каждую ночь приходится засыпать при свете коммунистической луны». Неудивительно, что космическая гонка стала ожесточённой.

Для наглядности, в таблице ниже представлены даты запуска и основные массо-габаритные характеристики первых искусственных спутников Земли.

Дата запуска Название Страна Габариты Масса, кг
04.10.1957 Спутник-1 СССР ~58 см (без антенн) 83,6
03.11.1957 Спутник-2 СССР 2 м х 4 м 508
01.02.1958 Explorer 1 США около 1 м в длину 21,5
17.03.1958 Vanguard-I США 16,3 см (без антенн) 1,474
26.03.1958 Explorer 3 США около 2 м в длину 13,97
15.05.1958 Спутник-3 СССР 1,73 м х 3,57 м 1327

Отголоски ожесточённости гонки слышны и сейчас. Так, в 2015 году (№138) журнал National Geographic Россия напечатал короткую, но весьма примечательную своей непрофессиональной ангажированностью заметку «Спутник „Авангард-1“: всё ещё в авангарде». Привожу её полностью: «Размером с дыню и весом около килограмма, „Авангард-1“ стал первым спутником на солнечных батареях и важным шагом США в космической гонке. Пытаясь догнать Советский Союз, запустивший в 1957 году „Спутник-1“ и „Спутник-2“, США отправили на орбиту „Авангард-1“ 17 марта 1958 года. Хрущев уничижительно называл его „грейпфрутом“. Однако более крупные „Спутники“ сошли с орбиты и сгорели при вхождении в атмосферу в 1958 году, а „Авангард-1“ летает до сих пор. Он прекратил передачу данных в 1964 году, когда отказали последние фотоэлементы. Но устройство удерживает титул старейшего искусственного спутника на орбите и, по прогнозам, продержится там еще около 240 лет» (конец цитаты) . При всём уважении к National Geographic и американским разработчикам «Авангарда-I», думаю, что здесь комментарии излишни.

Вернёмся к транзисторам. Как мы уже отмечали, некоторые авторы утверждали, что транзисторы появились уже на Спутнике-1, причём приводили даже тип транзистора - П401 , . Сайт тоже приводит это утверждение, хотя и делает оговорку, что более вероятно применение стержневых радиоламп. Долгое время на разных форумах разные энтузиасты пытались понять, что к чему, но разобраться было практически невозможно вплоть до появления публикации ОАО «Российские космические системы» (ранее НИИ-885) отчёта по Спутнику-1. Текста этой публикации у меня нет, но её цитируют в журнале «Радио» (№ 4, 2013) , там же приводят схему передатчика первого искусственного спутника Земли:



Рис. 12 Схема основного передатчика «Спутника-1» на 20 МГц

На схеме нет ни одного транзистора, зато есть стержневые радиолампы 2П19Б. Получается, правы те, кто считает, что первые транзисторы появились только в американском Explorer 1?



Рис. 13 Уильям Пикеринг, Джеймс Ван Аллен и Вернер фон Браун демонстрируют полномасштабную модель спутника Explorer 1 на пресс-конференции в Вашингтоне после подтверждения вывода спутника на орбиту


Рис. 14 Джордж Людвиг с резервной копией Explorer 1

Этот вопрос напрямую задали Джорджу Людвигу, разработчику систем Explorer 1 . Он ответил, что раньше действительно так считал, но затем исследовал этот вопрос подробнее и выяснил, что хотя Советы не использовали транзисторов в Спутнике-1, они использовали их в одном из приборов Спутника-2, запущенного в ноябре 1957 года. Людвиг сетует: «Конечно, у них (у Советов) была намного больше вместимость и их носители могли выводить вакуумные лампы и нужные им батареи». При этом он подчёркивает, что Explorer 1 стал первым спутником, аппаратура которого была полностью на транзисторах (напомним, что устройств типа стержневых радиоламп в США в то время не было). Куратор интервью даёт ссылку на публикацию 2001 года , где утверждается следующее: „Спутник-2 был настоящей научной платформой, содержавшей различные электронные компоненты. В дополнение к радиопередатчику и кабине для Лайки, в нём были детекторы солнечного ультрафиолета и рентгеновских лучей, а на корпусе ракеты были смонтированы приборы для исследования космических лучей“. И далее: „Два идентичных детектора в эксперименте с космическими лучами работали как регистраторы сцинтилляций, обусловленных заряженными частицами. Импульсы подсчитывались полупроводниковой (на основе триодов) схемой...“. К сожалению, в статье нет ссылки на источник этой информации. Увы, в зарубежной литературе, случается, путают Спутник-2 и Спутник-3 (например, это произошло в , хотя в более ранней статье одного из соавторов путаницы нет ).

Так в каком же советском аппарате впервые использовали транзисторы? Достоверно известно только о Спутнике-3 . Спутник-2 запущен всего лишь через месяц после Спутника-1 - какова вероятность попадания на борт транзисторов, в любом качестве? Честно говоря, мала, учитывая не только отношение к транзисторам в руководстве СССР, но и другие соображения. Как уже отмечалось ранее, германиевые транзисторы (а именно их в основном выпускала советская промышленность и о них было известно достаточно, чтобы судить о надёжности) нестабильны в диапазоне температур, и там, где нужна температуры выше +85 o C, их не применяли. С другой стороны, американские германиевые транзисторы страдали от тех же болезней , но их в Explorer 1, по свидетельству Людвига, применяли наряду с кремниевыми, поскольку германиевые имели меньшее напряжение база-эмиттер (0,2 В против 0,5 В у кремниевых), поэтому в ряде схем с напряжением питания 2,8 В применяли именно их .

Первые транзисторные радиоприёмники

Позвольте, но откуда тогда упоминание транзистора П401 рядом со Спутником? На самом деле, учитывая рекомендованную частоту Спутника 40 МГц и тот факт, что граничная частота П401 составляла 30 МГц, трудно себе представить этот транзистор в качестве кандидата для установки на борт. Причина, по которой этот транзистор упоминается в контексте Спутника, может быть комичной. Помните ремарку о том, что в быту путают транзистор и транзисторный радиоприёмник? Так вот, в 1957 году на Воронежском радиозаводе стали выпускать радиоприёмник «Спутник», схема которого представлена ниже .



Рис. 15 Схема радиоприёмника «Спутник» (1957 г.)

В схеме без труда можно найти и П401, и П402, и другие транзисторы. Первые образцы были произведены в апреле 1957 года, за 5 месяцев до запуска Спутника-1. Корпус был выполнен из высушенной сосны, пропитанной спиртовым раствором целлюлозы, и обтянут декоративным пластиком.


Рис. 16 Транзисторный радиоприёмник «Спутник»

Габариты - 185х125х49 мм, вес с аккумуляторами - 950 г. На верхней грани корпуса находилась солнечная батарея! Стоимость аппарата составляла 514 рублей - это была примерно средняя зарплата рабочего в то время.

Так из-за недостатка данных по Спутникам произошла путаница со «Спутниками».

И что из этого следует?

В следующем 2017 году мы (Россия и весь мир) будем отмечать 60-летие запуска Первого и Второго искусственных спутников Земли. Хотелось бы обратиться к руководству АО «Российские Космические Системы» с предложением опубликовать к этому времени отчёт о системах «Спутника-2» и «Спутника-3», поскольку очевидно, что это имеет огромное историческое значение не только для космической отрасли, но и для электронной промышленности России, которая жива, несмотря ни на что.

Превосходство советской космической техники над американской невольно сыграло против развития отечественных транзисторов, поскольку были подходящие радиолампы, позволяющие решать имеющиеся задачи, не заботясь об экономии габаритов и массы так, как это приходилось делать американцам. В результате, оглядываясь назад, мы видим, насколько ушли вперёд автоматические космические системы НАСА, в настоящее время активно занимающиеся исследованием Солнечной системы (Марс, Юпитер, Сатурн, Плутон...). Не отстаёт и Европейское космическое агентство ЕКА, активно занимающееся малогабаритными спутниками (микро- и наноспутниками). Едва ли человек в ближайшие десятилетия освоит Солнечную систему, но это сможет сделать человеческий разум «руками» автоматических аппаратов, обладающих необходимым «интеллектом». После упадка 1990-2000 годов, несмотря на определённые успехи отечественных разработчиков, России остро не хватает собственных микросхем, способных решать вычислительные задачи современного уровня или даже уровня завтрашнего дня (ведь космические проекты планируются несколько лет) и обладающих при этом необходимой радиационной стойкостью и сбоеустойчивостью. И проблема здесь не столько в имеющемся технологическом отставании, сколько в отсутствии единого понимания облика таких вычислительных систем и, следовательно, в недостатке не только электронной компонентной базы, но и надёжного и эффективного программного обеспечения. Нельзя повторять ошибок прошлого - нужно учиться на них.

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

РОСТОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НОВОЧЕРКАСКИЙ МЕХАНИКО_ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ ИМ.А.Д. ЦЮРУПЫ»

«ИСТОРИЯ ИЗОБРЕТЕНИЯ ТРАНЗИСТОРА»

Введение

1. История изобретения транзистора

2. Первый транзистор

3. Создание биполярного транзистора

4. «Холодная война» и ее влияние на электронику

5. Первые советские транзисторы

6. Полевые транзисторы

7. Область применения транзистора

ВВЕДЕНИЕ

Трудно найти такую отрасль науки и техники, которая так же стремительно развивалась и оказала такое–же огромное влияние на все стороны жизнедеятельности человека, каждого отдельного и общества в целом, как электроника. Как самостоятельное направление науки и техники электроника сформировалась благодаря электронной лампе. Сначала появились радиосвязь, радиовещание, радиолокация, телевидение, затем электронные системы управления, вычислительная техника и т.п. Но электронная лампа имеет неустранимые недостатки: большие габариты, высокое энергопотребление, большое время вхождения в рабочий режим, низкую надежность. В результате через 2-3 десятка лет существования ламповая электроника во многих применениях подошла к пределу своих возможностей. Электронной лампе требовалась более компактная, экономичная и надежная замена. И она нашлась в виде полупроводникового транзистора. Его создание справедливо считают одним из величайших достижений научно-технической мысли двадцатого столетия, коренным образом изменившим мир. Оно было отмечено Нобелевской премией по физике, присужденной в 1956 г. американцам Джону Бардину, Уолтеру Браттейну и Уильяму Шокли. Но у нобелевской тройки в разных странах были предшественники. И это понятно. Появление транзисторов – результат многолетней работы многих выдающихся ученых и специалистов, которые в течении предшествующих десятилетий развивали науку о полупроводниках. Советские ученые внесли в это общее дело огромный вклад. Очень много было сделано школой физики полупроводников академика А.Ф. Иоффе – пионера мировых исследований по физике полупроводников. Еще в 1931 году он опубликовал статью с пророческим названием: «Полупроводники – новые материалы электроники». Немалую заслугу в исследование полупроводников внесли Б.В. Курчатов и В.П. Жузе. В своей работе – «К вопросу об электропроводности закиси меди» в 1932 году они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Советский физик Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать т еоретическую модель полупроводника, сформулировав при этом основы «зонной теории полупроводников». В 1938 г. Мотт в Англии, Б.Давыдов в СССР, Вальтер Шоттки в Германии независимо друг от друга предложили теорию выпрямляющего действия контакта металл-полупроводник. В 1939 году Б.Давыдов опубликовал работу «Диффузионная теория выпрямления в полупроводниках». В 1941 г. В. Е. Лашкарев опубликовал статью «Исследование запирающих слоев методом термозонда» и в соавторстве с К. М. Косоноговой – статью «Влияние примесей на вентильный фотоэффект в закиси меди». Он описал физику «запорного слоя» на границе раздела «медь – закись меди», впоследствии названного «p-n» переходом. В 1946 г. В. Лошкарев открыл биполярную диффузию неравновесных носителей тока в полупроводниках. Им же был раскрыт механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы. Большой вклад в исследование свойств полупроводников внесли И.В.Курчатов, Ю.М.Кушнир, Л.Д.Ландау, В.М.Тучкевича, Ж.И.Алферов и др. Таким образом, к концу сороковых годов двадцатого века основы теоретической базы для создания транзисторов были проработаны достаточно глубоко, чтобы приступать к практическим работам.

1. ИСТОРИЯ ИЗОБРЕТЕНИЯ ТРАНЗИСТОРА

Первой известной попыткой создания кристаллического усилителя в США предпринял немецкий физик Юлиус Лилиенфельд, запатентовавший в 1930, 1932 и 1933 гг. три варианта усилителя на основе сульфида меди. В 1935 г. немецкий у ченый Оскар Хейл получил британский патент на усилитель на основе пятиокиси ванадия. В 1938 г. немецкий физик Поль создал действующий образец кристаллического усилителя на нагретом кристалле бромида калия. В довоенные годы в Германии и Англии было выдано еще несколько аналогичных патентов. Эти усилители можно считать прообразом современных полевых транзисторов. Однако построить устойчиво работающие приборы не удавалось, т.к. в то время еще не было достаточно чистых материалов и технологий их обработки. В первой половине тридцатых годов точечные триоды изготовили двое радиолюбителей – канадец Ларри Кайзер и тринадцатилетний новозеландский школьник Роберт Адамс. В июне 1948 г. (до обнародования транзистора) изготовили свой вариант точечного германиевого триода, названный ими транзитроном, жившие тогда во Франции немецкие физики Роберт Поль и Рудольф Хилш. В начале 1949 г. было организовано производство транзитронов, применялись они в телефонном оборудовании, причем работали лучше и дольше американских транзисторов. В России в 20-х годах в Нижнем Новгороде О.В.Лосев наблюдал транзисторный эффект в системе из трех – четырех контактов на поверхности кремния и корборунда. В середине 1939 г. он писал: «…с полупроводниками может быть построена трехэлектродная система, аналогичная триоду», но увлекся открытым им светодиодным эффектом и не реализовал эту идею. К транзистору вело множество дорог.


Выше описанные примеры проектов и образцов транзисторов были результатами локальных всплесков мысли талантливых или удачливых людей, не подкрепленные достаточной экономической и организационной поддержкой и не сыгравшие серьезной роли в развитии электроники. Дж. Бардин, У. Браттейн и У. Шокли оказались в лучших условиях. Они работали по единственной в мире целенаправленной долговременной (более 5 лет) программе с достаточным финансовым и материальным обеспечением в фирме Bell Telephone Laboratories, тогда одной из самых мощных и наукоемких в США. Их работы были начаты еще во второй половине тридцатых годов, работу возглавил Джозеф Бекер, который привлек к ней высококлассного теоретика У. Шокли и блестящего экспериментатора У. Браттейна. В 1939 г. Шокли выдвинул идею изменять проводимость тонкой пластины полупроводника (оксида меди), воздействуя на нее внешним электрическим полем. Это было нечто, напоминающее и патент Ю. Лилиенфельда, и позже сделанный и ставший массовым полевой транзистор. В 1940 г. Шокли и Браттейн приняли удачное решение ограничить исследования только простыми элементами – германием и кремнием. Однако все попытки построить твердотельный усилитель ни к чему не привели, и после Пирл-Харбора (практическое начало Второй мировой войны для США) были положены в долгий ящик. Шоккли и Браттейн были направлены в исследовательский центр, работавший над созданием радаров. В 1945 г. оба возвратились в Bell Labs. Там под руководством Шокли была создана сильная команда из физиков, химиков и инженеров для работы над твердотельными приборами. В нее вошли У. Браттейн и физик-теоретик Дж. Бардин. Шокли сориентировал группу на реализацию своей довоенной идеи. Но устройство упорно отказывалось работать, и Шокли, поручив Бардину и Браттейну довести его до ума, сам практически устранился от этой темы. Два года упорного труда принесли лишь отрицательные результаты. Бардин предположил, что избыточные электроны прочно оседали в приповерхностных областях и экранировали внешнее поле. Эта гипотеза подсказала дальнейшие действия. Плоский управляющий электрод заменили острием, пытаясь локально воздействовать на тонкий приповерхностный слой полупроводника.

Однажды Браттейн нечаянно почти вплотную сблизил два игольчатых электрода на поверхности германия, да еще перепутал полярность напряжений питания, и вдруг заметил влияние тока одного электрода на ток другого. Бардин мгновенно оценил ошибку. А 16 декабря 1947 г. у них заработал твердотельный усилитель, который и считают первым в мире транзистором. Устроен онбыл очень просто – на металлической подложке-электроде лежала пластинка германия, в которую упирались два близко расположенных (10-15 мкм) контакта. Оригинально были сделаны эти контакты. Треугольный пластмассовый нож, обернутый золотой фольгой, разрезанной надвое бритвой по вершине треугольника. Треугольник прижимался к германиевой пластинке специальной пружиной, изготовленной из изогнутой канцелярской скрепки. Через неделю, 23 декабря 1947 г. прибор был продемонстрирован руководству фирмы, этот день и считается датой рождения транзистора. Все были рады результатом, кроме Шокли: получилось, что он, раньше всех задумавший полупроводниковый усилитель, руководивший группой специалистов, читавший им лекции по квантовой теории полупроводников – не участвовал в его создании. Да и транзистор получился не такой, как Шокли задумывал: биполярный, а не полевой. Следовательно на соавторство в «звездном» патенте он претендовать не мог. Прибор работал, но широкой публике эту внешне несуразную конструкцию показывать было нельзя. Изготовили несколько транзисторов в виде металлических цилиндриков диаметром около 13 мм. и собрали на них «безламповый» радиоприемник. 30 июня 1948 г. в Нью-Йорке состоялась официальная презентация нового прибора – транзистора (от англ. Transver Resistor – трансформатор сопротивлений). Но специалисты не сразу оценили его возможности. Эксперты из Пентагона «приговорили» транзистор к использованию лишь в слуховых аппаратах для старичков. Так близорукость военных спасла транзистор от засекречивания. Презентация осталась почти незамеченной, лишь пара абзацев о транзисторе появилась в «Нью-Йорк Тайме» на 46 странице в разделе «Новости радио». Таким было явление миру одного из величайших открытий XX века. Даже изготовители электронных ламп, вложившие многие миллионы в свои заводы, в появлении транзистора угрозы не увидели. Позже, в июле 1948 года, информация об этом изобретении появилась в журнале «The Physical Review». Но т олько через некоторое в время специалисты поняли, что произошло грандиозное событие, определившее дальнейшее развитие прогресса в мире. Bell Labs сразу оформила патент на это революционное изобретение, но с технологией было масса проблем. Первые транзисторы, поступившие в продажу в 1948 году, не внушали оптимизма – стоило их потрясти, и коэффициент усиления менялся в несколько раз, а при нагревании они и вовсе переставали работать. Но зато им не было равных в миниатюрности. Аппараты для людей с пониженным слухом можно было поместить в оправе очков! Поняв, что вряд ли она сама сможет справиться со всеми технологическими проблемами, Bell Labs решилась на необычный шаг. В начале 1952 года она объявила, что полностью передаст права на изготовление транзистора всем компаниям, готовым выложить довольно скромную сумму в 25 000 долларов вместо регулярных выплат за пользование патентом, и предложила обучающие курсы по транзисторной технологии, помогая распространению технологии по всему миру. Постепенно росла очевидность важности этого миниатюрного устройства. Транзистор оказался привлекательным по следующим причинам: был дешев, миниатюрен, прочен, потреблял мало мощности и мгновенно включался (лампы долго нагревались). В 1953 г. на рынке появилось первое коммерческое транзисторное изделие – слуховой аппарат (пионером в этом деле выступил Джон Килби из ф. Centralab , который через несколько лет сделает первую в мире полупроводниковую микросхему), а в октябре 1954 г. – первый транзисторный радиоприемник Regency TR1, в нем использовалось всего четыре германиевых транзистора. Немедленно принялась осваивать новые приборы и индустрия вычислительной техники, первой была фирма IBM . Доступность технологии дала свои плоды – мир начал стремительно меняться.

3. СОЗДАНИЕ БИПОЛЯРНОГО ТРАНЗИСТОРА

У честолюбивого У. Шокли случившееся вызвало вулканический всплеск его творческой энергии. Хотя Дж. Бардин и У.Браттейн нечаянно получили не полевой транзистор, как планировал Шокли, а биполярный, он быстро разобрался в сделанном. Позднее Шокли вспоминал о своей «страстной неделе», в течение которой он создал теорию инжекции, а в новогоднюю ночь изобрел плоскостной биполярный транзистор без экзотических иголочек. Что бы создать что-то новое, Шокли по-новому взглянул на давно известное – на точечный и плоскостный полупроводниковые диоды, на физику работы плоскостного «p - n» перехода, легко поддающуюся теоретическому анализу. Поскольку точечный транзистор представляет собой два очень сближенные диода, Шокли провел теоретическое исследования пары аналогично сближенных плоскостных диодов и создал основы теории плоскостного биполярного транзистора в кристалле полупроводника, со держащего два «p - n» перехода. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность и, главное, более высокие повторяемость параметров и надежность. Но, пожалуй, главным их преимуществом была легко автоматизируемая технология, исключающая сложные операции изготовления, установки и позиционирования подпружиненных иголочек, а также обеспечивавшая дальнейшую миниатюризацию приборов. 30 июня 1948 г. в нью-йоркском офисе Bell Labs изобретение было впервые продемонстрировано руководству компании. Но оказалось, что создать серийноспособный плоскостной транзистор гораздо труднее, чем точечный. Транзистор Браттейна и Бардина – чрезвычайно простое устройство. Его единственным полупроводниковым компонентом был кусочек относительно чистого и вполне тогда доступного германия. А вот техника легирования полупроводников в конце сороковых годов, необходимая для изготовления плоскостного транзистора, еще находилась в младенчестве, поэтому изготовление серийноспособного транзистора «по Шокли» удалось только в 1951 г. В 1954 году Bell Labs разработала процессы окисления, фотолитографии, диффузии, которые на многие годы стали основой производства полупроводниковых приборов.

Точечный транзистор Бардина и Браттейна – безусловно огромный прогресс по сравнению с электронными лампами. Но не он стал основой микроэлектроники, век его оказался короток, около 10 лет. Шокли быстро понял сделанное коллегами и создал плоскостной вариант биполярного транзистора, который жив и сегодня и будет жить, пока существует микроэлектроника. Патент на него он получил в 1951 г. А в 1952 г. У. Шокли создал и поле вой транзистор, так же им запатентованный. Так что свое участие в Нобелевской премии он заработал честно.

Число производителей транзисторов росло как снежный ком. Bell Labs, Shockley Semiconductor, Fairchild Semiconductor, Western Electric, GSI (с декабря 1951 г. Texas Instruments), Motorola, Tokyo Cousin (С 1958 г. Sony), NEC и многие другие.

В 1950 г. фирма GSI разработала первый кремниевый транзистор, а с 1954 г., преобразившись в Texas Instruments , начала его серийное производство.

4. «ХОЛОДНАЯ ВОЙНА» И ЕЕ ВЛИЯНИЕ НА ЭЛЕКТРОНИКУ

После окончания Второй мировой войны мир раскололся на два враждебных лагеря. В 1950-1953 гг. эта конфронтация вылилась в прямое военное столкновение – Корейскую войну. Фактически это была опосредованная война между США и СССР. В это же время США готовились к прямой войне с СССР. В 1949 г. в США был разработан опубликованный ныне план «Последний выстрел» (Operation Dropshot), фактически план Третье мировой войны, войны термоядерной. План предусматривал прямое нападение на СССР 1 января 1957 г. В течение месяца предполагалось сбросить на наши головы 300 50-килотонных атомных и 200 000 обычных бомб. Для этого план предусматривал разработку специальных баллистических ракет, подводных атомных лодок, авианосцев и многого другого. Так началась развязанная США беспрецедентная гонка вооружений, продолжавшаяся всю вторую половину прошлого века, продолжающаяся, не столь демонстративно, и сейчас. В этих условиях перед нашей страной, выдержавшей беспрецедентную в моральном и экономическом отношении четырехлетнюю войну и добившейся победы ценой огромных усилий и жертв, возникли новые гигантские проблемы по обеспечению собственной и союзников безопасности. Пришлось срочно, отрывая ресурсы от измученного войной и голодного народа, создавать новейшие виды оружия, содержать в постоянной боеготовности огромную армию. Так были созданы атомные и водородные бомбы, межконтинентальные ракеты, система противоракетной обороны и многое другое. Наши успехи в области обеспечения обороноспособности страны и реальная возможность получения сокрушительного ответного удара вынудили США отказаться от реализации плана «Dropshot» и других ему подобных. Одним из последствий «холодной войны» была почти полная экономическая и информационная изоляция противостоящих сторон. Экономические и научные связи были весьма слабы, а в области стратегически важных отраслей и новых технологий практически отсутствовали. Важные открытия, изобретения, новые разработки в любой области знаний, которые могли быть использованы в военной технике или способствовать экономическому развитию, засекречивались. Поставки прогрессивных технологий, оборудования, продукции запрещались. В результате советская полупроводниковая наука и промышленность, развивались в условиях почти полной изоляции, фактической блокады от всего того, что делалось в этой области в США, Западной Европе, а затем и Японии. Следует также отметить, что советская наука и промышленность во многих направлениях тогда занимала лидирующее в мире положение. Наши истребители в корейской войне были лучше американских, наши ракеты были мощнее всех, в космосе в те годы мы были впереди планеты всей, первый в мире компьютер с производительностью выше 1 млн. оп/с был наш, водородную бомбу мы сделали раньше США, баллистическую ракету первой сбила наша система ПРО и т.п. Отстать в электронике означало потянуть назад все остальные отрасли науки и техники. Значение полупроводниковой техники в СССР понимали прекрасно, но пути и методы ее развития были иными, чем в США. Руководство страны сознавало, что противостояние в холодной войне можно обеспечить путем развития оборонных систем, управляемых надежной, малогабаритной электроникой. В 1959 году были основаны такие заводы полупроводниковых приборов, как Александровский, Брянский, Воронежский, Рижский и др. В январе 1961 г. было принято Постановление ЦК КПСС и СМ СССР «О развитии полупроводниковой промышленности», в котором предусматривалось строительство заводов и НИИ в Киеве, Минске, Ереване, Нальчике и других городах. Причем базой для создания первых предприятий полупроводниковой промышленности стали совершенно не приспособленные для этих целей помещения (здания коммерческого техникума в Риге, Совпартшколы в Новгороде, макаронная фабрика в Брянске, швейная фабрика в Воронеже, ателье в Запорожье и т.д.). Но вернемся к истокам.

5. ПЕРВЫЕ СОВЕТСКИЕ ТРАНЗИСТОРЫ

В годы, предшествующие изобретению транзистора, в СССР были достигнуты значительные успехи в создании германиевых и кремниевых детекторов. В этих работах использовалась оригинальная методика исследования приконтактной области путем введения в нее дополнительной иглы, вследствие чего создавалась конфигурация, в точности повторяющая точечный транзистор. Иногда при измерениях выявлялись и транзисторные характеристики (влияние одного «p - n» перехода на другой близко расположенный), но их отбрасывали как случайные и неинтересные аномалии. Мало в чем наши исследователи уступали американским специалистам, не было у них лишь одного - нацеленности на транзистор, и великое открытие выскользнуло из рук. Начиная с 1947 г. интенсивные работы в области полупроводниковых усилителей велись в ЦНИИ-108 (лаб. С. Г. Калашникова) и в НИИ-160 (НИИ «Исток», Фрязино, лаб. А. В. Красилова). В 1948 г., группа А. В. Красилова, разрабатывавшая германиевые диоды для радиолокационный станций, также получила транзисторный эффект и попыталась объяснить его. Об этом в журнале «Вестник информации» в декабре 1948 ими была опубликована статья «Кристаллический триод» - первая публикация в СССР о транзисторах. Напомним, что первая публикация о транзисторе в США в журнале «The Physical Review» состоялась в июле 1948 г., т.е. результаты работ группы Красилова были независимы и почти одновременны. Таким образом научная и экспериментальная база в СССР была подготовлена к созданию полупроводникового триода (термин «транзистор» был введен в русский язык в середине 60-х годов) и уже в 1949 г. лабораторией А. В. Красилова были разработаны и переданы в серийное производство первые советские точечные германиевые триоды С1 - С4. В 1950 г. образцы германиевых триодов были разработаны в ФИАНе (Б.М. Вул, А. В. Ржанов, В. С. Вавилов и др.), в ЛФТИ (В.М. Тучкевич, Д. Н. Наследов) и в ИРЭ АН СССР (С.Г. Калашников, Н. А. Пенин и др.).

В мае 1953 г. был образован специализированный НИИ (НИИ-35, позже – НИИ «Пульсар»), учрежден Межведомственный Совет по полупроводникам. В 1955 г. началось промышленное производство транзисторов на заводе «Светлана» в Ленинграде, а при заводе создано ОКБ по разработке полупроводниковых приборов. В 1956 г. московский НИИ-311 с опытным заводом переименован в НИИ «Сапфир» с заводом «Оптрон» и переориентирован на разработку полупроводниковых диодов и тиристоров. На протяжении 50-х годов в стране были разработаны ряд новых технологий изготовления плоскостных транзисторов: сплавная, сплавно-диффузионная, меза-диффузионная. Полупроводниковая промышленность СССР развивалась достаточно быстро: в 1955 г. было выпущено 96 тысяч, в 1957 г. – 2,7 млн, а в 1966 г. – более 11 млн. транзисторов. И это было только начало.

6. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Первый полевой транзистор был запатентован в США в 1926/30гг., 1928/32гг. и 1928/33гг. Лилиенфельд – автор этих потентов. Он родился в 1882 году в Польше. С 1910 по 1926 г. был профессором Лейпцигского университета. В 1926 г. иммигрировал в США и подал заявку на патент. Предложенные Лилиенфельдом транзисторы не были внедрены в производство. Наиболее важная особенность изобретения Лилиенфельда заключается в том, что он понимал работу транзистора на принципе модуляции проводимости исходя из электростатики. В описании к патенту формулируется, что проводимость тонкой области полупроводникового канала модулируется входным сигналом, поступающим на затвор через входной трансформатор. В 1935 году в Англии получил патент на полевой транзистор немецкий изобретатель О.Хейл

Схема из патента представлена на Рис. где:

Управляющий электрод (1) выполняет роль затвора, электрод (3) выполняет роль стока, электрод (4) роль истока. Подавая переменный сигнал на затвор, расположенный очень близко к проводнику, получаем изменение сопротивления полупроводника (2) между стоком и истоком. При низкой частоте можно наблюдать колебание стрелки амперметра (7). Данное изобретение является прототипом полевого транзистора с изолированным затвором. Следующий период волны изобретений по транзисторам наступил в 1939 году, когда после трехлетних изысканий по твердотельному усилителю в фирме "BTL" (Bell Telephone Laboratories) Шокли был приглашен включиться в исследование Браттейна по медноокисному выпрямителю. Работа была прервана второй мировой войной, но уже перед отъездом на фронт Шокли предложил два транзистора. Исследования по транзисторам

Биполярные транзисторы полупроводниковые приборы с большим числом слоёв разного типа электропроводности, расположенных в разном сочетании. Рассмотрим биполярный транзистор.

Принцип действия биполярного транзистора заключается в том, что 2 р-п перехода расположены настолько близко друг к другу, что происходит взаимное их влияние, вследствие чего они усиливают электрические сигналы.


Итак, на рис. изображены три слоя: с электронной электропроводностью, причём сильной, что обозначает плюс - эмиттер, дырочной - база, и снова электронной, но более слабо легированной (концентрация электронов самая малая) – коллектор. Толщина базы, т.е. расстояние между двумя р-п переходами, равное Lб, очень мала. Она должна быть меньше диффузионной длины электронов в базе. Это от единиц до десятка мкм. Толщина базы должна быть не более единиц мкм. (Толщина человеческого волоса 20-50 мкм. Отметим также, что это близко к пределу разрешения человеческого глаза, так как мы не можем видеть ничего меньшего, чем длина волны света, т.е. примерно 0,5 мкм). Все остальные размеры транзистора не более примерно 1 мм.

К слоям прикладывают внешнее напряжение так, что эмиттерный р-п переход смещён в прямом направлении, и через него протекает большой ток, а коллекторный р-п переход смещён в противоположную сторону, так что через него не должен протекать ток. Однако вследствие того, что р-п переходы расположены близко, они влияют друг на друга, и картина меняется: ток электронов, прошедший из эмиттерного р-п перехода, протекает дальше, доходит до коллекторного р-п перехода и электрическим полем последнего электроны втягиваются в коллектор. В результате у хороших транзисторов практически весь ток коллектора равен току эмиттера. Потери тока очень незначительны: проценты и даже доли процента.


Как видно, схематическое изображение совсем не похоже на их действительную конструкцию. Но так принято. Кружок символизирует корпус транзистора. Индексом "б" обозначен контакт к базе, "к" обозначает контакт к коллекторной области, а "э" – к эмиттерной области. Направление стрелки у эмиттерного контакта определяет тип транзистора (п-р-п или р-п-р).

Схема с общей базой: Коэффициент усиления a<1

Мы видим, что к эмиттерному р-п переходу приложено прямое смещение: плюс к базовому контакту, а минус к эмиттерному контакту. К коллекторному р-п переходу приложено обратное смещение. В этом случае у хорошего транзистора коллекторный ток лишь незначительно меньше эмиттерного.


Схема с общим эмиттером

В этом случае в базу и в эмиттер подаются напряжения одного знака, но в базу подаётся не больше 0,7 В, а в коллектор – 5...15 В. Коэффициент усиления b>1

7. ОБЛАСТЬ ПРИМЕНЕНИЯ ТРАНЗИСТОРА

Первыми транзисторами выпущенными отечественной промышленностью были точечные транзисторы, которые предназначались для усиления и генерирования колебаний частотой до 5 МГц. В процессе производства первых в мире транзисторов были отработаны отдельные технологические процессы и разработаны методы контроля параметров. Накопленный опыт позволил перейти к выпуску более совершенных приборов, которые уже могли работать на частотах до 10 МГц. В дальнейшем на смену точечным транзисторам пришли плоскостные, обладающие более высокими электрическими и эксплуатационными качествами. Первые транзисторы типа П1 и П2 предназначались для усиления и генерирования электрических колебаний с частотой до 100 кГц.

Затем появились более мощные низкочастотные транзисторы П3 и П4 применение которых в 2-х тактных усилителях позволяло получить выходную мощность до нескольких десятков ватт. По мере развития полупроводниковой промышленности происходило освоение новых типов транзисторов, в том числе П5 и П6, которые по сравнению со своими предшественниками обладали улучшенными характеристиками.

Шло время, осваивались новые методы изготовления транзисторов, и транзисторы П1 – П6 уже не удовлетворяли действующим требованиям и были сняты с производства. Вместо них появились транзисторы типа П13 – П16, П201 – П203, которые тоже относились к низкочастотным не превышающим 100 кГц. Столь низкий частотный предел объясняется способом изготовления этих транзисторов, осуществляемым методом сплавления.

Поэтому транзисторы П1 – П6, П13 – П16, П201 – П203 называют сплавными. Транзисторы способные генерировать и усиливать электрические колебания с частотой в десятки и сотни МГц появились значительно позже – это были транзисторы типаП401 – П403, которые положили начало применению нового диффузионного метода изготовления полупроводниковых приборов. Такие транзисторы называют диффузионными. Дальнейшее развитие шло по пути совершенствования как сплавных, так и диффузионных транзисторов, а так же созданию и освоению новых методов их изготовления.

С появлением биполярных полевых транзисторов начали воплощаться идеи разработки малогабаритных ЭВМ. На их основе стали создавать бортовые электронные системы для авиационной и космической техники.

В схеме ОЭ входной сигнал подаётся на базу, а выходной сигнал снимается с коллектора. Схема и выходные характеристики изображены на рис.1Видно, что схема стала очень сложной. Однако главное, что здесь есть – это резистор Rк, который определяет коэффициент усиления по напряжению, и который составляет от единиц кОм до МОм (чем больше этот резистор, тем больше усиление). Все остальные элементы более или менее условны.Прежде всего Rэ необходимо для термостабилизации транзистора. Это осуществляется за счёт обратной связи по постоянному току, которую мы обсудим позже.

Сэ – конденсатор, который шунтирует этот резистор на рабочих частотах, так что при переменном сигнале резистора нет. Этот конденсатор – несколько мкФ. Обычно это электролитический конденсатор.

Ср – разделительные конденсаторы, которые отделяют постоянную составляющую сигнала на входе и выходе схемы от внешних сигналлов. Обычно это несколько мкФ.

Rб2 – практически ненужный резистор, просто он ставится для предохранения транзистора от сгорания. Его значение должно быть большим, так как стоит он параллельно входу и может его закоротить. Обычно это 1 или несколько килоом, так как входное сопротивление транзистора мало.

Rн – сопротивление нагрузки, лучше, если оно большое, так как оно подключено параллельно выходу транзистора, и если оно будет малым, выходной сигнал упадёт.

Uвх – сигнал на входе транзистора. Как видно, на входе много различных деталей – резисторов и конденсаторов. Но на рабочих частотах сопротивления конденсаторов малы, и они хорошо пропускают сигналы. А два параллельных резистора Rб1 и Rб2 достаточно велики по сравнению с входным сопротивлением транзистора. Поэтому учтём только это входное сопротивление.Обычно собственно сопротивления транзистора обозначаются малыми буквами.

О вкладе советских и российских ученых в разработку полупроводниковых транзисторов

Открывая осенний форум Intel для разработчиков (IDF) в Сан-Франциско (www.pcweek.ru/themes/detail.php?ID=102444), старший вице-президент и генеральный менеджер подразделения Digital Enterprise Group корпорации Патрик Гелсингер отметил, что 2007-й стал юбилейным не только для Intel (отметившей десятилетие IDF), но и для всей полупроводниковой отрасли: как признано международным сообществом, 60 лет назад американцы У. Шокли, В. Браттейн и Дж. Бардин изобрели первый транзистор. А между тем в этой сфере есть чем гордиться и российским ученым и инженерам.

Когда и где именно начался “путь к транзистору”, сказать не просто. Его конкретному созданию предшествовал длительный и весьма насыщенный период исследований в области электроники, научных экспериментов и разработок во многих странах. Разумеется, СССР не был исключением. Началом отечественных разработок в этом направлении можно считать труды физика А. Г. Столетова в сфере фотоэффекта и А. С. Попова по созданию радиопередающих устройств еще в конце XIX в. Развитие электроники в советское время стимулировалось бурным прогрессом радиотехники в двадцатые годы, немалую роль в котором играли разработки сверхмощных (для того времени) радиоламп, ламповых триггеров и других элементов, выполненные М. А. Бонч-Бруевичем. Одним из факторов, определивших бурное развитие данного направления, стал общий подъем науки и образования в стране.

Историки науки знают, что уровень советских исследований и разработок по всему диапазону вопросов электроники часто превосходил мировой и никогда не опускался ниже него. Это обуславливалось “взрывным” характером научного прогресса в СССР и тем, что на развитии науки во многих западных странах весьма негативно сказались период послевоенной (1914 -1918 гг.) депрессии, а позже и жестокий экономический кризис 1929 -1934 гг.

Одной из первых заинтересовавших экспериментаторов проблем стала односторонняя проводимость в точке соприкосновения металлической пружины и кристаллов полупроводника: требовалось понять причины этого явления.

Советский инженер-радиофизик О. В. Лосев, экспериментировавший в 1922 г. со слаботочной техникой (работающей при напряжениях до 4 В), открыл явление возникновения электромагнитных колебаний и эффект их усиления в полупроводниковом кристаллическом детекторе. Он обнаружил у кристалла падающий участок вольт-амперной характеристики и первым построил генерирующий детектор, т. е. детекторный приемник, способный усиливать электромагнитные колебания. Свой прибор Лосев основал на контактной паре металлического острия и кристалла цинкита (оксида цинка), на которую подавалось небольшое напряжение. Прибор Лосева вошел в историю полупроводниковой электроники как “кристадин”. Примечательно, что продолжение исследований в этом направлении привело к созданию в 1958 г. туннельных диодов, нашедших применение в вычислительной технике 60-х годов ХХ века. Лосев первым открыл и новое явление — свечение кристаллов карборунда при прохождении тока через точечный контакт. Ученый объяснил это явление существованием в детектирующем контакте некоторого “активного слоя” (впоследствии названного p-n-переходом, от p - positive, n - negative).

В 1926 г. советский физик Я. И. Френкель выдвинул гипотезу о дефектах кристаллической структуры полупроводников, названных “пустыми местами”, или, более привычно, “дырками”, которые могли перемещаться по кристаллу. В 1930-е годы академик А. Ф. Иоффе начал эксперименты с полупроводниками в Ленинградском институте инженерной физики.

В 1938 г. украинский академик Б. И. Давыдов и его сотрудники предложили диффузионную теорию выпрямления переменного тока посредством кристаллических детекторов, в соответствии с которой оно имеет место на границе между двумя слоями проводников, обладающих p- и n- проводимостью. Далее эта теория была подтверждена и развита в исследованиях В. Е. Лашкарева, проведенных в Киеве в 1939-1941 гг. Он установил, что по обе стороны “запорного слоя”, расположенного параллельно границе раздела медь - оксид меди, находятся носители тока противоположных знаков (явление p-n-перехода), а также что введение в полупроводники примесей резко повышает их способность проводить электрический ток. Лашкарев открыл и механизм инжекции (переноса носителей тока) - явления, составляющего основу действия полупроводниковых диодов и транзисторов.

Его работа была прервана начавшейся войной, однако по ее окончании Лашкарев вернулся в Киев и в 1946 г. возобновил исследования. Вскоре он открыл биполярную диффузию неравновесных носителей тока в полупроводниках, а в начале 1950-х изготовил первые точечные транзисторы в лабораторных условиях. То, что результаты их опытной эксплуатации были обнадеживающими, подтверждается следующим любопытным эпизодом.

Пионер советской вычислительной техники - академик С. А. Лебедев, создавший в Киеве первую советскую ЭВМ МЭСМ (1949-1951) и основавший там научную школу, приезжал в Киев в день своего 50-летия (2 ноября 1952 г.). Там он услышал о транзисторах Лашкарева и, игнорируя подготовленные в его честь торжества (а Лебедев вообще не любил никакого официоза, справедливо полагая его пустой тратой времени), отправился прямиком в лабораторию при Институте физики АН Украинской ССР. Познакомившись с Лашкаревым и его разработками, Лебедев предложил сопровождавшему его аспиранту А. Кондалеву начать проектирование ряда устройств ЭВМ на базе новых транзисторов и диодов, что тот и сделал после трехмесячной стажировки у Лашкарева. (Об этом случае автору рассказал другой аспирант Лебедева - ныне академик Украины Б. Н. Малиновский, также присутствовавший при встрече и впоследствии включившийся в упомянутую работу.) Правда, сведения о каком-либо промышленном развитии этого проекта - по крайней мере в гражданской области - отсутствуют, но это и понятно: массового производства транзисторов в те годы еще не существовало.

Широкое применение транзисторов во всем мире началось позже. Тем не менее научные заслуги Лашкарева были оценены: он возглавил новый Институт полупроводников АН Украины, который был открыт в 1960 г.

Предложенная Давыдовым теория p-n-перехода впоследствии была развита У. Шокли в США. В 1947 г. В. Браттейн и Дж. Бардин, работавшие под руководством Шокли, открыли транзисторный эффект в детекторах, основанных на кристаллах германия. (Любопытно, что их эксперименты походили на довоенные опыты немецкого электротехника Р. В. Поля, создавшего в 1937 г. совместно с Р. Хильшем усилитель на базе монокристалла бромида галлия.) В 1948 г. были опубликованы результаты исследований Шокли и изготовлены первые германиевые транзисторы с точечным контактом. Разумеется, они были весьма далеки от совершенства. К тому же их конструкция еще носила черты лабораторной установки (что, впрочем, характерно для начального периода использования любого подобного изобретения). Характеристики первых транзисторов отличались неустойчивостью и непредсказуемостью, и поэтому их реальное практическое применение началось уже после 1951 г., когда Шокли создал более надежный транзистор - планарный, состоявший из трех слоев германия типа n-p-n суммарной толщиной 1 см. За открытия в области полупроводников и изобретение транзистора Шокли, Бардин и Браттейн в 1956 г. разделили Нобелевскую премию по физике (интересно, что Бардин - единственный физик, удостоенный Нобелевской премии дважды: второй раз - в 1972 г. за разработку теории сверхпроводимости).

В СССР работа по транзисторам велась почти в таком же темпе, что и за рубежом. Параллельно с киевской лабораторией Лашкарева исследовательская группа московского инженера А. В. Красилова в 1948 г. создала германиевые диоды для радиолокационных станций. В феврале 1949-го Красилов и его помощница С. Г. Мадоян (в то время студентка Московского химико-технологического института, выполнявшая дипломную работу по теме “Точечный транзистор”) впервые наблюдали транзисторный эффект. Правда, первый лабораторный образец работал не более часа, а затем требовал новой настройки. Тогда же Красилов и Мадоян опубликовали первую в Советском Союзе статью о транзисторах, называвшуюся “Кристаллический триод”.

Приблизительно в то же время точечные транзисторы были разработаны и в других лабораториях страны. Так, в 1950 г. экспериментальные образцы германиевых транзисторов были созданы в Физическом институте Академии наук (Б. М. Вулом, А. В. Ржановым, В. С. Вавиловым и др.) и Ленинградском физико-техническом институте (В. М. Тучкевичем, Д. Н. Наследовым).

В 1953 г. был организован первый в СССР институт полупроводников (ныне - НИИ “Пульсар”). Туда была переведена лаборатория Красилова, в которой Мадоян разработала первые сплавные германиевые транзисторы. Их развитие связано с расширением частотного предела и повышением КПД транзистора. Соответствующие работы проводились совместно с лабораторией профессора С. Г. Калашникова в ЦНИИ-108 (ныне ГосЦНИРТИ): начинался новый период, характеризуемый сотрудничеством различных организаций, специализировавшихся в полупроводниковой области. В конце же 1940-х одинаковые открытия часто делались независимо друг от друга, а их авторы не имели информации о достижениях своих коллег. Причиной такой “научной параллельности” была секретность исследований в области электроники, имевшей оборонное значение. Подобная картина наблюдалась и при создании первых электронных компьютеров - будущих потребителей транзисторов. Например, С. А. Лебедев, начиная работу над своей первой ЭВМ в Киеве, не подозревал, что в это же время в Москве академик И. С. Брук со своими помощниками также трудились над проектом электронной цифровой вычислительной машины.

Впрочем, секретность отнюдь не была некой “советской особенностью”: оборонные разработки засекречиваются во всем мире. Изобретение транзистора тоже было строго засекречено фирмой Bell (где в то время работал Шокли), и первое сообщение о нем появилось в печати только 1 июля 1948 г.: в небольшой заметке газеты The New York Times, в которой без лишних подробностей сообщалось о создании подразделением Bell Telephone Laboratories твердотельного электронного прибора, заменявшего электронную лампу.

С образованием сети специальных научно-исследовательских организаций развитие транзисторов постоянно ускорялось. В начале 1950-х в НИИ-160 Ф. А. Щиголь и Н. Н. Спиро ежедневно выпускали десятки точечных транзисторов типа С1-С4, а М. М. Самохвалов разрабатывал в НИИ-35 новые решения по групповой технологии, технологии “вплавления - диффузии” для получения тонкой базы ВЧ-транзисторов. В 1953 г. на основе исследований термоэлектрических свойств полупроводников А. Ф. Иоффе создал серию термоэлектрогенераторов, а в НИИ-35 были изготовлены планарные транзисторы П1, П2, П3. Вскоре в лаборатории С. Г. Калашникова был получен германиевый транзистор для частот 1,0 - 1,5 МГц, а Ф. А. Щиголь сконструировал кремниевые сплавные транзисторы типа П501-П503.

В 1957 г. советская промышленность выпустила 2,7 млн. транзисторов. Начавшееся создание и развитие ракетной и космической техники, а затем и вычислительных машин, а также потребности приборостроения и других отраслей экономики полностью удовлетворялись транзисторами и другими электронными компонентами отечественного производства.