10 решенных уравнений. Решение уравнений с двумя переменными

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

I. ax 2 =0 неполное квадратное уравнение (b=0, c=0 ). Решение: х=0. Ответ: 0.

Решить уравнения.

2x·(x+3)=6x-x 2 .

Решение. Раскроем скобки, умножив на каждое слагаемое в скобках:

2x 2 +6x=6x-x 2 ; переносим слагаемые из правой части в левую:

2x 2 +6x-6x+x 2 =0; приводим подобные слагаемые:

3x 2 =0, отсюда x=0.

Ответ: 0.

II. ax 2 +bx=0 неполное квадратное уравнение (с=0 ). Решение: x (ax+b)=0 → x 1 =0 или ax+b=0 → x 2 =-b/a. Ответ: 0; -b/a.

5x 2 -26x=0.

Решение. Вынесем общий множитель х за скобки:

х(5х-26)=0; каждый множитель может быть равным нулю:

х=0 или 5х-26=0 → 5х=26, делим обе части равенства на 5 и получаем: х=5,2.

Ответ: 0; 5,2.

Пример 3. 64x+4x 2 =0.

Решение. Вынесем общий множитель за скобки:

4х(16+х)=0. У нас три множителя, 4≠0, следовательно, или х=0 или 16+х =0. Из последнего равенства получим х=-16.

Ответ: -16; 0.

Пример 4. (x-3) 2 +5x=9.

Решение. Применив формулу квадрата разности двух выражений раскроем скобки:

x 2 -6x+9+5x=9; преобразуем к виду: x 2 -6x+9+5x-9=0; приведем подобные слагаемые:

x 2 -x=0; вынесем х за скобки, получаем: x (x-1)=0. Отсюда или х=0 или х-1=0 → х=1.

Ответ: 0; 1.

III. ax 2 +c=0 неполное квадратное уравнение (b=0 ); Решение: ax 2 =-c → x 2 =-c/a.

Если (-c/a)<0 , то действительных корней нет. Если (-с/а)>0

Пример 5. x 2 -49=0.

Решение.

x 2 =49, отсюда x=±7. Ответ: -7; 7.

Пример 6. 9x 2 -4=0.

Решение.

Часто требуется найти сумму квадратов (x 1 2 +x 2 2) или сумму кубов (x 1 3 +x 2 3) корней квадратного уравнения, реже — сумму обратных значений квадратов корней или сумму арифметических квадратных корней из корней квадратного уравнения:

Помочь в этом может теорема Виета:

x 2 +px+q=0

x 1 +x 2 =-p; x 1 ∙x 2 =q.

Выразим через p и q :

1) сумму квадратов корней уравнения x 2 +px+q=0;

2) сумму кубов корней уравнения x 2 +px+q=0.

Решение.

1) Выражение x 1 2 +x 2 2 получится, если взвести в квадрат обе части равенства x 1 +x 2 =-p;

(x 1 +x 2) 2 =(-p) 2 ; раскрываем скобки: x 1 2 +2x 1 x 2 + x 2 2 =p 2 ; выражаем искомую сумму: x 1 2 +x 2 2 =p 2 -2x 1 x 2 =p 2 -2q. Мы получили полезное равенство: x 1 2 +x 2 2 =p 2 -2q.

2) Выражение x 1 3 +x 2 3 представим по формуле суммы кубов в виде:

(x 1 3 +x 2 3)=(x 1 +x 2)(x 1 2 -x 1 x 2 +x 2 2)=-p·(p 2 -2q-q)=-p·(p 2 -3q).

Еще одно полезное равенство: x 1 3 +x 2 3 =-p·(p 2 -3q).

Примеры.

3) x 2 -3x-4=0. Не решая уравнение, вычислите значение выражения x 1 2 +x 2 2 .

Решение.

x 1 +x 2 =-p=3, а произведение x 1 ∙x 2 =q= в примере 1 ) равенство:

x 1 2 +x 2 2 =p 2 -2q. У нас -p =x 1 +x 2 =3 → p 2 =3 2 =9; q= x 1 x 2 =-4. Тогда x 1 2 +x 2 2 =9-2·(-4)=9+8=17.

Ответ: x 1 2 +x 2 2 =17.

4) x 2 -2x-4=0. Вычислить: x 1 3 +x 2 3 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x 1 +x 2 =-p=2, а произведение x 1 ∙x 2 =q= -4. Применим полученное нами (в примере 2 ) равенство: x 1 3 +x 2 3 =-p·(p 2 -3q)= 2·(2 2 -3·(-4))=2·(4+12)=2·16=32.

Ответ: x 1 3 +x 2 3 =32.

Вопрос: а если нам дано не приведенное квадратное уравнение? Ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x 2 -5x-7=0. Не решая, вычислить: x 1 2 +x 2 2 .

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x 2 -2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5 ; произведение корней равно -3,5 .

Решаем так же, как пример 3) , используя равенство: x 1 2 +x 2 2 =p 2 -2q.

x 1 2 +x 2 2 =p 2 -2q= 2,5 2 -2∙(-3,5)=6,25+7=13,25.

Ответ: x 1 2 +x 2 2 =13,25.

6) x 2 -5x-2=0. Найти:

Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p , а произведение корней через q , получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x 1 2 +x 2 2 =p 2 -2q.

В нашем примере x 1 +x 2 =-p=5; x 1 ∙x 2 =q= -2. Подставляем эти значения в полученную формулу:

7) x 2 -13x+36=0. Найти:

Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

У нас x 1 +x 2 =-p=13; x 1 ∙x 2 =q=36 . Подставляем эти значения в выведенную формулу:

Совет : всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему способу, ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13 , а произведение корней 36 . Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!

I. Теорема Виета для приведенного квадратного уравнения.

Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x 1 +x 2 =-p; x 1 ∙x 2 =q.

Найти корни приведенного квадратного уравнения, используя теорему Виета.

Пример 1) x 2 -x-30=0. Это приведенное квадратное уравнение ( x 2 +px+q=0) , второй коэффициент p=-1 , а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.

Находим дискриминант D =b 2 — 4ac=(-1) 2 -4∙1∙(-30)=1+120=121=11 2 .

Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p ), а произведение равно свободному члену, т.е. (q ). Тогда:

x 1 +x 2 =1; x 1 ∙x 2 =-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30 , а сумма – единице . Это числа -5 и 6 . Ответ: -5; 6.

Пример 2) x 2 +6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8 . Убедимся, что есть целочисленные корни. Найдем дискриминант D 1 D 1 =3 2 -1∙8=9-8=1=1 2 . Дискриминант D 1 является полным квадратом числа 1 , значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6 , а произведение корней равно q=8 . Это числа -4 и -2 .

На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.

Пример 3) x 2 +2x-4=0 . В этом приведенном квадратном уравнении второй коэффициент р=2 , а свободный член q=-4 . Найдем дискриминант D 1 , так как второй коэффициент – четное число. D 1 =1 2 -1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод : корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам ). Получаем:

Пример 4). Составьте квадратное уравнение по его корням, если x 1 =-7, x 2 =4.

Решение. Искомое уравнение запишется в виде: x 2 +px+q=0 , причем, на основании теоремы Виета –p=x 1 +x 2 =-7+4=-3 → p=3; q=x 1 ∙x 2 =-7∙4=-28 . Тогда уравнение примет вид: x 2 +3x-28=0.

Пример 5). Составьте квадратное уравнение по его корням, если:

II. Теорема Виета для полного квадратного уравнения ax 2 +bx+c=0.

Сумма корней равна минус b , деленному на а , произведение корней равно с , деленному на а:

x 1 +x 2 =-b/a; x 1 ∙x 2 =c/a.

Пример 6). Найти сумму корней квадратного уравнения 2x 2 -7x-11=0 .

Решение.

Убеждаемся, что данное уравнение будет иметь корни. Для этого достаточно составить выражение для дискриминанта, и, не вычисляя его, просто убедиться, что дискриминант больше нуля. D =7 2 -4∙2∙(-11)>0 . А теперь воспользуемся теоремой Виета для полных квадратных уравнений.

x 1 +x 2 =-b:a =- (-7):2=3,5.

Пример 7) . Найдите произведение корней квадратного уравнения 3x 2 +8x-21=0.

Решение.

Найдем дискриминант D 1 , так как второй коэффициент (8 ) является четным числом. D 1 =4 2 -3∙(-21)=16+63=79>0 . Квадратное уравнение имеет 2 корня, по теореме Виета произведение корней x 1 ∙x 2 =c:a =-21:3=-7.

I. ax 2 +bx+c=0 – квадратное уравнение общего вида

Дискриминант D=b 2 - 4ac.

Если D>0 , то имеем два действительных корня:

Если D=0 , то имеем единственный корень (или два равных корня) х=-b/(2a) .

Если D<0, то действительных корней нет.

Пример 1) 2x 2 +5x-3=0.

Решение. a =2; b =5; c =-3.

D=b 2 — 4ac =5 2 -4∙2∙(-3)=25+24=49=7 2 >0; 2 действительных корня.

4x 2 +21x+5=0.

Решение. a =4; b =21; c =5.

D=b 2 — 4ac =21 2 — 4∙4∙5=441-80=361=19 2 >0; 2 действительных корня.

II. ax 2 +bx+c=0 квадратное уравнение частного вида при четном втором

коэффициенте b


Пример 3) 3x 2 -10x+3=0.

Решение. a =3; b =-10 (четное число ); c =3.

Пример 4) 5x 2 -14x-3=0.

Решение. a =5; b = -14 (четное число ); c =-3.

Пример 5) 71x 2 +144x+4=0.

Решение. a =71; b =144 (четное число ); c =4.

Пример 6) 9x 2 -30x+25=0.

Решение. a =9; b =-30 (четное число ); c =25.

III. ax 2 +bx+c=0 квадратное уравнение частного вида при условии : a-b+c=0.

Первый корень всегда равен минус единице, а второй корень равен минус с , деленному на а :

x 1 =-1, x 2 =-c/a.

Пример 7) 2x 2 +9x+7=0.

Решение. a =2; b =9; c =7. Проверим равенство: a-b+c=0. Получаем: 2-9+7=0 .

Тогда x 1 =-1, x 2 =-c/a=-7/2=-3,5. Ответ: -1; -3,5.

IV. ax 2 +bx+c=0 квадратное уравнение частного вида при условии: a+b+c=0.

Первый корень всегда равен единице, а второй корень равен с , деленному на а :

x 1 =1, x 2 =c/a .

Пример 8) 2x 2 -9x+7=0.

Решение. a =2; b =-9; c =7. Проверим равенство: a+b+c=0. Получаем: 2-9+7=0 .

Тогда x 1 =1, x 2 =c/a=7/2=3,5. Ответ: 1; 3,5.

Страница 1 из 1 1

На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

Готовьтесь к экзаменационному тестированию вместе со «Школково»!

При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

Основные определения и формулы представлены в разделе «Теоретическая справка».

Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или . База упражнений на нашем сайте постоянно дополняется и обновляется.

Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!