Калькулятор hs диаграммы. Водяной пар. диаграмма h,s водяного пара. исследование паровых процессов по диаграмме h,s

Описание hs-диаграммы

На hs-диаграмме изображены термодинамические процессы:

§ Изобарный процесс (p = const) - фиолетовые линии (изобары),

§ Изотермический процесс (t = const) - зеленые линии (изотермы),

§ Изохорный процесс (v = const) - красные линии (изохоры).

Степень сухости и паросодержание (х ) - розовые линии. Жирная розовая линия - степень сухости х =1. Все что ниже этой линии - зона влажного пара.

Ось «Х» - энтропия , ось «h» - энтальпия .

Семейство изобар в области насыщения представляет собой пучок расходящихся прямых, начинающихся на нижней и оканчивающихся на верхней пограничной кривой. Чем больше давление, тем выше лежит соответствующая изобара. Переход изобар из области влажного насыщенного в область перегретого пара происходит без перелома на верхней пограничной кривой.

В i, s-диаграмме водяного пара наносятся также линии постоянного паросодержания (x = const) и линии постоянного удельного объема (v = const). Изохоры идут несколько круче, чем изобары.

Состояние перегретого пара обычно определяется в технике давлением p и температурой t . Точка, изображающая это состояние, находится на пересечении соответствующей изобары и изотермы. Состояние влажного насыщенного пара определяется давлением p и паросодержанием x .

Точка, изображающее это состояние, определяется пересечением изобары и линии x = const.

Критические параметры водяного пара: t кр = 364,15 0 С, v кр = 0, 00326 м 3 /кг, р кр = 22, 129 МПа.

Как пользоваться hs-диаграммой

Для описания воспользуемся небольшой задачей. Возьмем с потолка условие.

Пусть начальные параметры пара будут: давление пара р = 120 бар, температура пара t = 550°С. Пар адиабатно расширяется в турбине до температуры, например, 400 °С.

Для примера этого будет достаточно.

Адиабатный процесс на hs-диаграмме - это вертикальная линия (горизонтальная линия - дросселирование). Это для справки.

Итак, начальное давление и температура у нас есть. Найдем эту точку на hs-диаграмме:

Нам нужна изобара , соответствующая давлению 120 бар и изотерма , соответствующая температуре 550 °С . На их пересечении и будет точка, соответствующая начальным параметрам пара в нашей задаче.

Найдя эту точку, мы уже можем определить в ней энтальпию и энтропию. Опустив на оси проекции найденной точки, узнаем значения энтальпии (ось «Y») и энтропии (ось «Х»).

i = ~3480 кДж/кг, S = 6,65 кДж/(кг К)

Далее нам нужно узнать параметры пара после адиабатного расширения. Мы знаем, что по поставленным нами условиям, пар расширился и его температура в точке 2 = 400 °С. Я уже упоминал, что на is-диаграмме адиабатный процесс изображается в виде вертикальной линии. Проведем эту линию из точки 1 (начальные параметры) до пересечения с изотермой 400 °С .

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных газов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рисунок 5.1 а), верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма hS водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях hS (рисунок 5.1 а) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (изотермы); любая вертикальная линия (рисунок 5.1 б) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо и не совпадают с изобарами.

Практически применяется часть диаграммы hS , когда X 0,5, которая заключена в рамку. Эта часть диаграммы приведена на рисунке 5.1.

Состояние перегретого пара на диаграмме hS определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного пара - одним параметром и степенью сухости пара Х. По двум заданным параметрам р 1 и t 1 в области перегретого пара находим точку I (рисунок 5.1 б), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней энергии подсчитывается по формуле

(5.1)

Зная вид термодинамического процесса, двигаются по нему до пересечения с заданным конечным параметром и находят на диаграмме конечное состояние пара. Определив параметры конечного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров).

Изменение внутренней энергии
и работу в любом процессе подсчитывают по формулам

∆u = u 1 – u 2 = (h 1 – h 2) - (p 1 v 1 – p 2 v 2); (5.2)

W=q - ∆u = q –(h 1 – h 2)+(p 1 v 1 -p 2 v 2). (5.3)

Рассмотрим основные задачи, решаемые по hS диаграмме.

Изохорный процесс ( v = const ). Количество теплоты, участвующей в процессе определяется по формуле (5.2) для определения изменения внутренней энергии. Работа изохорного процесса равна нулю.

Изобарный процесс (р=с onst ). Количество теплоты, участвующая в процессе определяется по формуле

(5.4)

Изменение внутренней энергии по формуле 5.2

Работу изобарного процесса можно сравнить

w = p (v 2 v 1 ) (5.5)

или по формуле (5.3).

Изотермический процесс ( T onst ). Теплоту и работу процесса находят по формуле

(5.6)

Адиабатный процесс (р v k =const ). На рисунке 5.1б представлен адиабатный процесс, протекающий без теплообмена с внешней средой. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Работа процесса происходит за счет изменения внутренней энергии
.

Процесс при постоянной степени сухости (Х=сonst) решается также по диаграмме hS (рисунок 5.2).

Приблизительное количество определяется по формуле

. (5.7)

Изменение внутренней энергии в процессе находят обычным способом по формуле 5.2

Работа процесса определяется по формуле (5.3).

При проведении технико-экономических расчётов для подбора оборудования в теплоэнергетике и других отраслях, и моделирования тепловых процессов, необходимы надёжные проверенные данные о теплофизических свойствах воды и водяного пара в широкой области давлений и температур.

Ещё в 1904 году немецкий теплофизик Рихард Молье разработал специальную диаграмму для упрощения и облегчения решений практических задач по теплотехнике, в которой в координатах энтальпии (h) и энтропии (s) графически отображаются сведения из таблиц состояний. s-диаграммы чаще всего содержат в себе данные о свойствах воды в жидком и газообразном состояниях, так как они представляют наибольший интерес с точки зрения теплотехники.

$h-s$ диаграмма воды и водяного пара.

Водяной пар для промышленных целей получают в парогенераторах (паровых котлах) различного типа, общим для которых является то, что процесс получения пара является изобарным. Температура кипения воды и образующегося из нее пара является при этом постоянной, она зависит только от давления парогенератора и называется температурой насыщения $t_н$.

Пар, температура которого равна температуре насыщения, называется насыщенным (пар находится в термодинамическом равновесии с кипящей жидкостью). Насыщенный пар, не содержащий примеси жидкости, называют сухим насыщенным паром . Смесь сухого насыщенного пара и кипящей жидкости называется влажным насыщенным паром . Массовая доля сухого насыщенного пара в этой смеси называется степенью сухости и обозначается x. Для сухого насыщенного пара $x=1$, для кипящей жидкости $x=0$, для влажного насыщенного пара $0

Под теплотой парообразования $r$ понимают количество теплоты, необходимое для превращения 1 кг кипящей жидкости при постоянном давлении (следовательно, и при постоянной температуре) в сухой насыщенный пар.

Параметры кипящей жидкости – удельный объем, энтальпия, энтропия – обозначаются, соответственно, $v"$, $h"$, $s"$, а параметры сухого насыщенного пара – $v""$, $h""$, $s""$. Параметры влажного насыщенного пара обычно обозначают $v_x$, $h_x$ и $s_x$ и определяют по следующим формулам как для смеси кипящей воды и сухого пара:

$$v_x=v""·x+v"·(1–x),$$ $$h_x=h""·x+h"·(1–x),$$ $$s_x=s""·x+s"·(1–x).$$

Параметры перегретого пара обозначают без каких-либо штрихов и индексов, т.е. $v$, $h$ и $s$.

Поскольку водяной пар получают в изобарном процессе, то количество теплоты, подводимой к рабочему телу, можно подсчитать как разность энтальпий в конце и начале процесса. Это очень удобно, т.к. позволяет обойтись без теплоемкости, которая в данном случае (реальный газ) зависит не только от температуры, но и от давления.

Теплота парообразования, учитывая сказанное, равна:

$$r=h""–h".$$

На рисунке представлена диаграмма $h-s$ водяного пара. На этой диаграмме показаны нижняя пограничная кривая ($х=0$) или линия кипящей жидкости и верхняя пограничная кривая ($х=1$) или линия сухого насыщенного пара. Пограничные кривые соединяются в критической точке $К$, обозначающей критическое состояние воды, когда нет различия между кипящей жидкостью и сухим паром. Пограничные линии делят диаграммы на области капельной жидкости (воды), влажного насыщенного пара и перегретого пара. В области влажного пара изобары и изотермы совпадают.


Изолинии на $h-s$ диаграмме воды и водяного пара.

С развитием современной электронно-вычислительной техники и появлением доступных компьютеров и приложений, большое распространение получили hs-диаграммы в электронном виде.

Например симулятор диаграмм HS, TS, PS, PT, PV для воды и водяного пара с расчетом теплофизических свойств по формуляру IAPWS-IF97 и дополнений к нему.

В зависимости от положения курсора (управление мышью и стрелками клавы) выводятся p, T, h, s, v, x выбранной точки. Возможен также ручной ввод данных и перемещения для режимов: p-const, T-const, h-const, s-const, v-const, x-const. В симуляторе присутствует возможность построения и просмотра термодинамических графиков с сохранением в файл. Изменение масштаба - с помощью ползунка или колесика мыши. Данная программа является самым наглядным и удобным способом нахождения термодинамических параметров воды и водяного пара, к тому же она бесплатная.

is - диаграмма является наиболее удобной для расчетных целей. Это свя­зано с тем, что удельные количества теплоты и работы изображаются не площадями, как это имеет место в Ts- и pv - диаграммах, а отрезками линий (рис.6.4).

За начало координат в is - диаграмме принято состояние воды в тройной точке, где s 0 =0 (допущение) i o =0. По оси абсцисс откладывается удельная энтропия, а по оси ординат - удельная энтальпия. На основе данных таблиц водяного пара на диаграмму наносятся пограничные кривые жидкости (АК) и пара (KB) (соответственно нулевой х= 0и единичной х= 1степени сухости), сходящиеся в критической точке К. Пограничная кривая жидкости выходит из начала координат.

Изобары (p=const )в области влажного пара являются прямыми наклон­ными линиями, берущими начало на пограничной кривой нулевой степени сухости, к которой они касательны. В этой области изобары и изотермы сов­падают, т.е. они имеют одинаковый коэффициент наклона к оси абсцисс. Для любой изобары - изотермы

где φ - угол наклона изобар к оси s, T s - температура насыщения, неизменная для данного давления всюду между пограничными кривыми и КВ.

В области перегретого пара (правее и выше кривой х =1) изобары имеют вид кривых отклоняющихся вверх с выпуклостью, направленной вниз. Изо­термы в этой области отклоняются вправо и их выпуклость направлена вверх. Изобара АВ 1 соответствует давлению в тройной точке р 0 = 0,000611 МПа. Область диаграммы, расположенная ниже тройной точки, характери­зует различные состояния смеси пара и льда.

Между кривыми АК и KB наносится сетка линий постоянной степени су­хости (x=const )пара, сходящихся в критической точке К.

Кроме того, на диаграмму наносится сетка изохор, имеющих вид кривых, поднимающихся вверх (как в области влажного, так и в области перегретого пара) более круто, чем изобары. На is -диаграмме рис. 6.3. изохоры не при­ведены.

В практических расчетах обычно используется лишь область диаграммы, расположенная в правом верхнем углу. В связи с чем, начало координат пе­реносится из точки 0 в точку 0", что дает возможность изображать диаграмму в большем масштабе.

Диаграмма is широко применяется для расчета процессов с водяным па­ром. Общий метод состоит в следующем.

1. По заданным начальным параметрам, характеристике процесса и за­данному конечному параметру в i s-диаграмме находится график процесса.

2. По начальной и конечной точкам процесса находятся все основные па­раметры пара в этих точках.

3.Определяется изменение внутренней энергии по формуле

4.Определяется теплота процесса по формулам:

а) процесс ν = const ;

б) процесс р = const ;

в) процесс Т = const ;

г) процесс s = const q = 0.

5.0пределяется удельная работа по формуле

Все рассмотренные выше диаграммы в pv- , Ts- и is - координатах в соот­ветствующих масштабах строятся на основе таблиц параметров, полученных из опытных и теоретических данных. Наиболее точные таблицы для водяно­го пара разработаны в Московском энергетическом институте под руково­дством проф. М.П.Вукаловича .

Справочный материал

Диаграмма водяного пара

Практическое занятие № 9

Цель работы: изучить процесс парообразования и представления в h-s диаграмме.

H , s-диагра́мма (чит. «аш-эс-диаграмма») (написание строчными буквами:«h,s-диаграмма»,) - диаграмма теплофизических свойств жидкости и газа (в основном воды и водяного пара), показывающая характер изменения различных свойств, в зависимости от параметров состояния.

В основном большое применение получили h, s-диаграммы воды и водяного пара, так как в качестве рабочего тела втеплотехнике чаще всего применяются именно вода и водяной пар, из-за их сравнительной дешевизны и доступности, причём наиболее пристальное внимание оказывается именно той части диаграммы, в которой вода впарообразном состоянии, так как в жидком состоянии она практически несжимаема.

Ещё в 1904 году немецкий теплофизик Рихард Молье разработал специальную диаграмму для упрощения и облегчения решений практических задач по теплотехнике, в которой в координатах энтальпии (h) и энтропии (s) графически отображаются сведения из таблиц состояний. В 1906 году в Берлине была издана его книга «Новые таблицы и диаграммы для водяного пара». Впоследствии такая диаграмма получила название Диаграмма Молье. В СССР некоторое время было принято название i, s-диаграмма, а в настоящее время - h, s-диаграмма.

Структура h, s-диаграммы

H, s-диаграммы чаще всего содержат в себе данные о свойствах воды в жидком и газообразном состояниях, так как они представляют наибольший интерес с точки зрения теплотехники.

§ Степень сухости - это параметр, показывающий массовую долю насыщенного пара в смеси воды и водяного пара. Значение x = 0 соответствует воде в момент кипения (насыщения). Значение х = 1 , показывает, что в смеси присутствует только пар. При нанесении соответствующих точек в координатах (h,s) , взятых из таблиц насыщения справочников свойств воды и водяного пара, при их соединении получаются кривые, соответствующие определённым степеням сухости. В таком случае, линия х = 0 является нижней пограничной кривой, а х = 1 - верхней пограничной кривой. Область, заключённая между этими кривыми, является областью влажного пара. Область ниже кривой х = 0 , которая стягивается практически в прямую линию (не показана), соответствует воде. Область выше кривой х = 1 - соответствует состоянию перегретого пара.

§ Критическая точка (К ). При определённом, достаточно высоком давлении, называемом критическим, свойства воды и пара становятся идентичными. То есть исчезают физические различия между жидким и газообразным состояниями вещества. Такое состояние называют критическим состоянием вещества, которому соответствует положение критической точки. Следует заметить, что она на пограничной кривой лежит гораздо левее максимума этой кривой.



§ Изотерма - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённой температуре. Изотермы пересекают пограничные кривые с изломом и, по мере удаления от верхней пограничной кривой, асимптотически приближаются к горизонтали. На схеме для упрощения представлены только три изотермы: t + Δt ; t ; t - Δt .

§ Изобара - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённому давлению. Изобары не имеют изломов при пересечении пограничных кривых. На схеме представлены только три изобары:

§ p + Δp ; p ; p - Δp .

§ Изохора - изолиния, построенная методом объединения точек по значениям энтальпии и энтропии, соответствующих определённому объёму. Изохоры на h, s-диаграмме в области перегретого пара, всегда проходит круче, чем изобары, и это облегчает их распознавание на одноцветных диаграммах. Построение изохор требует более кропотливой работы с таблицей состояний. На схеме представлены только три изохоры:

§ v - Δv ; v ; v + Δv .

Изотермы и изобары в области влажного пара совпадают по причине линейной зависимости в состоянии насыщения.

Определение параметров жидкости и пара по таблицам и h-s диаграмме

Таблицы для определения термодинамических свойств веществ различаются в зависимости от того, какое состояние рассматривается: однофазное или двухфазное. В таблицах для состояния насыщения приводятся удельные значения объема, энтальпии и энтропии воды и водяного пара (см. табл. 7 приложения); хладона R-22 (см. табл. 5 приложения); аммиака (см. табл. 6 приложения).

Параметры насыщенной жидкости (х = 0) отмечаются одним штрихом , Параметры сухого насыщенного пара (х = 1) отмечаются двумя штрихами .

Для определения свойств каждой из фаз в состоянии насыщения надо знать только один параметр – давление или температуру, так как при этих условиях параметры однозначно связаны между собой. В этих же таблицах приводится удельная теплота парообразования r.

Для расчета параметров влажного пара необходимо знать дополнительно степень сухости пара х.

Энтальпия h, энтропия s и удельный объем v влажного пара определяются по формулам: h = h˝·x + h΄·(1–x) = h΄+ r · x,

s = s˝∙x + s΄·(1–x) = s΄+ r·x/Т S ,

v = v˝· x + v΄· (1–x).

Степень сухости пара определяется по одной из следующих формул:

Для определения свойств ненасыщенной жидкости и перегретого пара (однофазное состояние) нужно знать два параметра (обычно давление и температуру). В ячейке таблицы, соответствующей данному состоянию, помещены удельные значения объема v, энтальпии h и энтропии s.

На h-s диаграмме обычно изображаются:

линии изобар (p = const);

По этим данным определяются энтальпия пара h и энтропия s:

h = h΄+ r·x = 504,7 + 2202,2·0,9 = 2486,68 кДж/кг.

s = s΄+ (r·x)/T S = 1,5301 + (2202,2·0,9)/(120,23+273) = 6,57 кДж/(кг·К).

Температура насыщения: t S = 120,23 ºС.

Задание: изучить структурудиаграммы состояния водяного пара