Коллапс тяжелых звезд: как появляются черные дыры и можно ли их увидеть. От белого калика до черной дыры

Гравитация является основным предметом многих из этих вопросов. Это - определяющая сила в космосе. Она удерживает планеты на их орбитах, связывает звезды и галактики, определяет судьбу нашей Вселенной.Созданное Исааком Ньютоном в 17-м веке теоретическое описание гравитации остается достаточно точным, чтобы вычислять траектории космических кораблей при полетах к Марсу, Юпитеру и еще дальше. Но после 1905 г., когда Альберт Эйнштейн показал в специальной теории относительности, что моментальная передача информации невозможна, физики поняли, что законы Ньютона перестанут быть адекватными, когда скорость вызванного гравитацией движения приблизится к скорости света. Однако, общая теория относительности Эйнштейна (опубликованная в 1916 г.), достаточно последовательно описывает даже те ситуации, когда гравитация чрезвычайно сильна.Общую теорию относительности рассматривают как один из двух столпов физики 20-го века; второй - это квантовая теория, революция в представлениях, предвосхитившая наше современное понимание атомов и их ядер. Интеллектуальный подвиг Эйнштейна был особенно впечатляющим, так как, в отличие от пионеров квантовой теории, у него не было стимула в виде экспериментальной проблемы.Только через 50 лет астрономы открыли объекты с достаточно сильным гравитационным полем, в котором могли проявиться наиболее характерные и яркие особенности теории Эйнштейна. В начале 60-х годов были обнаружены объекты с очень большой светимостью - квазары. Казалось, что для них необходим еще более эффективный источник энергии, чем ядерный синтез, благодаря которому светят звезды; гравитационный коллапс казался наиболее привлекательным объяснением. Американский теоретик Томас Голд выразил возбуждение, охватившее тогда теоретиков. В послеобеденном докладе на первой большой конференции о новом объекте релятивистской астрофизики, которая состоялась в Далласе в 1963 г., он сказал: "Релятивисты с их изощренными работами не только являются блестящим украшением культуры, но они могут быть полезны науке! Все довольны: релятивисты, которые чувствуют, что их труд признан, что они неожиданно стали экспертами в области, о существовании которой они и не подозревали; астрофизики, которые расширили свое поле деятельности... Все это очень приятно, будем надеяться, что это правильно."Наблюдения, использующие новые методы радио- и рентгеновской астрономии, поддержали оптимизм Голда. В 1950-х лучшие оптические телескопы мира были сосредоточены в Соединенных Штатах, в особенности в Калифорнии. Это перемещение из Европы произошло как из-за климатических, так и из-за финансовых причин. Однако радиоволны из космоса могут проходить сквозь облака, поэтому в Европе и Австралии новая наука - радиоастрономия - могла развиваться, не испытывая влияния погодных условий.Некоторые из самых сильных источников космического радиошума были идентифицированы. Одним была Крабовидная туманность - расширяющиеся остатки взрыва сверхновой, которую восточные астрономы наблюдали в 1054 г. Другие источники были удаленными внегалактическими объектами, в которых, как мы теперь понимаем, выработка энергии осуществлялась около гигантских черных дыр. Эти открытия были неожиданными. Физические процессы, ответственные за излучение радиоволн, которые сейчас достаточно хорошо поняты, не были предсказаны.Самым замечтельным неожиданным достижением радиоастрономии было открытие нейтронных звезд в 1967 г. Энтони Хьюишем и Джоселин Белл. Эти звезды - плотные остатки, остающиеся в центре после некоторых взрывов сверхновых. Они были открыты как пульсары: они вращаются (иногда с частотой несколько раз в секунду) и испускают мощный луч радиоволн, который проходит через нашу линию зрения один раз за оборот. Важность нейтронных звезд заключается в их экстремальных физических условиях: колоссальных плотностях, сильных магнитных и гравитационных полях.В 1969 г. очень быстрый (30 Гц) пульсар был обнаружен в центре Крабовидной туманности. Тщательные наблюдения показали, что частота импульсов постепенно уменьшается. Это было естественным, если энергия вращения звезды постепенно преобразуется в ветер из частиц, которые поддерживают свечение туманности в голубом свете. Интересно, что частота импульсов пульсара - 30 в секунду - так высока, что глаз видит его как постоянный источник. Если бы он был таким же ярким, но вращался медленнее - скажем, 10 раз в секунду - замечательные свойства этой маленькой звезды могли бы быть открыты еще 70 лет назад. Как изменилось бы развитие физики 20-го века, если бы сверхплотное вещество было открыто в 1920-х годах, до того как нейтроны были открыты на Земле? Хотя этого никто не знает, несомненно, что важность астрономии для фундаментальной физики была бы осознана гораздо раньше.Нейтронные звезды были обнаружены случайно. Никто не ожидал, что они будут излучать такие сильные и четкие радиоимпульсы. Если бы теоретиков в начале 1960-х годов спросили, как лучше всего обнаружить нейтронные звезды, большинство предложило бы искать рентгеновское излучение. Действительно, если нейтронные звезды излучают столько же энергии, как и обычные звезды, с гораздо меньшей площади, они должны быть достаточно горячими, чтобы испускать рентгеновские лучи. Таким образом, казалось, что астрономы, работающие в рентгеновском диапазоне, имели лучшие возможности открыть нейтронные звезды.Рентгеновские лучи от космических объектов, однако, поглощаются в земной атмосфере, и могут наблюдаться только из космоса. Рентгеновская астрономия, как и радиоастрономия, получила импульс к развитию в результате использования военных технологий и опыта. В этой области ученые из США заняли лидирующее положение, в особенности покойный Герберт Фридман и его коллеги из Военно-морской исследовательской лаборатории США. Их первые рентгеновские детекторы, установленные на ракетах, работали только по несколько минут, перед тем как упасть на землю. Большого прогресса рентгеновская астрономия добилась в 1970-х годах, когда НАСА запустило первый рентгеновский спутник, который собирал информацию в течение нескольких лет. Этот проект и многие последовавшие за ним показали, что рентгеновская астрономия открыла важное новое окно во Вселенную.Рентгеновские лучи излучаются необычно горячим газом и особенно мощными источниками. Поэтому на рентгеновской карте неба выделяются самые горячие и самые мощные объекты в космосе. Среди них - нейтронные звезды, в которых масса, по крайней мере не меньшая массы Солнца, сосредоточена в объеме с диаметром немногим больше 10 километров. Сила тяготения на них так сильна, что релятивистские поправки доходят до 30%.В настоящее время предполагается, что некоторые остатки звезд при коллапсе могут превзойти плотность нейтронных звезд и превратиться в черные дыры, которые искажают время и пространство еще больше, чем нейтронные звезды. Астронавт, который отважится попасть внутрь горизонта черной дыры, не сможет передать световые сигналы в окружающий мир - как будто само пространство засасывается внутрь быстрее, чем свет движется через него. Внешний наблюдатель никогда не узнает окончательную участь астронавта. Ему будет казаться, что любые часы, падая внутрь, будут идти все медленнее и медленнее. Так и астронавт будет как бы пригвозджен к горизонту, остановившись во времени.Российские теоретики Яков Зельдович и Игорь Новиков, исследовавшие, как искажается время около сколлапсировавших объектов, предложили в начале 1960-х термин "замерзшие звезды". Термин "черная дыра" был введен в употребление в 1968 г., когда Джон Уилер описал, как "свет и частицы, падающие снаружи... падают на черную дыру, только увеличивая ее массу и гравитационное притяжение".Черные дыры, которые являются финальным эволюционным состоянием звезд, имеют радиусы от 10 до 50 километров. Но сейчас существуют убедительные свидетельства того, что черные дыры с массами в миллионы или даже миллиарды масс Солнца, существуют в центрах большинства галактик. Некоторые из них проявляют себя как квазары - сгустки энергии, которые светят ярче всех звезд галактик, в которых они находятся, или как мощные источники космического радиоизлучения. Другие, включая черную дыру в центре нашей Галактики, не проявляют такой активности, но влияют на орбиты звезд, подходящих близко к ним.Черные дыры, если смотреть на них извне, являются стандартизированными объектами: не существует признаков, по которым можно было бы определить, как образовалась определенная черная дыра или какие объекты поглощены ей. В 1963 г. новозеландец Рой Керр обнаружил решение уравнений Эйнштейна, которые описывали сколлапсировавший вращающийся объект. "Решение Керра" приобрело очень важное значение, когда теоретики поняли, что оно описывает пространство-время около любой черной дыры. Коллапсирующий объект быстро приходит в стандартизированное состояние, характеризуемое всего двумя числами, измеряющими его массу и спин. Роджер Пенроуз, специалист в математической физике, который, возможно, сделал больше всех для возрождения теории относительности в 1960-х, заметил: "Есть какая-то ирония в том, что для самого странного и наименее знакомого астрофизического объекта - черной дыры - наша теоретическая картина наиболее полна".Обнаружение черных дыр проложило путь к проверке самых замечательных следствий теории Эйнштейна. Излучение таких объектов обусловлено в основном горячим газом, падающим по спирали в "гравитационную яму". Оно показывает сильный эффект Доплера, а также имеет дополнительное красное смещение из-за сильного гравитационного поля. Спектроскопическое исследование этого излучения, в особенности рентгеновского, позволит прозондировать поток очень близко к черной дыре и определить, согласуется ли форма пространства с предсказаниями теории.

Черная дыра, это и есть нейтронная звезда, точнее, черная дыра представляет собой одну из разновидностей нейтронных звезд.

Черня дыра, как и нейтронная звезда состоит из нейтронов. Причем, это не нейтронный газ, в котором нейтроны находятся в свободном состоянии, а очень плотная субстанция с плотностью атомного ядра.

Черные дыры и нейтронные звезды образуются в результате гравитационного коллапса, когда давление газа в звезде не может уравновесить её гравитационное сжатие. При этом звезда сжимается до очень маленького размера и очень большой плотности, так что электроны вдавливаются в протоны и образуются нейтроны.

Заметим, что среднее время жизни свободного нейтрона около 15 минут (период полураспада около 10 минут). Поэтому нейтроны в нейтронных звездах и в черных дырах могут быть только в связанном состоянии, как в атомных ядрах. Поэтому нейтронная звезда и черная дыра, это как бы атомное ядро макроскопических размеров, в котором нет протонов.

Отсутствие протонов, это одно отличие черной дыры и нейтронной звезды от атомного ядра. Второе отличие связано с тем, что в обычных атомных ядрах нейтроны и протоны "склеены" друг с другом с помощью ядерных сил (так называемое, "сильное" взаимодействие). А в нейтронных звездах нейтроны "склеены" с помощью гравитации.

Дело в том, что ядерным силам нужны еще и протоны для "склеивания" нейтронов друг с другом. Не существует таких ядер, которые состоят только из одних нейтронов. Обязательно должен быть хотя бы один протон. А для гравитации никакие протоны не нужны, чтобы "склеить" нейтроны друг с другом.

Еще одно отличие гравитации от ядерных сил заключается в том, что гравитация, это дальнодействующее взаимодействие, а ядерные силы, это короткодействующее взаимодействие. Поэтому атомные ядра не могут быть макроскопических размеров. Начиная с урана, все элементы периодической таблицы Менделеева имеют неустойчивые ядра, которые распадаются из-за того, что положительно заряженные протоны отталкиваются друг от друга и разрывают крупные ядра.

У нейтронных звезд и черных дыр такой проблемы нет, так как, во-первых, гравитационные силы дальнодействующие, а, во-вторых, в нейтронных звездах и черных дырах нет положительно заряженных протонов.

Нейтронная звезда и черная дыра под действием сил гравитации имеют форму шара, а точнее эллипсоида вращения, так как все нейтронные звезды (и черные дыры) вращаются вокруг своей оси. Причем достаточно быстро, с периодами вращения от нескольких секунд и меньше.

Дело в том, что нейтронные звезды и черные дыры образуются из обычных звезд путем их сильного сжатия под действием гравитации. Поэтому, по закону сохранения момента вращения, они должны очень быстро вращаться.

Является ли поверхность черных дыр и нейтронных звезд твердой? Не в смысле твердого тела, как агрегатного состояния вещества, а в смысле четкой поверхности шара, без нейтронной атмосферы. Видимо, да, черные дыры и нейтронные звезды имеют твердую поверхность. Нейтронная атмосфера и нейтронная жидкость, это нейтроны в свободном состоянии, значит, они должны распадаться.

Но это не значит, что, если мы, например, уроним на поверхность черной дыры или нейтронной звезды какое-нибудь "изделие" из нейтронов с плотностью атомного ядра, то оно останется лежать на поверхности звезды. Такое гипотетическое "изделие" тут же "всосется" во внутрь нейтронной звезды и черной дыры.

Отличие черных дыр от нейтронных звезд

Сила тяжести у черной дыры такая, что вторая космическая скорость на её поверхности превышает скорость света. Поэтому свет с поверхности черной дыры не может навсегда уйти в открытый космос. Гравитационные силы заворачивают луч света обратно.

Если на поверхности черной дыры находится источник света, то фотоны этого света сначала летят вверх, а потом поворачивают и падают обратно на поверхность черной дыры. Или эти фотоны начинают вращаться вокруг черной дыры по эллиптической орбите. Последнее имеет место на такой черной дыре, на поверхности которой первая космическая скорость меньше скорости света. В этом случае фотон может вырваться с поверхности черной дыры, но он превращается в постоянный спутник черной дыры.

А на поверхности всех остальных нейтронных звезд, которые не являются черными дырами, вторая космическая скорость меньше скорости света. Поэтому, если на поверхности такой нейтронной дыры находится источник света, то фотоны от этого источника света покидают поверхность такой нейтронной звезды по гиперболическим орбитам.

Понятно, что все эти рассуждения относятся не только к видимому свету, но и к любому электромагнитному излучению. То есть покинуть черную дыру не может не только видимый свет, но и радиоволны, инфракрасные лучи, ультрафиолетовое, рентгеновское и гамма-излучение. Максимум, что смогут фотоны этих излучений и волн, это начать вращаться вокруг черной дыры, если для данной черной дыры скорость света больше первой космической скорости на поверхности звезды.

Поэтому такие нейтронные звезды и называются так "черная дыра". От черной дыры ничего не вылетает, а всё что угодно может туда залететь. (Испарение черных дыр за счет квантового туннелирования здесь рассматривать не будем.)

То есть понятно, что никакой дырки в пространстве там на самом деле нет. Точно также, как нет никакой дырки в пространстве на месте расположения обычной нейтронной звезды или на месте обычной звезды.

Дырки в пространстве там есть только в книгах писателей-фантастов, в научно-популярных изданиях и телепередачах. Изданиям и телепередачам нужно финансово отбить затраты на тиражи и рейтинги. Поэтому им приходится эмоционально поражать своих читателей и телезрителей такими фактами, которые нельзя проверить при сегодняшнем уровне развития науки и техники, но которые могут появится в каких-нибудь математических моделях. (Непрофессиональная публика обычно не подозревает, что математические модели в физике всегда вторичны, что физика наука экспериментальная и что математические модели физических объектов имеют свойство в будущем меняться по мере появления новых экспериментальных данных.)

Если бы мы могли стоять на поверхности черной дыры, то посмотрев вверх мы бы увидели вместо звездного неба полупрозрачное зеркало. То есть мы видели бы там и окружающий космос (так как черная дыра принимает всё излучение отправленное к ней) и тот свет, который возвращается к нам обратно не сумев преодолеть гравитация. Этот возврат света обратно имеет эффект зеркала.

Точно такое же полупрозрачное "зеркало" на поверхности черной дыры имеет место и для других видов электромагнитного излучения (радиоволны, рентген, ультрафиолет и т.д.)

Белые карлики, нейтронные звезды и черные дыры представляют собой различные формы конечного этапа звездной эволюции. Молодые звезды черпают свою энергию в термоядерных реакциях, протекающих в звездных недрах; в ходе этих реакций происходит превращение водорода в гелий. После того как определенная доля водорода израсходована, образовавшееся гелиевое ядро начинает сжиматься. Дальнейшая эволюция звезды зависит от ее массы, а точнее от того, как она соотносится с некой критической величиной, называемой пределом Чандрасекара. Если масса звезды меньше этой величины, то давление вырожденного электронного газа останавливает сжатие (коллапс) гелиевого ядра, прежде чем его температура достигнет столь высокого значения, когда начинаются термоядерные реакции, в ходе которых гелий превращается в углерод. Тем временем внешние слои эволюционирующей звезды сравнительно быстро сбрасываются. (Предполагается, что именно таким путем образуются планетарные туманности.) Белый карлик и представляет собой гелиевое ядро, окруженное более или менее протяженной водородной оболочкой.

У более массивных звезд гелиевое ядро продолжает сжиматься вплоть до «загорания» гелия. Энергия, выделяемая в процессе превращения гелия в углерод, предохраняет ядро от дальнейшего сжатия - но ненадолго. После того как гелий полностью израсходуется, сжатие ядра продолжается. Температура вновь возрастает, начинаются другие ядерные реакции, которые протекают до тех пор, пока не исчерпается энергия, запасенная в атомных ядрах. К этому моменту ядро звезды состоит уже из чистого железа, которое играет роль ядерной «золы». Теперь ничто не сможет воспрепятствовать дальнейшему коллапсу звезды - он продолжается до тех пор, пока плотность ее вещества не достигнет плотности атомных ядер. Резкое сжатие вещества в центральных областях звезды порождает взрыв огромной силы, в результате которого внешние слои звезды разлетаются с громадными скоростями. Именно эти взрывы астрономы связывают с явлением сверхновых.

Судьба коллапсирующего остатка звезды зависит от его массы. Если масса меньше, чем примерно 2,5М 0 (масса Солнца), то давление, обусловленное «нулевым» движением нейтронов и протонов, достаточно велико, чтобы воспрепятствовать дальнейшему гравитационному сжатию звезды. Объекты, у которых плотность вещества равна (или даже превосходит) плотности атомных ядер, называются нейтронными звездами. Их свойства впервые были изучены в 30-х годах Р. Оппенгеймером и Г. Волковым.

Согласно теории Ньютона, радиус коллапсирующей звезды уменьшается до нуля за конечное время, гравитационный потенциал при этом неограниченно возрастает. Теория Эйнштейна рисует другой сценарий. Скорость фотона уменьшается по мере его приближения к центру черной дыры, становясь равной нулю. Это означает, что с точки зрения внешнего наблюдателя фотон, падающий в черную дыру, никогда не достигнет ее центра. Поскольку частицы вещества не могут двигаться быстрее фотона, радиус черной дыры достигнет предельного значения за бесконечное время. Более того, фотоны, испускаемые с поверхности черной дыры, на протяжении коллапса испытывают все возрастающее красное смещение. С точки зрения внешнего наблюдателя, объект, из которого формируется черная дыра, вначале сжимается со все возрастающей скоростью; затем его радиус начинает уменьшаться все медленнее.

Не имея внутренних источников энергии, нейтронные звезды и черные дыры быстро остывают. А поскольку площадь их поверхности весьма мала - всего несколько десятков квадратных километров, - следует ожидать, что яркость этих объектов крайне невелика. Действительно, теплового излучения поверхности нейтронных звезд или черных дыр пока не удавалось наблюдать. Однако некоторые нейтронные звезды являются мощными источниками нетеплового излучения. Речь идет о так называемых пульсарах, обнаруженных в 1967 г. Джоселин Белл - аспиранткой Кембриджского университета. Белл изучала радиосигналы, зарегистрированные с помощью аппаратуры, разработанной Энтони Хьюишем для исследования излучения осциллирующих радиоисточников. Среди множества записей хаотически мерцающих источников она заметила такую, где всплески повторялись с четкой периодичностью, хотя и менялись по интенсивности. Более детальные наблюдения подтвердили точно периодический характер следования импульсов, а при изучении других записей было обнаружено еще два источника с такими же свойствами. Наблюдения и теоретический анализ показывают, что пульсары - это быстровращающиеся нейтронные звезды с необычайно сильным магнитным полем. Пульсирующий характер излучения обусловлен пучком лучей, выходящих из «горячих пятен» на (или вблизи) поверхности вращающейся нейтронной звезды. Детальный механизм этого излучения все еще остается загадкой для ученых.

Было обнаружено несколько нейтронных звезд, входящих в состав тесных двойных систем. Именно эти (и никакие другие) нейтронные звезды являются мощными источниками рентгеновского излучения. Представим себе тесную двойную, один компонент которой - гигант или сверхгигант, а другой - компактная звезда. Под действием гравитационного поля компактной звезды газ может вытекать из разреженной атмосферы гиганта: такие газовые потоки в тесных двойных системах, давно обнаруженные методами спектрального анализа, получили соответствующее теоретическое толкование. Если компактной звездой в двойной системе является нейтронная звезда или черная дыра, то молекулы газа, утекающего с другого компонента системы, могут ускоряться до очень высоких энергий. Вследствие столкновений между молекулами кинетическая энергия газа, падающего на компактную звезду, в конечном итоге переходит в тепло и в излучение. Как показывают оценки, выделяемая при этом энергия вполне объясняет наблюдаемую интенсивность рентгеновского излучения двойных систем такого типа.

В общей теории относительности Эйнштейна черные дыры занимают такое же место, как ультрарелятивистские частицы в его специальной теории относительности. Но если мир ультрарелятивистских частиц - физика высоких энергий - полон удивительных явлений, которые играют важную роль в экспериментальной физике и наблюдательной астрономии, то явления, связанные с черными дырами, пока вызывают лишь удивление. Со временем физика черных дыр даст результаты, важные для космологии, но сейчас эта отрасль науки в основном представляет собой «игровую площадку» для теоретиков. Не следует ли из этого, что теория гравитации Эйнштейна дает нам меньше сведений о Вселенной, чем теория Ньютона, хотя в теоретическом отношении значительно превосходит ее? Вовсе нет! В отличие от теории Ньютона теория Эйнштейна образует фундамент самосогласованной модели реальной Вселенной как целого, что эта теория имеет множество поразительных и доступных проверке предсказаний и, наконец, она обеспечивает причинную связь между свободно падающими, невращающимися системами отсчета и распределением, а также движением массы в космическом пространстве.

Этот пост - конспект к пятому занятию по программе курса по астрофизике для средней школы. Он содержит описание вспышек сверхновых, процессов образования нейтронных звезд (пульсаров) и черных дыр звездных масс как одиночных, так и в звездных парах. И несколько слов о коричневых карликах.


Сначала повторю картинку, показывающую классификацию типов звезд и их эволюции в зависимости от их масс:

1. Вспышки новых и сверхновых.
Выгорание гелия в недрах звезд завершается образованием красных гигантов и их вспышками как новых с образованием белых карликов или образованием красных сверхгигантов и их вспышками как сверхновых с образованием нейтронных звезд или черных дыр, а также туманностей из сброшенных этими звездами своих оболочек. Зачастую массы сбрасываемых оболочек превышают массы "мумий" этих звезд - нейтронных звезд и черных дыр. Для понимания масштабов этого явления приведу видео вспышки сверхновой 2015F в удаленной от нас на 50 млн. св. лет галактике NGC 2442:

Другой пример - сверхновая 1054 года в нашей Галактике, в результате вспышки которой образовались Крабовидная туманность и нейтронная звезда на расстоянии от нас в 6,5 тыс. св. лет. При этом масса образовавшейся нейтронной звезды ~ 2 солнечных масс, а масса сброшенной оболочки ~ 5 солнечных масс. Современники оценивали яркость этой сверхновой как примерно в 4-5 раз большую, чем у Венеры. Если бы такая сверхновая вспыхнула в тысячу раз ближе (6,5 св. лет), то она бы сверкала на нашем небе в 4000 раз ярче Луны, но в сотню раз слабее Солнца.

2. Нейтронные звезды.
Звезды больших масс (классов О, В, А ) после выгорания водорода в гелий и в процессе выгорания гелия преимущественно в углерод, кислород и азот входят в достаточно короткую стадию красного сверхгиганта и по завершении гелиево-углеродного цикла тоже сбрасывают оболочку и вспыхивают как "Сверхновые" . Их недра тоже сжимаются под действием гравитации. Но давление вырожденного электронного газа уже не может, как у белых карликов, остановить это гравитационное самосжатие. Поэтому температура в недрах этих звезд повышается и в них начинают идти термоядерные реакции, в результате которых образуются следующие элементы таблицы Менделеева. Вплоть до железа .

Почему именно до железа? Потому, что образование ядер с большим атомным номером идет не с выделением энергии, а с поглощением ее. А взять ее от других ядер не так то просто. Конечно, элементы с большим атомным номером в недрах этих звезд образуются. Но в гораздо меньшем количестве, чем железо.

А вот дальше эволюция расщепляется. Не слишком массивные звезды (классов А и частично В ) превращаются в нейтронные звезды . В которых электроны буквально впечатываются в протоны и большая часть тела звезды превращается в огромное нейтронное ядро. Состоящее из соприкасающихся и даже вжатых друг в друга обычных нейтронов. Плотность вещества в котором порядка нескольких миллиардов тонн в кубическом сантиметре. А типичный диаметр нейтронной звезды - порядка 10-20 километров. Нейтронная звезда - второй устойчивый тип "мумии" умершей звезды. Их массы, как правило, лежат в интервале от примерно 1,3 до 2,1 масс Солнца (по данным наблюдений).

Одиночные нейтронные звезды в оптике увидеть практически невозможно из-за их чрезвычайно низкой светимости. Но часть из них обнаруживают себя как пульсары . Что это такое? Практически все звезды обращаются вокруг своей оси и обладают достаточно сильным магнитным полем. Например, наше Солнце делает оборот вокруг своей оси примерно за месяц.

Теперь представьте себе, что его диаметр уменьшится сто тысяч раз. Ясно, что благодаря закону сохранения момента импульса вращаться оно будет гораздо быстрее. И магнитное поле такой звезды будет вблизи ее поверхности на много порядков сильнее солнечного. Большинство нейтронных звезд имеют период оборота вокруг своей оси в десятые - сотые доли секунды. Из наблюдений известно, что самый быстро вращающийся пульсар делает чуть более 700 оборотов вокруг своей оси в секунду, а самый медленно вращающийся делает один оборот за более чем 23 секунды.

А теперь представьте себе, что у такой звезды магнитная ось, как и у Земли, не совпадает с осью вращения. Жесткое излучение от такой звезды будет концентрироваться в узких конусах вдоль магнитной оси. И если этот конус будет с периодом вращения звезды "задевать" Землю, то эту звезду мы будем видеть как пульсирующий источник излучения. Наподобие вращаемого нашей рукой фонарика.

Такой пульсар (нейтронная звезда) образовался после вспышки сверхновой 1054 года, случившейся как раз во время визита кардинала Гумберта в Константинополь. По результатам которого произошел окончательный разрыв между католической и православной церквями. Сам этот пульсар совершает 30 оборотов в секунду. А сброшенная им оболочка массой ~ 5 масс Солнца выглядит как Крабовидная туманность :

3. Черные дыры (звездных масс).
Наконец, достаточно массивные звезды (классов О и частично В ) заканчивают свой жизненный путь третьим типом "мумии" - черной дырой . Такой объект возникает, когда масса остатка звезды настолько велика, что давление соприкасающихся нейтронов (давление вырожденного нейтронного газа) в недрах этого остатка не может противостоять его гравитационному самосжатию. Наблюдения показывают, что граница по массе между нейтронными звездами и черными дырами лежит в окрестности ~ 2,1 массы Солнца.

Напрямую одиночную черную дыру наблюдать невозможно. Ибо с ее поверхности (если она есть) никакая частица вырваться не может. Даже частица света - фотон.

4. Нейтронные звезды и черные дыры в двойных звездных системах.
Одиночные нейтронные звезды и черные дыры звездных масс практически не наблюдаемы. Но в случаях, если они являются одной из двух или более звезд в тесных звездных системах такие наблюдения становятся возможными. Поскольку своим тяготением могут "отсасывать" внешние оболочки остающихся пока нормальными звездами своих соседок.

При таком "отсасывании" вокруг нейтронной звезды или черной дыры образуется аккреционный диск , вещество которого частично "сползает" к нейтронной звезде или черной дыре и частично отбрасывается от нее в двух струях-джетах . Это процесс удается зафиксировать. Пример - двойная звездная системв SS433, одна компонента которой либо нейтронная звезда, либо черная дыра. А вторая - пока обычная звезда:

5. Коричневые карлики.
Звезды с массами заметно меньшей солнечной и вплоть до ~ 0,08 массы Солнца являются красными карликами класса М. Они будут работать на водородно-гелиевом цикле в течение времени большего, чем возраст Вселенной. В объектах с массами меньше этого предела по ряду причин стационарный долго работающий термояд не возможен. Такие звезды называют коричневыми карликами. Температура их поверхности настолько низка, что в оптике они почти не видны. Но светят в ИК-диапазоне. По совокупности этих причин их часто называют недозвездами .

Диапазон масс коричневых карликов - от 0,012 до 0,08 солнечных масс. Объекты с массой меньшей 0,012 массы Солнца (~ 12 масс Юпитера) могут быть только планетами. Газовыми гигантами. Излучающими за счет медленного гравитационного самосжатия заметно больше энергии, чем они получают от родительских звезд. Так, Юпитер по сумме всех диапазонов излучает примерно вдвое больше энергии, чем он получает от Солнца.