Математическое ожидание и дисперсия случайной величины. Математическое ожидание дискретной случайной величины. Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М (Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х п
р 0,5 (0,5) 2 (0,5) п

+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной:

М (С ) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С ) = С ?1 = С .

2) Постоянный множитель можно выносит за знак математического ожидания:

М (СХ ) = С М (Х ). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения


Тогда М (СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ (Х ).

Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M (XY ) = M (X )M (Y ). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

Следовательно, M (XY ) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X )?M (Y ).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:

M (X + Y ) = M (X ) + M (Y ). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М (Х +Y ) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,

M (X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X ) + M (Y ).

Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М (Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М (Х )=

Дисперсия .

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Найдем М (Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М (Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М (Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М (Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:

D (X ) = M (X - M (X ))². (7.6)

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема 7.1. D (X ) = M (X ²) - M ²(X ). (7.7)

Доказательство.

Используя то, что М (Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D (X ) = M (X - M (X ))² = M (X ² - 2X?M (X ) + M ²(X )) = M (X ²) - 2M (X )?M (X ) + M ²(X ) =

= M (X ²) - 2M ²(X ) + M ²(X ) = M (X ²) - M ²(X ), что и требовалось доказать.

Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М (Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М (Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю:

D (C ) = 0. (7.8)

Доказательство. D (C ) = M ((C - M (C ))²) = M ((C - C )²) = M (0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D (CX ) = C ²D (X ). (7.9)

Доказательство. D (CX ) = M ((CX - M (CX ))²) = M ((CX - CM (X ))²) = M (C ²(X - M (X ))²) =

= C ²D (X ).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D (X + Y ) = D (X ) + D (Y ). (7.10)

Доказательство. D (X + Y ) = M (X ² + 2XY + Y ²) - (M (X ) + M (Y ))² = M (X ²) + 2M (X )M (Y ) +

+ M (Y ²) - M ²(X ) - 2M (X )M (Y ) - M ²(Y ) = (M (X ²) - M ²(X )) + (M (Y ²) - M ²(Y )) = D (X ) + D (Y ).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D (X - Y ) = D (X ) + D (Y ). (7.11)

Доказательство. D (X - Y ) = D (X ) + D (-Y ) = D (X ) + (-1)²D (Y ) = D (X ) + D (X ).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно

Понятие математического ожидания можно рассмотреть на примере с бросанием игрального кубика. При каждом броске фиксируются выпавшие очки. Для их выражения используются натуральные значения в диапазоне 1 – 6.

После определенного количества бросков при помощи не сложных расчетов можно найти среднее арифметическое значение выпавших очков.

Также, как и выпадение любого из значений диапазона, эта величина будет случайной.

А если увеличить количество бросков в несколько раз? При больших количествах бросков среднее арифметическое значение очков будет приближаться к конкретному числу, получившему в теории вероятностей название математического ожидания.

Итак, под математическим ожиданием понимается среднее значение случайной величины. Данный показатель может представляться и в качестве взвешенной суммы значений вероятной величины.

Это понятие имеет несколько синонимов:

  • среднее значение;
  • средняя величина;
  • показатель центральной тенденции;
  • первый момент.

Иными словами, оно является ничем иным как числом вокруг которого распределяются значения случайной величины.

В различных сферах человеческой деятельности подходы к пониманию математического ожидания будут несколько отличаться.

Оно может рассматриваться как:

  • средняя выгода, полученная от принятия какого-то решения, в том случае, когда такое решение рассматривается с точки зрения теории больших чисел;
  • возможная сумма выигрыша либо проигрыша (теория азартных игр), рассчитанная в среднем для каждой из ставок. На сленге они звучат как «преимущество игрока» (позитивно для игрока) либо «преимущество казино» (негативно для игрока);
  • процент прибыли, полученной от выигрыша.

Матожидание не является обязательным для абсолютно всех случайных величин. Оно отсутствует для тех у которых наблюдается расхождение соответствующей суммы или интеграла.

Свойства математического ожидания

Как и любому статистическому параметру, математическому ожиданию присущи свойства:


Основные формулы для математического ожидания

Вычисление математического ожидания может выполняться как для случайных величин, характеризующихся как непрерывностью (формула А), так и дискретностью (формула Б):

  1. M(X)=∑i=1nxi⋅pi, где xi – значения случайной величины, pi – вероятности:
  2. M(X)=∫+∞−∞f(x)⋅xdx, где f(x) – заданная плотность вероятностей.

Примеры вычисления математического ожидания

Пример А.

Можно ли узнать средний рост гномов в сказке о Белоснежке. Известно, что каждый из 7 гномов имел определенный рост: 1,25; 0,98; 1,05; 0,71; 0,56; 0,95 и 0,81 м.

Алгоритм вычислений достаточно прост:

  • находим сумму всех значений показателя роста (случайная величина):
    1,25+0,98+1,05+0,71+0,56+0,95+ 0,81 = 6,31;
  • полученную сумму делим на количество гномов:
    6,31:7=0,90.

Таким образом, средний рост гномов в сказке равен 90 см. Иными словами таково математическое ожидание роста гномов.

Рабочая формула — М(х)=4 0,2+6 0,3+10 0,5=6

Практическая реализация математического ожидания

К вычислению статистического показателя математического ожидания прибегают в различных сферах практической деятельности. В первую очередь речь идет о коммерческой сфере. Ведь введение Гюйгенсом этого показателя связано с определением шансов, которые могут быть благоприятными, либо напротив неблагоприятными, для какого-то события.

Этот параметр широко применяется для оценки рисков, особенно если речь идет о финансовых вложениях.
Так, в предпринимательстве расчет математического ожидания выступает в качестве метода для оценивания риска при расчете цен.

Также данный показатель может использоваться при расчете эффективности проведения тех или иных мероприятий, например, по охране труда. Благодаря ему можно вычислить вероятность наступления события.

Еще одна сфера применения данного параметра – менеджмент. Также он может рассчитываться при контроле качества продукции. Например, при помощи мат. ожидания можно рассчитать возможное количество изготовления бракованных деталей.

Незаменимым мат.ожидание оказывается и при проведении статистической обработки полученных в ходе научных исследований результатов. Он позволяет рассчитать и вероятность проявления желательного либо нежелательного исхода эксперимента или исследования в зависимости от уровня достижения поставленной цели. Ведь ее достижение может ассоциироваться с выигрышем и выгодой, а ее не достижение – в качестве проигрыша либо убытка.

Использование математического ожидания на Форекс

Практическое применение данного статистического параметра возможно при проведении операций на валютном рынке. С его помощью можно осуществлять анализ успешности торговых сделок. При чем увеличение значения ожидания свидетельствует об увеличении их успешности.

Также важно помнить, что математическое ожидание не должно рассматриваться в качестве единственного статистического параметра используемого для анализа работы трейдера. Использование нескольких статистических параметров наряду со средним значением повышает точность проводимого анализа в разы.

Данный параметр хорошо зарекомендовал себя при мониторинговых наблюдениях за торговыми счетами. Благодаря ему выполняется быстрая оценка работ, осуществляемых на депозитном счете. В тех случаях, когда деятельность трейдера удачна и он избегает убытков, пользоваться исключительно расчетом математического ожидания не рекомендуется. В этих случаях не учитываются риски, что снижает эффективность анализа.

Проведенные исследования тактик трейдеров свидетельствуют о том, что:

  • наиболее эффективными оказываются тактики, базирующиеся на случайном входе;
  • наименее эффективны – тактики, базирующиеся на структурированных входах.

В достижении позитивных результатов не менее важны:

  • тактика управления капиталом;
  • стратегии выходов.

Используя такой показатель как математическое ожидание можно предположить каким будет прибыль либо убыток при вложении 1 доллара. Известно, что этот показатель, рассчитанный для всех игр, практикуемых в казино, в пользу заведения. Именно это позволяет зарабатывать деньги. В случае длинной серии игр вероятность потери денег клиентом существенно возрастает.

Игры профессиональных игроков ограничены небольшими временными промежутками, что увеличивает вероятность выигрыша и снижает риск проигрыша. Такая же закономерность наблюдается и при выполнении инвестиционных операций.

Инвестор может заработать значительную сумму при положительном ожидании и совершении большого количества сделок за небольшой временной промежуток.

Ожидание может рассматриваться как разница между произведением процента прибыли (PW) на среднюю прибыль (AW) и вероятность убытка (PL) на средний убыток (AL).

В качестве примера можно рассмотреть следующий: позиция – 12,5 тыс. долларов, портфель — 100 тыс. долларов, риск на депозит – 1%. Прибыльность сделок составляет 40% случаев при средней прибыли 20%. В случае убытка средние потери составляют 5%. Расчет математического ожидания для сделки дает значение в 625 долларов.

2. Основы теории вероятностей

Математическое ожидание

Рассмотрим случайную величину с числовыми значениями. Часто оказывается полезным связать с этой функцией число – ее «среднее значение» или, как говорят, «среднюю величину», «показатель центральной тенденции». По ряду причин, некоторые из которых будут ясны из дальнейшего, в качестве «среднего значения» обычно используют математическое ожидание.

Определение 3. Математическим ожиданием случайной величины Х называется число

т.е. математическое ожидание случайной величины – это взвешенная сумма значений случайной величины с весами, равными вероятностям соответствующих элементарных событий.

Пример 6. Вычислим математическое ожидание числа, выпавшего на верхней грани игрального кубика. Непосредственно из определения 3 следует, что

Утверждение 2. Пусть случайная величина Х принимает значения х 1 , х 2 ,…, х m . Тогда справедливо равенство

(5)

т.е. математическое ожидание случайной величины – это взвешенная сумма значений случайной величины с весами, равными вероятностям того, что случайная величина принимает определенные значения.

В отличие от (4), где суммирование проводится непосредственно по элементарным событиям, случайное событие может состоять из нескольких элементарных событий.

Иногда соотношение (5) принимают как определение математического ожидания. Однако с помощью определения 3, как показано далее, более легко установить свойства математического ожидания, нужные для построения вероятностных моделей реальных явлений, чем с помощью соотношения (5).

Для доказательства соотношения (5) сгруппируем в (4) члены с одинаковыми значениями случайной величины :

Поскольку постоянный множитель можно вынести за знак суммы, то

По определению вероятности события

С помощью двух последних соотношений получаем требуемое:

Понятие математического ожидания в вероятностно-статистической теории соответствует понятию центра тяжести в механике. Поместим в точки х 1 , х 2 ,…, х m на числовой оси массы P (X = x 1 ), P (X = x 2 ),…, P (X = x m ) соответственно. Тогда равенство (5) показывает, что центр тяжести этой системы материальных точек совпадает с математическим ожиданием, что показывает естественность определения 3.

Утверждение 3. Пусть Х – случайная величина, М(Х) – ее математическое ожидание, а – некоторое число. Тогда

1) М(а)=а; 2) М(Х-М(Х))=0; 3) М[(X - a ) 2 ]= M [(X - M (X )) 2 ]+(a - M (X )) 2 .

Для доказательства рассмотрим сначала случайную величину, являющуюся постоянной, т.е. функция отображает пространство элементарных событий в единственную точку а . Поскольку постоянный множитель можно выносить за знак суммы, то

Если каждый член суммы разбивается на два слагаемых, то и вся сумма разбивается на две суммы, из которых первая составлена из первых слагаемых, а вторая – из вторых. Следовательно, математическое ожидание суммы двух случайных величин Х+У , определенных на одном и том же пространстве элементарных событий, равно сумме математических ожиданий М(Х) и М(У) этих случайных величин:

М(Х+У) = М(Х) + М(У).

А потому М(Х-М(Х)) = М(Х) - М(М(Х)). Как показано выше, М(М(Х)) = М(Х). Следовательно, М(Х-М(Х)) = М(Х) - М(Х) = 0.

Поскольку (Х - а) 2 = {(X M (X )) + (M (X ) - a )} 2 = (X - M (X )) 2 + 2(X - M (X ))(M (X ) - a ) + (M (X ) – a ) 2 , то M [(Х - а) 2 ] = M (X - M (X )) 2 + M {2(X - M (X ))(M (X ) - a )} + M [(M (X ) – a ) 2 ]. Упростим последнее равенство. Как показано в начале доказательства утверждения 3, математическое ожидание константы – сама эта константа, а потому M [(M (X ) – a ) 2 ] = (M (X ) – a ) 2 . Поскольку постоянный множитель можно выносить за знак суммы, то M {2(X - M (X ))(M (X ) - a )} = 2(M (X ) - a )М(X - M (X )). Правая часть последнего равенства равна 0, поскольку, как показано выше, М(Х-М(Х))=0. Следовательно, М[(X - a ) 2 ]= M [(X - M (X )) 2 ]+(a - M (X )) 2 , что и требовалось доказать.

Из сказанного вытекает, что М[(X - a ) 2 ] достигает минимума по а , равного M [(X - M (X )) 2 ], при а = М(Х), поскольку второе слагаемое в равенстве 3) всегда неотрицательно и равно 0 только при указанном значении а .

Утверждение 4. Пусть случайная величина Х принимает значения х 1 , х 2 ,…, х m , а f – некоторая функция числового аргумента. Тогда

Для доказательства сгруппируем в правой части равенства (4), определяющего математическое ожидание, члены с одинаковыми значениями :

Пользуясь тем, что постоянный множитель можно выносить за знак суммы, и определением вероятности случайного события (2), получаем

что и требовалось доказать.

Утверждение 5. Пусть Х и У – случайные величины, определенные на одном и том же пространстве элементарных событий, а и b – некоторые числа. Тогда M (aX + bY )= aM (X )+ bM (Y ).

С помощью определения математического ожидания и свойств символа суммирования получаем цепочку равенств:

Требуемое доказано.

Выше показано, как зависит математическое ожидание от перехода к другому началу отсчета и к другой единице измерения (переход Y =aX +b ), а также к функциям от случайных величин. Полученные результаты постоянно используются в технико-экономическом анализе, при оценке финансово-хозяйственной деятельности предприятия, при переходе от одной валюты к другой во внешнеэкономических расчетах, в нормативно-технической документации и др. Рассматриваемые результаты позволяют применять одни и те же расчетные формулы при различных параметрах масштаба и сдвига.

Предыдущая

Среди числовых характеристик случайных величин нужно, прежде всего, отметить те, которые характеризуют положение случайной величины на числовой оси, т.е. указывают некоторое среднее, ориентировочное значение, около которого группируются все возможные значения случайной величины.

Среднее значение случайной величины есть некоторое число, являющееся как бы её «представителем» и заменяющее её при грубо ориентировочных расчетах. Когда мы говорим: «среднее время работы лампы равно 100 часам» или «средняя точка попадания смещена относительно цели на 2 м вправо», мы этим указываем определенную числовую характеристику случайной величины, описывающую её местоположение на числовой оси, т.е. «характеристику положения».

Из характеристик положения в теории вероятностей важнейшую роль играет математическое ожидание случайной величины, которое иногда называют просто средним значением случайной величины.

Рассмотрим дискретную случайную величину , имеющую возможные значения с вероятностями . Нам требуется охарактеризовать каким-то числом положение значений случайной величины на оси абсцисс с учетом того, что эти значения имеют различные вероятности. Для этой цели естественно воспользоваться так называемым «средним взвешенным» из значений , причем каждое значение при осреднении должно учитываться с «весом», пропорциональным вероятности этого значения. Таким образом, мы вычислим среднее случайной величины , которое мы обозначим :

или, учитывая, что ,

. (5.6.1)

Это среднее взвешенное значение и называется математическим ожиданием случайной величины. Таким образом, мы ввели в рассмотрении одно из важнейших понятий теории вероятностей – понятие математического ожидания.

Математическим ожиданием случайной величины называется сумма произведений всех возможных значений случайной величины на вероятности этих значений.

Заметим, что в вышеприведенной формулировке определение математического ожидания справедливо, строго говоря, только для дискретных случайных величин; ниже будет дано обобщение этого понятия на случай непрерывных величин.

Для того, чтобы сделать понятие математического ожидания более наглядным, обратимся к механической интерпретации распределения дискретной случайной величины. Пусть на оси абсцисс расположены точки с абсциссами , в которых сосредоточены соответственно массы , причем . Тогда, очевидно, математическое ожидание , определяемое формулой (5.6.1), есть не что иное, как абсцисса центра тяжести данной системы материальных точек.

Математическое ожидание случайной величины связано своеобразной зависимостью со средним арифметическим наблюденных значений случайной величины при большом числе опытов. Эта зависимость того же типа, как зависимость между частотой и вероятностью, а именно: при большом числе опытов среднее арифметическое наблюденных значений случайной величины приближается (сходится по вероятности) к ее математическому ожиданию. Из наличия связи между частотой и вероятностью можно вывести как следствие наличие подобной же связи между средним арифметическим и математическим ожидание.

Действительно, рассмотрим дискретную случайную величину , характеризуемую рядом распределения:

где .

Пусть производится независимых опытов, в каждом из которых величина принимает определенное значение. Предположим, что значение появилось раз, значение появилось раз, вообще значение появилось раз. Очевидно,

Вычислим среднее арифметическое наблюденных значений величины , которое, в отличие от математического ожидания мы обозначим :

Но есть не что иное, как частота (или статистическая вероятность) события ; эту частоту можно обозначить . Тогда

,

т.е. среднее арифметическое наблюденных значений случайной величины равно сумме произведений всех возможных значений случайной величины на частоты этих значений.

При увеличении числа опытов частоты будут приближаться (сходиться по вероятности) к соответствующим вероятностям . Следовательно, и среднее арифметическое наблюденных значений случайной величины при увеличении числа опытов будет приближаться (сходится по вероятности) к её математическому ожиданию .

Сформулированная выше связь между средним арифметическим и математическим ожиданием составляет содержание одной из форм закона больших чисел. Строгое доказательство этого закона будет дано нами в главе 13.

Мы уже знаем, что все формы закона больших чисел констатируют факт устойчивости некоторых средних при большом числе опытов. Здесь речь идет об устойчивости среднего арифметического из ряда наблюдений одной и той же величины. При небольшом числе опытов среднее арифметическое их результатов случайно; при достаточном увеличении числа опытов оно становится «почти не случайным» и, стабилизируясь, приближается к постоянной величине – математическому ожиданию.

Свойство устойчивости средних при большом числе опытов легко проверить экспериментально. Например, взвешивая какое-либо тело в лаборатории на точных весах, мы в результате взвешивания получаем каждый раз новое значение; чтобы уменьшить ошибку наблюдения, мы взвешиваем тело несколько раз и пользуемся средним арифметическим полученных значений. Легко убедиться, что при дальнейшем увеличении числа опытов (взвешиваний) среднее арифметическое реагирует на это увеличение все меньше и меньше и при достаточно большом числе опытов практически перестает меняться.

Формула (5.6.1) для математического ожидания соответствует случаю дискретной случайной величины. Для непрерывной величины математическое ожидание, естественно, выражается уже не суммой, а интегралом:

, (5.6.2)

где - плотность распределения величины .

Формула (5.6.2) получается из формулы (5.6.1), если в ней заменить отдельные значения непрерывно изменяющимся параметром х, соответствующие вероятности - элементом вероятности , конечную сумму – интегралом. В дальнейшем мы часто будем пользоваться таким способом распространения формул, выведенных для прерывных величин, на случай непрерывных величин.

В механической интерпретации математическое ожидание непрерывной случайной величины сохраняет тот же смысл – абсцисса центра тяжести в случае, когда масса распределена по оси абсцисс непрерывно, с плотностью . Эта интерпретация часто позволяет найти математическое ожидание без вычисления интеграла (5.6.2), из простых механических соображений.

Выше мы ввели обозначение для математического ожидания величины . В ряде случаев, когда величина входит в формулы как определенное число, её удобнее обозначать одной буквой. В этих случаях мы будем обозначать математическое ожидание величины через :

Обозначения и для математического ожидания будут в дальнейшем применяться параллельно в зависимости от удобства той или иной записи формул. Условимся также в случае надобности сокращать слова «математическое ожидание» буквами м.о.

Следует заметить, что важнейшая характеристика положения – математическое ожидание – существует не для всех случайных величин. Можно составить примеры таких случайных величин, для которых математического ожидания не существует, так как соответствующая сумма или интеграл расходятся.

Рассмотрим, например, прерывную случайную величину с рядом распределения:

Нетрудно убедится в том, что , т.е. ряд распределения имеет смысл; однако сумма в данном случае расходится и, следовательно, математического ожидания величины не существует. Однако для практики такие случаи существенного интереса не представляют. Обычно случайные величины, с которыми мы имеем дело, имеют ограниченную область возможных значений и, безусловно, обладают математическим ожиданием.

Выше мы дали формулы (5.6.1) и (5.6.2), выражающие математическое ожидание соответственно для прерывной и непрерывной случайной величины .

Если величина принадлежит к величинам смешанного типа, то её математическое ожидание выражается формулой вида:

, (5.6.3)

где сумма распространяется на все точки , в которых функция распределения терпит разрыв, а интеграл – на все участки, на которых функция распределения непрерывна.

Кроме важнейшей из характеристик положения – математического ожидания, - на практике иногда применяются и другие характеристики положения, в частности, мода и медиана случайной величины.

Модой случайной величины называется её наиболее вероятное значение. Термин «наиболее вероятное значение», строго говоря, применим только к прерывным величинам; для непрерывной величины модой является то значение, в котором плотность вероятности максимальна. Условимся обозначать моду буквой . На рис. 5.6.1 и 5.6.2 показана мода соответственно для прерывной и непрерывной случайных величин.

Если многоугольник распределения (кривая распределения) имеет более одного максимума, распределение называется «полимодальным» (рис. 5.6.3 и 5.6.4).

Иногда встречаются распределения, обладающие посередине не максимумом, а минимумом (рис. 5.6.5 и 5.6.6). Такие распределения называют «антимодальными». Примером антимодального распределения может служить распределение, полученное в примере 5, n° 5.1.

В общем случае мода и математическое ожидание случайной величины не совпадают. В частном случае, когда распределение является симметричным и модальным (т.е. имеет моду) и существует математическое ожидание, то оно совпадает с модой и центром симметрии распределения.

Часто применяется еще одна характеристика положения – так называемая медиана случайной величины. Этой характеристикой пользуются обычно только для непрерывных случайных величин, хотя формально можно её определить и для прерывной величины.

Медианой случайной величины называется такое её значение , для которого

т.е. одинаково вероятно, окажется ли случайная величина меньше или больше . Геометрически медиана – это абсцисса точки, в которой площадь, ограниченная кривой распределения, делится пополам (рис. 5.6.7).

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3