На ноль делить нельзя пример. Что такое ноль. Деление на ноль

Число 0 можно представить, как некую границу, отделяющую мир реальных чисел от мнимых или отрицательных. Благодаря двусмысленному положению, многие операции с этой числовой величиной не подчиняются математической логике. Невозможность деления на нуль - яркий тому пример. А разрешенные арифметические действия с нулем могут быть выполнены с помощью общепринятых определений.

История нуля

Ноль является точкой отсчета во всех стандартных системах исчисления. Европейцы стали использовать это число сравнительно недавно, но мудрецы Древней Индии пользовались нулем за тысячу лет до того, как пустое число стало регулярно использоваться европейскими математиками. Ещё раньше индийцев ноль являлся обязательной величиной в числовой системе майя. Этот американский народ использовал двенадцатеричную систему исчисления, а нулем у них начинался первый день каждого месяца. Интересно, что у майя знак, обозначающий «ноль», полностью совпадал со знаком, определяющим «бесконечность». Таким образом, древние майя делали вывод о тождественности и непознаваемости этих величин.

Математические действия с нулем

Стандартные математические операции с нулем можно свести к нескольким правилам.

Сложение: если к произвольному числу добавить ноль, то оно не изменит своего значения (0+x=x).

Вычитание: при вычитании нуля из любого числа значение вычитаемого остается неизменным (x-0=x).

Умножение: любое число, умноженное на 0, дает в произведении 0 (a*0=0).

Деление: ноль можно разделить на любое число, не равное нулю. При этом значение такой дроби будет 0. А деление на ноль запрещено.

Возведение в степень. Это действие можно выполнить с любым числом. Произвольное число, возведенное в нулевую степень, даст 1 (x 0 =1).

Ноль в любой степени равен 0 (0 а =0).

При этом сразу возникает противоречие: выражение 0 0 не имеет смысла.

Парадоксы математики

О том, что деление на ноль невозможно, многие знают со школьной скамьи. Но объяснить причину такого запрета почему-то не получается. В самом деле, почему формула деления на ноль не существует, а вот другие действия с этим числом вполне разумны и возможны? Ответ на этот вопрос дают математики.

Все дело в том, что привычные арифметические действия, которые школьники изучают в начальных классах, на самом деле далеко не так равноправны, как нам кажется. Все простые операции с числами могут быть сведены к двум: сложению и умножению. Эти действия составляют суть самого понятия числа, а остальные операции строятся на использовании этих двух.

Сложение и умножение

Возьмем стандартный пример на вычитание: 10-2=8. В школе его рассматривают просто: если от десяти предметов отнять два, останется восемь. Но математики смотрят на эту операцию совсем по-другому. Ведь такой операции, как вычитание, для них не существует. Данный пример можно записать и другим способом: х+2=10. Для математиков неизвестная разность - это просто число, которое нужно добавить к двум, чтобы получилось восемь. И никакого вычитания здесь не требуется, нужно просто найти подходящее числовое значение.

Умножение и деление рассматриваются так же. В примере 12:4=3 можно понять, что речь идет о разделении восьми предметов на две равные кучки. Но в действительности это просто перевернутая формула записи 3х4=12.Такие примеры на деление можно приводить бесконечно.

Примеры на деление на 0

Вот тут и становится понемногу понятным, почему нельзя делить на ноль. Умножение и деление на ноль подчиняется своим правилам. Все примеры на деление этой величины можно сформулировать в виде 6:0=х. Но это же перевернутая запись выражения 6 * х=0. Но, как известно, любое число, умноженное на 0, дает в произведении только 0. Это свойство заложено в самом понятии нулевой величины.

Выходит, что такого числа, которое при умножении на 0 дает какую-либо осязаемую величину, не существует, то есть данная задача не имеет решения. Такого ответа бояться не следует, это естественный ответ для задач такого типа. Просто запись 6:0 не имеет никакого смысла, и она ничего не может объяснить. Кратко говоря, это выражение можно объяснить тем самым бессмертным «деление на ноль невозможно».

Существует ли операция 0:0? Действительно, если операция умножения на 0 законна, можно ли ноль разделить на ноль? Ведь уравнение вида 0х 5=0 вполне легально. Вместо числа 5 можно поставить 0, произведение от этого не поменяется.

Действительно, 0х0=0. Но поделить на 0 по-прежнему нельзя. Как было сказано, деление - это просто обратная операция умножения. Таким образом, если в примере 0х5=0, нужно определить второй множитель, получаем 0х0=5. Или 10. Или бесконечность. Деление бесконечности на ноль — как вам это понравится?

Но если в выражение подходит любое число, то оно не имеет смысла, мы не можем из бесконечного множества чисел выбрать какое-то одно. А раз так, это значит и выражение 0:0 не имеет смысла. Получается, что на ноль нельзя делить даже сам ноль.

Высшая математика

Деление на ноль — это головная боль для школьной математики. Изучаемый в технических вузах математический анализ немного расширяет понятие задач, которые не имеют решения. Например, к уже известному выражению 0:0 добавляются новые, которые не имеют решения в школьных курсах математики:

  • бесконечность, разделенная на бесконечность: ∞:∞;
  • бесконечность минус бесконечность: ∞−∞;
  • единица, возведенная в бесконечную степень: 1 ∞ ;
  • бесконечность, умноженная на 0: ∞*0;
  • некоторые другие.

Элементарными методами решить такие выражения невозможно. Но высшая математика благодаря дополнительным возможностям для ряда подобных примеров дает конечные решения. Особенно это видно в рассмотрении задач из теории пределов.

Раскрытие неопределенности

В теории пределов значение 0 заменяется условной бесконечно малой переменной величиной. А выражения, в которых при подставлении нужного значения получается деление на ноль, преобразовываются. Ниже представлен стандартный пример раскрытия предела при помощи обычных алгебраических преобразований:

Как видно в примере, простое сокращение дроби приводит ее значение к вполне рациональному ответу.

При рассмотрении пределов тригонометрических функций их выражения стремятся свести к первому замечательному пределу. При рассмотрении пределов, в которых знаменатель обращается в 0 при подставлении предела, используют второй замечательный предел.

Метод Лопиталя

В некоторых случаях пределы выражений можно заменить пределом их производных. Гийом Лопиталь - французский математик, основоположник французской школы математического анализа. Он доказал, что пределы выражений равны пределам производных этих выражений. В математической записи его правило выглядит следующим образом.

Почему нельзя делить на ноль?«Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя. Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух. Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит наэто просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число. Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8. Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения. Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя. Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д. Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.) Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль. Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

«Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности, это просто сокращенная форма записи уравнения 4 x = 8.

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает, и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 0 = 0. Выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 1 = 0. Правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас, в первую очередь, будут учить именно этому.

Добровольный читательский взнос на поддержание проекта

Практически все школьники знают простое арифметическое правило «На ноль делить нельзя!» и никто из них не задумывается, почему с нулем невозможно выполнить такое математическое действие, как деление.

Попробуем разобрать этот арифметический принцип. Деление является одним из известных нам арифметических действий – сложение, вычитание, умножение и деление. Вычитание – действие обратное сложению, деление – умножению. Используя эти действия, можно проверить правильность решения задач, однако, эти арифметические действия не являются равноправными. С точки зрения математической науки полноценными из четырех действия являются только сложение и умножение, которые включаются в определение понятия чисел. Остальные действия – вычитание и деление – вытекают и базируются на двух первых.

Рассмотрим пример с вычитанием. Что значит разность двух чисел, например, «3-2»? Даже младший школьник скажет, что из числа «3» мы отнимаем число «2» и получаем «1». Однако математики видят решение этого простого примера совсем по-иному: никакого вычитания не существует, есть одно действие – сложение. Запись «3-2» представляет собой число, которое при сложении с числом «2», даст «3». Математическая запись этой задачи имеет вид уравнения с одним неизвестным «х» и выглядит следующим образом: «х+2=3». Как мы видим, никакого вычитания нет, а действие сложения позволяет нам найти подходящее неизвестное число.

Под таким же «соусом» можно рассмотреть деление. Например, «10:5» можно рассматривать следующим образом: десять яблок делим между пятью детьми. Если это действие представить, как видят его истинные математики, мы получим следующую запись: «5×х=10».

Теперь попытаемся совершить действие деления, но только с нулем. Например, запись «2:0» представим в виде уравнения с неизвестным: «0×х=2». Другими словами, нам нужно найти такое число, умножив которое на «0», мы получим «2». Вот тут и возникает основная трудность: в силу вступает неотъемлемое свойство «0» - при умножении любого числа на «0» всегда получается «0». То есть, в арифметике не существует такого числа, которое при умножении на «0», дало бы число, отличное от нуля. А значит, наша задача не имеет решения. Запись «а:0» (где а – любое число, отличное от нуля) бессмысленна, поэтому в математике вопрос «Почему на ноль делить нельзя » демонстрирует одно из основных свойств этого «неопределенного» числа.

Почему ноль нельзя делить на ноль?

Мы доказали, что любое число нельзя разделить на ноль. А как же быть с самим нулем – можно ли «0» разделить на «0»? Ведь, если представить деление на ноль через умножение: «0×х=0», то пример решается, ведь умножать на «0» допускается. Пусть х=0, тогда наше уравнение имеет следующий вид: 0×0=0. Получается, что можно выполнить такое действие, как: 0:0=0? Попробуем разрешить эту путаницу. Вместо неизвестного числа «х» возьмем любое число, например, «2». Получим «0×2=0». Все верно? Значит, выражение «0:0=2» имеет смысл? Но выходит, что такое действие можно совершать с любыми числами: 0:0=10, 0:0=350, 0:0=10259…

Если для совершения действия деления на ноль подходят любые числа, то нам нет смысла выбирать из них какое-то одно. А значит, мы не сможем определенно сказать, какому из существующих чисел соответствует запись «0:0». Отсюда следует ее бессмысленность и получается, что ноль нельзя делить на ноль!

Вот такая особенность операции деления на ноль, а точнее операции умножения.

Некоторые любознательные могут задать вопрос: почему делить на ноль нельзя, а вычитать его можно? На этот вопрос ответить можно, только объяснение связано уже не с числами, а с математическими множествами и операциями над ними, которые изучаются в университетском курсе математики.

Как объяснить ребенку, почему нельзя делить на ноль?

Детские вопросы – самые сложные для взрослых. Найти на них ответ иногда очень сложно, а ответить доступно для ребенка бывает просто невозможно.

К такому вопросу относится и вопрос «Почему на ноль делить нельзя? », ответ на который не знают даже взрослые - просто их так учили в школе и над ответом никто не задумывался.

Начнем с простого. Математика, как наука, зародилась очень давно. Чтобы как-то уметь с ней обращаться наши предки придумали числа, которые что-то обозначали. Только ноль не обозначал «ничего», т.е. пустоту. Например, у тебя есть 5 мелков, если отдать другу все 5 мелков, то у тебя ничего не останется, т.е. ноль.

Теперь о делении на ноль. Если деление представить в виде ножа, разрезающего все на равные кусочки, то целое можно разделить на две, три, четыре… и т.д. равные части. Однако что-либо разделить на ноль одинаковых частей невозможно, ведь их просто не существует.

"Делить на ноль нельзя! " - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое "Нельзя" и что будет, если в ответ на него спросить: "почему? А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Мы рассмотрим, например, вычитание. Что значит 5 - 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики на эту задачу совсем по-другому смотрят. Нет никакого вычитания, есть только сложение. Поэтому запись 5 - 3 означает такое число, которое при сложении с числом 3 даст число 5. то есть 5 - 3 - это просто сокращенная запись уравнения: x 3 = 5. в этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности, это просто сокращенная форма записи уравнения 4 * x = 8.

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 * x = 5. то есть это задание найти такое число, которое при умножении на 0 даст 5. но мы знаем, что при умножении на 0 всегда получается 0. это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает, и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 * x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 * 0 = 0. выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. получим 0 * 1 = 0. правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. а раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 * x = 0; в таких случаях математики говорят о "Раскрытии Неопределенности", но в арифметике таких случаев не встречается. Вот такая особенность у операции деления есть. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас, в первую очередь, будут учить именно этому.