Определить длину волны на поверхности воды. Волны на поверхности воды и им подобные

Пока мы рассмотрели только одномерные (1-d ) волны, то есть волны, распространяющиесяв струне, в линейной среде. Не менее знакомы нам двумерные волны в форме длинных горных хребтов и впадин на двумерной поверхности воды. Следующий шаг при обсуждении волн нам предстоит сделать в пространство двух (2-d ) и трех (3-d ) измерений. Опять-таки никакие новые физические принципы не будут использоваться; задача состоит просто в описании волновых процессов.

Мы начнем обсуждение, вернувшись к той простой ситуации, с которой начиналась эта глава - одиночный волновой импульс . Однако теперь это будет не возмущение на струне, а всплеск на поверхности водоема. Всплеск оседает под своим собственным весом, а смежные с ним области, испытывая повышенное давление, подымаются , начиная распространение волны. Этот процесс “в разрезе” изображен на рис. 7-7(a) . Дальнейшая логика рассмотрения ситуации точно такая же, что уже была использована при изучении эффектов, возникающих после резкого удара по центральной части струны. Но на сей раз волна может перемещаться во всех направлениях. Не имея причин предпочесть одно какое-то направление другому, волна распространяется во всехнаправлениях. Результат - знакомый всем расширяющийся круг ряби на поверхности тихого водоема, см. рис. 7-7 (b) .

Хорошо знакомы нам и плоские волны на поверхности воды - те волны, гребни которых образуют длинные, иногда практически параллельные, линии на поверхности воды. Это те самые волны, которые периодически накатывают на берег. Интересной особенностью волн такого типа является тот способ, которым они преодолевают препятст-вия - например, дыры в непрерывной стене волнолома . Рисунок 7-8 иллюстрирует этот процесс. Если размер отверстия сравним с длиной волны, то каждая последовательная волна создает в пределах отверстия всплеск, который, как и на рис. 7-7, служит источником круглой ряби в акватории порта. В результате между волнорезом и берегом возникают концентрические , “кольцевые ” волны.

Это явление известно как дифракция волн. Если же ширина дыры в волноломе будет намного больше, чем длина волны, то этого не случится - прошедшие через препятствие волны сохранят свою плоскую форму, разве что на краях волны возникнут слабые искажения

Подобно волнам на поверхности воды, существуют и трехмерные волны (3-d –волны). Здесь самый знакомый пример - это звуковые волны. Гребень звуковой волны - это область сгущения молекул воздуха. Рисунок, аналогичный рис. 7-7 для трехмерного случая представлял бы расширяющуюся волну в форме сферы.

Все волны обладают свойством преломления . Это эффект, который возникает когда волна проходит через границу двух сред, и попадает в среду, в которой она движется более медленно. Особенно наглядно выглядит этот эффект в случае плоских волн (см. рис. 7-9 ). Та часть плоской волны, которая оказалась в новой, “медленной”, среде движется в ней с меньшей скоростью. Но поскольку эта часть волны неизбежно остается связанной с волной в “быстрой” среде, её фронт (пунктирная линия в нижней части рис.7-9) должен изломиться, то есть приблизиться к границе раздела двух сред, как это и показано на рис. 7-9.

Если же изменение скорости распространения волны происходит не скачком, а постепенно, то и поворот фронта волны будет происходить тоже плавно. Это, кстати, объясняет причину того, почему волны прибоя, независимо от того, как они двигались в открытой воде, почти всегда параллельны береговой линии. Дело в том, что с уменьшением толщины водного слоя скорость волн на его поверхности уменьшается , поэтому у берега, где волны попадают в область мелководья, они замедляются. Постепенный поворот их фронта и делает волны практически параллельными береговой линии.

Любое локальное нарушение горизонтальности поверхности жидкости приводит к появлению волн, которые распространяются по поверхности и быстро затухают с глубиной. Возникновение волн происходит из-за совместного действия силы тяжести и силы инерции (гравитационные гидродинамические волны) или силы поверхностного натяжения и силы инерции (капиллярные волны).

Приведем ряд результатов по гидродинамике поверхностного волнения жидкости, которые понадобятся нам в дальнейшем . Можно существенно упростить задачу, если считать жидкость идеальной; учет диссипации необходим главным образом для капиллярных и коротких гравитационных волн.

Считая смещения частиц жидкости малыми, можно ограничиться линейной задачей и пренебречь в уравнении Эйлера нелинейным членом что соответствует малости амплитуды волны по сравнению с ее длиной X. Тогда для несжимаемой жидкости волновое движение на ее поверхности без учета сил поверхностного натяжения определяется такой системой уравнений для потенциала (напомним, что :

Направлена вертикально вверх и соответствует невозмущенной поверхности жидкости).

Для неограниченной поверхности жидкости, глубина которой значительно больше длины волны, можно искать решение задачи в виде распространяющейся в положительном направлении х и затухающей с глубиной плоской неоднородной волны:

где - частота волны и волновое число, где - фазовая скорость. Подставляя это значение потенциала в уравнение (6.1), а также учитывая, что решения имеют смысл для , получаем выражение для потенциала:

а удовлетворяя граничному условию на поверхности жидкости дисперсионное уравнение

Таким образом, групповая скорость распространения гравитационной волны

тогда как фазовая скорость такой волны

Как видно, гравитационные волны обладают дисперсией; с увеличением длины волны их фазовая скорость растет.

Интересен вопрос о том, каково распределение скоростей частиц жидкости в волне; оно находится дифференцированием потенциала (6.3) по х.

Рис. 1.4. Дисперсионная кривая для гравитационно-капиллярных волн на поверхности глубокой воды в области, где существенны и g, и а.

Рассмотрение показывает, что частицы жидкости в волне описывают движение приблизительно по окружности (вокруг своих равновесных точек ), радиус которых экспоненциально спадает с глубиной. На глубине, равной одной длине волны, ее амплитуда примерно в 535 раз меньше, чем вблизи поверхности. Приведенные результаты относились к волнам на глубокой воде, когда где h - глубина жидкости. Если имеет место противоположный случай (например, волны распространяются в канале конечной, но малой глубины), то

Как видно, такие волны дисперсией не обладают.

С учетом капиллярной силы Лапласа, обусловленной поверхностным натяжением 0,

т. е., в отличие от гравитационных, скорость капиллярных волн растет с уменьшением длины волны. Совместное действие силы тяжести и силы поверхностного натяжения определяется таким дисперсионным уравнением (глубокая вода):

На рис. 1.4 показана зависимость фазовой скорости распространения волн на поверхности жидкости от длины волны для воды согласно выражению (6.9). Из этого рисунка видно, что при см имеет место минимум скорости поверхностных волн, являющихся смешанными гравитационно-капиллярными волнами..

Приведенные результаты относились к одномерным линейным волнам в отсутствие диссипации. Кроме того, считалось, что волны регулярные и распространяются в одном направлении. Волны, возникающие при движении корабля в спокойной воде или при подходе к мелкому берегу, действительно представляют собой

регулярные возмущения. Волны же на поверхности жидкости, возникающие под действием ветра, преимущественно случайные - они движутся в разных направлениях и имеют разные частоты и амплитуды; именно такую картину мы наблюдаем, находясь на корабле в открытом море в ветренную погоду.

Затухание гравитационных волн с длинами волн более метра мало, но оно все же значительно больше, чем это следует из линейной теории. Это расхождение, очевидно, вызвано процессами, связанными с нелинейностью при распространении гравитационных и капиллярных волн. Так, если одиночная волна распространяется на мелкой воде с фазовой скоростью , то такая волна не обладает дисперсией. Ее профиль по мере распространения становится круче благодаря тому, что верхние частицы среды, для которых глубина h больше, чем для нижних частиц, будут двигаться с большей скоростью, согласно (6.7), и волна начнет захлестываться; при подходе к берегу волна обрушивается на него. Эффект захлестывания усиливается еще и потому, что при уменьшении глубины h возрастает амплитуда волны по закону сохранения лотока энергии плотность энергии возрастает из-за уменьшения поперечного сечения слоя воды. С ростом же нелинейные эффекты проявляются еще сильнее. Процесс «укручения» волн при их распространении происходит и на глубокой воде вследствие нелинейности уравнений движения. Теория нелинейных волн на ловерхности жидкости получила большое развитие в последнее время, хотя первые работы в этом направлении были сделаны еще в конце прошлого века.

Если имеется несколько волн, они нелинейно взаимодействуют друг с другом; принцип суперпозиции для волн конечной амплитуды уже не соблюдается. Условия нелинейного взаимодействия гравитационных волн, благодаря их дисперсионным свойствам, отличаются интересными особенностями, на которых мы здесь не имеем возможности остановиться. Отметим лишь, что реально существующее взаимодействие случайных волн конечной амплитуды в принципе объясняет значительно большее затухание волн на поверхности, чем это предсказывает линейная теория. Действует механизм поглощения за счет нелинейного взаимодействия; энергия из области малых волновых чисел (длинные волны) перекачивается в области все меньших длин волн и, наконец, - в капиллярную область спектра, где она в конечном счете диссипируется за счет вязкости, переходя в тепло .

В гл. 3 мы будем иметь дело с нелинейными звуковыми волнами и еще вернемся к вопросам взаимодействия волн на поверхности жидкости.

Мы уже упоминали о волнах, образование которых обусловлено не силой упругости, а силой тяжести. Именно поэтому нас не должно удивлять, что волны, распространяющиеся по поверхности жидкости, не являются продольными. Однако они не являются и поперечными: движение частиц жидкости здесь более сложное.

Если в какой-либо точке поверхность жидкости опустилась (например, в результате прикосновения твердым предметом), то под действием силы тяжести жидкость начнет сбегать вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем крае кольца частицы жидкости вновь «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т. д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся и вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.

На рис. 76 темными кружками показано положение частиц поверхности жидкости в некоторый момент, а светлыми кружками - положение этих частиц немного времени спустя, когда каждая из них прошла часть своей круговой траектории. Эти траектории показаны штриховыми линиями, пройденные участки траекторий - стрелками. Линия, соединяющая темные кружки, даст нам профиль волны. В изображенном на рисунке случае большой амплитуды (т. с. радиус круговых траектории частиц не мал по сравнению с длиной волны) профиль волны совсем не похож на синусоиду: у него широкие впадины и узкие гребни. Линия, соединяющая светлые кружки, имеет ту же форму, но сдвинута вправо (в сторону запаздывания фазы), т, е. в результате движения частиц жидкости по круговым траекториям волна переместилась.

Рис. 76. Движение частиц жидкости в волне на ее поверхности

Следует заметить, что в образовании поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения (см. том I, § 250), которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точке поверхности жидкости происходит деформация этой поверхности - выпуклость становится плоской и затем сменяется вогнутостью, и обратно, в связи с чем меняется площадь поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде волны тем больше, чем больше искривлена поверхность, т. е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (высоких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около , т. е. для более капиллярных волн преобладают силы поверхностного натяжения, а для более длинных – сила тяжести.

Несмотря на сложный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса, и очень удобны для наблюдения многих таких закономерностей. Поэтому мы остановимся несколько подробнее на способе их получения и наблюдения.

Для опытов с такими волнами можно взять неглубокую ванну, дном которой служит стекло, площадь которого около . Под стеклом на расстоянии можно поместить яркую лампочку, позволяющую спроецировать этот «пруд» на потолок или экран (рис. 77). На тени в увеличенном виде можно наблюдать все явления, происходящие на поверхности воды. Для ослабления отражения волн от бортов ванны поверхность последних делается рифленой и сами борта - наклонными.

Рис. 77. Ванна для наблюдения волн на поверхности воды

Наполним ванну водой примерно на глубину и коснемся поверхности воды концом проволоки или острием карандаша. Мы увидим, как от точки прикосновения разбегается кольцевая морщинка. Скорость ее распространения невелика (10-30 см/с), поэтому можно легко следить за ее перемещением.

Укрепим проволоку на упругой пластинке и заставим ее колебаться, причем так, чтобы при каждом колебании пластинки конец проволоки ударял по поверхности воды. По воде побежит система кольцевых гребней и впадин (рис. 78). Расстояние между соседними гребнями или впадинами , т. е. длина волны, связано с периодом ударов уже известной нам формулой ; - скорость распространения волны.

Рис. 78. Кольцевые волны

Рис. 79. Прямолинейные волны

Линии, перпендикулярные к гребням и впадинам, показывают направления распространения волны. У кольцевой волны направления распространения изображаются, очевидно, прямыми линиями, расходящимися из центра волны, как это показано на рис. 78 штриховыми стрелками. Заменив конец проволоки ребром линейки, параллельным поверхности воды, можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных гребней и впадин (рис. 79). В этом случае перед средней частью линейки мы имеем одно-единственное направление распространения.

Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев. Участок сферической волны, малый по сравнению с расстоянием до ее источника, можно приближенно считать плоским. Это относится, конечно, к волнам любой физической природы - и к механическим, и к электромагнитным. Так, например, любой участок (в пределах земной поверхности) световых воли, приходящих от звезд, можно рассматривать как плоскую волну.

Мы неоднократно будем далее пользоваться опытами с описанной выше водяной ванной, так как волны на поверхности воды делают очень наглядными и удобными для наблюдения основные черты многих волновых явлений, включая и такие важные явления, как дифракция и интерференция. Мы используем волны в водяной ванне для получения ряда общих представлений, сохраняющих значение и для упругих (в частности, акустических), и для электромагнитных волн. Там, где можно осуществить наблюдение более тонких особенностей волновых процессов (в частности, в оптике), мы остановимся более подробно на истолковании этих особенностей.

Возникающие и распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей. В. на п. ж. образуются под влиянием внешнего воздействия, в результате которого поверхность жидкости выводится из равновесного состояния (например, при падении камня). При этом возникают силы, восстанавливающие равновесие: силы поверхностного натяжения и тяжести. В зависимости от природы восстанавливающих сил В. на п. ж. подразделяются на: капиллярные волны, если преобладают силы поверхностного натяжения, и гравитационные, если преобладают силы тяжести. В случае, когда совместно действуют силы тяжести и силы поверхностного натяжения, волны называются гравитационно-капиллярными. Влияние сил поверхностного натяжения наиболее существенно при малых длинах волн, сил тяжести - при больших.

Скорость с распространения В. на п. ж. зависит от длины волны λ. При возрастании длины волны скорость распространения гравитационно-капиллярных волн сначала убывает до некоторого минимального значения

а затем вновь возрастает (σ - поверхностное натяжение, g - ускорение силы тяжести, ρ - плотность жидкости). Значению c 1 соответствует длина волны

При λ > λ 1 скорость распространения зависит преимущественно от сил тяжести, а при λ см.

Причины возникновения гравитационных волн: притяжение жидкости Солнцем и Луной (см. Приливы и отливы), движение тел вблизи или по поверхности воды (корабельные волны), действие на поверхность жидкости системы импульсивных давлений (ветровые волны, начальное отклонение некоторого участка поверхности от равновесного положения, например местное возвышение уровня при подводном взрыве). Наиболее распространены в природе ветровые волны (см. также Волны морские).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Волны на поверхности жидкости" в других словарях:

    Волны, возникающие и распространяющиеся по свободной поверхности жидкости или по поверхности раздела двух несмешивающихся жидкостей. В. на п. ж. образуются под влиянием внеш. воздействия, в результате к рого поверхность жидкости выводится из… … Физическая энциклопедия

    Механика сплошных сред … Википедия

    Вол новые движения границы жидкости (напр., поверхности океана), возникающие при нарушении равновесия жидкости (иод действием ветра, проходящего судна, брошенного камня) и стремления сил тяжести и сил поверхностного натяжения жидкости… … Естествознание. Энциклопедический словарь

    Волны на поверхности моря или океана. Благодаря большой подвижности частицы воды под действием разного рода сил легко выходят из состояния равновесия и совершают колебательные движения. Причинами, вызывающими появление волн, являются… … Большая советская энциклопедия

    Изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Наиболее важные и часто встречающиеся виды В. упругие волны, волны на поверхности жидкости и электромагнитные волны. Частными случаями упругих В.… … Физическая энциклопедия

    Волны - Волны: а одиночная волна; б цуг волн; в бесконечная синусоидальная волна; l длина волны. ВОЛНЫ, изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Основное свойство всех волн, независимо от их… … Иллюстрированный энциклопедический словарь

    Возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны, напр., звуковые, волны на поверхности жидкости и электромагнитные волны. Несмотря на… … Большой Энциклопедический словарь

    Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

    Волна изменение состояния среды (возмущение), распространяющееся в этой среде и переносящее с собой энергию. Другими словами: «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой… … Википедия

    Возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны, например звуковые, волны на поверхности жидкости и электромагнитные волны. Несмотря на… … Энциклопедический словарь

Книги

  • Динамика многофазных систем. Учебное пособие , Глазков Василий Валентинович. Курс "Динамика многофазных систем" является продолжением основного курса тепло- и массообмена. В рамках курса формулируется математическое описание и модели двухфазных систем. Рассматриваются…

Волны, образующиеся на свободной поверхности воды, приводят в движение соприкасающийся с ними воздух. В большинстве случаев массой этого воздуха можно пренебречь по сравнению с массой жидкости. Тогда давление на свободной поверхности жидкости будет равно атмосферному давлению Наблюдения показывают, что при простейшем волновом движении отдельные частицы свободной поверхности воды описывают траектории, приближенно совпадающие с окружностью. В системе отсчета, движущейся вместе с волнами со скоростью их распространения, волновое движение является, очевидно, установившимся движением (рис. 80). Пусть скорость распространения волн равна с, радиус окружности, описываемой частицей воды, расположенной на свободной поверхности, равен а период обращения этой частицы по своей траектории равен Тогда в указанной системе отсчета скорость течения на гребнях волн будет равна

а во впадинах волн

Так как разность высот между наивысшим и наинизшим положениями точек свободной поверхности равна то, применяя уравнение Бернулли к линии тока, расположенной на свободной поверхности, мы получим:

или, после подстановки вместо и их значений,

откуда следует, что

Радиус в эту формулу не входит, следовательно, скорость распространения волн не зависит от высоты волн. При распростраении волн гребень волны продвигается за время на расстояние называемое длиной волны, следовательно,

Исключая из равенств (60) и (61) период мы получим:

Таким образом, для волн на поверхности воды скорость их распространения, в отличие от звуковых волн, сильно зависит от длины волны. Длинные волны распространяются быстрее, чем короткие. Волны с разной длиной могут налагаться друг на друга без заметного взаимного возмущения. При этом короткие волны как бы приподнимаются длинными волнами, но затем длинные волны уходят вперед, а короткие остаются позади них. Линии тока в системе отсчета, неподвижной относительно невозмущенной воды, показаны на рис. 81. Из расположения линий тока видно, что скорость движения воды очень быстро убывает с увеличением глубины, а именно, пропорционально уменьшению величины следовательно, на глубине, равной длине волны, скорость составляет только скорости на свободной поверхности.

Рис. 81. Линии тока волнового движения

Точная теория показывает, что формула (62) справедлива только для низких волн, причем независимо от их высоты. Для высоких волн скорость с в действительности несколько больше того значения, которое дает формула (62). Кроме того, при высоких волнах траектории частиц воды, расположенных на свободной поверхности, получаются незамкнутыми: вода на гребне волны уходит вперед на большее расстояние, чем на то, на которое она возвращается назад во впадине волны (см. правую часть рис. 81). Следовательно, при высоких волнах происходит перенос воды вперед.

Для волн с небольшой длиной важным фактором является, кроме силы тяжести, также поверхностное натяжение. Оно стремится сгладить волновую поверхность, и поэтому скорость распространения волн увеличивается. Теория показывает, что в этом случае скорость распространения волн равна

где С есть капиллярная постоянная. Для длинных волн преобладающую роль играет первый член под знаком корня, а для коротких волн, наоборот, второй член. Для длины волны

скорость распространения с имеет минимальное значение, равное

Для воды дин/см, следовательно,

Волны, длина которых больше называются гравитационными, а волны, длина которых меньше капиллярными.

От скорости перемещения гребней волн, называемой фазовой скоростью (выше мы ее называли скоростью распространения волн и обозначали через с), следует отличать скорость распространения группы

волн, называемую групповой скоростью и обозначаемую через с. Проще всего разъяснить смысл этого понятия на примере движения, возникающего в результате наложения двух волн, имеющих равные амплитуды, но немного отличающихся своей длиной. Пусть мы имеем синусоидальную волну

где А есть амплитуда, время, а некоторые коэффициенты. При увеличении на у или на у синус принимает прежнее значение, следовательно, величина

есть длина волны, а величина

есть период колебаний. Если

т. е. если

то аргумент синуса не зависит от времени, поэтому не зависит от времени и ордината у. Это означает, что вся волна, не изменяя своей формы, перемещается вправо со скоростью

Наложим на эту волну вторую волну

т. е. волну с той же амплитудой А, но с несколько иными значениями Результирующим движением будет

В тех точках оси х, в которых фазы обоих колебаний совпадают, амплитуда равна в тех же точках, в которых фазы обоих колебаний

противоположны, амплитуда равна нулю. Такое явление называется биением. Применив известную формулу

мы получим:

В этом равенстве член

представляет собой волну, для которой коэффициенты при равны средним значениям от и соответственно от Множитель же

который при малых значениях разностей изменяется медленно, можно рассматривать как переменную амплитуду (рис. 82).

Рис. 82. Биение

Группа волн кончается в той точке, где косинус делается равным нулю. Скорость перемещения этой точки, называемая групповой скоростью с, на основании соображений, аналогичных предыдущим, равна

Для длинных групп, т.е. для медленных биений, с достаточной точностью можно принять, что

Для волн, возникающих под действием силы тяжести, из формулы (60) мы имеем:

Но, согласно равенству (65),

следовательно,

С другой стороны, подставив в формулу (62) значение из равенства (64), мы получим:

Отсюда, диференцируя по и имея в виду равенство (67), мы найдем:

Таким образом, группы волн распространяются со скоростью с, равной половине фазовой скорости, иными словами, гребни в группе волн перемещаются со скоростью, в два раза большей, чем сама группа волн; на заднем конце группы все время возникают новые волны, а на переднем конце группы они исчезают. Это явление очень легко наблюдать на волнах, вызванных падением камня в неподвижную воду.

Все сказанное относится не только к волнам на поверхности воды, но и к любым другим волнам, фазовая скорость которых зависит от длины волны.

Другим видом групп волн являются волны, возникающие на поверхности воды при движении корабля. Картину волн, очень похожую на корабельные волны, легко получить, если на поверхности покоящейся глубокой воды заставить двигаться с постоянной скоростью точечный очаг возмущения давления. Возникающее при этом движение может быть исследовано математически. Согласно вычислениям В. Томсона (lord Kelvin), Экмана (Ekman) и других, получается система волн, изображенная на рис. 83, на котором наклонными линиями обозначены гребни волн. Эта система волн перемещается вместе с очагом возмущения. Длина поперечных волн на основании формулы (62) равна

где с есть скорость перемещения очага возмущения. При движении корабля образуются две системы таких волн - одна около носа, другая около кормы корабля, причем волны обеих систем интерферируют друг с другом.

Рис. 83. Система волн, образующихся при равномерном движении на поверхности воды очага возмущения давления

Групповая скорость капиллярных волн, как нетрудно показать путем расчета, аналогичного сделанному для гравитационных волн, больше фазовой скорости, а именно, в предельном случае очень малых волн, в 1,5 раза. Следовательно, если очаг возмущения движется с постоянной скоростью, то группы волн его опережают. Около лески удочки, опущенной в реку, скорость течения которой больше 23,3 см/сек, образуются вверх по течению капиллярные волны, а вниз по течению - гравитационные волны, причем последние имеют приблизительно такую же форму, как на рис. 83, а первые расходятся вверх по течению в виде дуг окружностей. При скоростях движения очага возмущения, меньших 23,3 см/сек, волны не образуются.

На поверхности соприкосновения двух жидкостей различной плотности, расположенных одна над другой, также могут возникать волны. Если обе жидкости неподвижны и плотности их равны то теоретический расчет дает для фазовой скорости волн величину

Если верхняя жидкость течет со скоростью относительно нижней, то теория показывает, что возникающие волны устойчивы только в том случае, если их длина достаточно велика. Короткие же волны, подобно тому, как это было показано в § 7 для движения двух потоков жидкости вдоль поверхности раздела, неустойчивы, что приводит к перемешиванию обеих жидкостей в промежуточной зоне; это перемешивание восстанавливает устойчивость течения. При увеличении скорости граница между неустойчивостью и устойчивостью перемещается в сторону волн с большей длиной. Волны такого рода могут возникать также в атмосфере на границе двух слоев воздуха разной плотности, движущихся относительно друг друга; иногда эти волны делаются видимыми благодаря образованию так называемых волнистых облаков.

При движении воздуха над поверхностью воды также образуются волны. Однако теория таких волн, основанная на предположении отсутствия трения, приводит к результатам, противоречащим

действительности. Так, например, вычисления В. Томсона показали, что минимальная скорость ветра, необходимая для образования на поверхности воды волн, должна составлять круглым числом причем возникают волны, обладающие минимальной скоростью распространения см/сек и длиной волны см (при большей скорости ветра получаются, конечно, волны с большей длиной). Между тем в действительности для образования волн достаточно ветра со скоростью Согласно исследованию Джеффри это объясняется тем, что вследствие трения распределение давления на поверхности волны делается несимметричным, и поэтому ветер, если его скорость больше фазовой скорости волн, совершает на гребне каждой волны работу. Мотцфельд, измерив распределение давления на поверхности моделей водяных волн, нашел, что сопротивление, которое воздух оказывает движению волн, пропорционально полуторной степени наклона поверхности волны в точке перегиба относительно горизонта, а также квадрату разности между скоростью ветра и фазовой скоростью волн. Далее, Мотцфельд путем расчета нашел, что наклон поверхности волны в точке перегиба, зависящий от фазовой скорости с, получается наибольшим при

Этой скорости с соответствует, на основании формулы (62), волна длиной

Если принять во внимание поверхностное натяжение, которое Мотцфельд не учитывал, то расчет показывает, что для возникновения легкого волнения на поверхности воды достаточно, в полном соответствии с наблюдениями, ветра со скоростью, немного превышающей 23,3 см/сек.

Формулы, выведенные выше, пригодны только для волн на глубокой воде. Они еще достаточно точны, если глубина воды равна половине длины волны. При меньшей глубине частицы воды на поверхности волны описывают не круговые траектории, а эллиптические, и зависимость между длиной и скоростью распространения волн получается более сложной, чем для волн на глубокой воде. Однако для волн на

очень мелкой воде, а также для очень длинных волн на средней воде только что указанная зависимость принимает опять более простой вид. В обоих последних случаях вертикальные перемещения частиц воды на свободной поверхности весьма незначительны по сравнению с горизонтальными перемещениями. Поэтому можно опять считать, что волны имеют приблизительно синусоидальную форму. Так как (траектории частиц представляют собой очень сплющенные эллипсы, то влиянием вертикального ускорения на распределение давления можно пренебречь. Тогда на каждой вертикали давление будет изменяться по статическому закону, и разности высот жидкости будут обусловливать практически только горизонтальные ускорения. Мы ограничимся здесь вычислениями лишь для случая движения «вала» воды, изображенного на рис. 84. Эти вычисления очень простые и в дальнейшем будут нами использованы для исследования распространения возмущения давления в сжимаемой среде (см. § 2 гл. IV).

Рис. 84. Вал на поверхности воды

Пусть на поверхности воды над плоским дном распространяется со скоростью с справа налево вал шириной повышающий уровень воды от до Предположим, что до прихода вала вода находилась в покое. Скорость ее движения после повышения уровня обозначим через Эта скорость, отнюдь не совпадающая со скоростью с распространения вала, необходима для того, чтобы вызвать боковое перемещение объема воды в переходной зоне шириной вправо и тем самым поднять уровень воды с высоты до высоты Примем для простоты, что наклон вала по всей его ширине постоянен, следовательно, он равен Тогда, при условии, что скорость достаточно мала, чтобы ею можно было пренебречь по сравнению со скоростью с распространения вала, вертикальная скорость подъема воды в области вала будет равна должна быть мала также разность высот следовательно, это уравнение применимо только к низким валам, и поэтому только что упомянутое условие вполне оправдано.

К кинематическому соотношению (72) следует присоединить динамическое соотношение, которое легко вывести следующим образом. Объем воды шириной в области вала находится в ускоренном движении, так как частицы, составляющие этот объем, начинают свое движение на правом краю со скоростью нуль, а на левом краю имеют скорости Возьмем какую-нибудь частицу воды в области вала. Время, в течение которого над этой частицей проходит вал, очевидно, равно

поэтому ускорение частицы будет

Объем воды в области вала, если его толщину в направлении, перпендикулярном к плоскости рисунка, принять равной единице, имеет массу где Кроме того, каждый последующий вал распространяется не в неподвижной воде, а в воде, уже движущейся вправо со скоростью Это приводит к тому, что последующие валы догоняют предыдущие, в результате чего возникает крутой вал конечной высоты.

Исследование распространения вала конечной высоты можно выполнить при помощи теоремы о количестве движения совершенно таким же образом, как это было сделано в § 13 при рассмотрении внезапного расширения потока. Для того чтобы движение воды при распространении вала можно было рассматривать как установившееся, расчет следует вести в системе отсчета, движущейся вместе с валом. Скорость распространения вала конечной высоты больше чем