Решение иррациональных уравнений с тремя корнями. Решение квадратных уравнений. Избавление от иррационального

Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель корня - четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

2) если показатель корня - нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

Пример 1. Решить уравнение

Возведем обе части уравнения в квадрат.
x 2 - 3 = 1;
Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
x 2 = 4;
Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
Проверка.
При x 1 = -2 - истинно:
При x 2 = -2- истинно.
Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Пример 2. Решить уравнение.

Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

ОДЗ данного уранения: x.

Ответ: корней нет.

Пример 3. Решить уравнение=+ 2.

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
x 3 + 4x - 1 - 8= x 3 - 1 + 4+ 4x;
=0;
x 1 =1; x 2 =0.
Произведя проверку устанавливаем, что x 2 =0 лишний корень.
Ответ: x 1 =1.

Пример 4. Решить уравнение x =.

В этом примере ОДЗ найти легко. ОДЗ этого уравнения: x[-1;).

Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

x + 10 и x0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

Пример 5 . Решить уравнение+= 7.

Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
= 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 - х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 - 15x + 44 =0.

Это уравнение (также являющееся следствием исходного) имеет корни x 1 = 4, х 2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Отв. х 1 = 4, х 2 = 11.

Замечание . При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравнения = 12, пишут уравнение = 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

Пример 6 . Решить уравнение-= 3.

Уединив первый радикал, получаем уравнение
=+ 3, равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

x 2 + 5x + 2 = x 2 - 3x + 3 + 6, равносильное уравнению

4x - 5 = 3(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
16x 2 - 40x + 25 = 9(x 2 - Зх + 3), или

7x 2 - 13x - 2 = 0.

Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x 1 = 2 удовлетворяет исходному уравнению, а второй x 2 =- не удовлетворяет.

Ответ: x = 2.

Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

Очень не нравятся, некоторым, школьникам уравнения и задачи, в которых встречается знак корня. А ведь решить пример с корнем не так сложно, важно знать, с какой стороны подойти к проблеме. Сам значок, который обозначает извлечение корня, называется радикалом. Как решать корни? Извлечь квадратный корень из числа – это значит, подобрать такое число, которое в квадрате даст то самое значение под знаком радикала.

Итак, как решать квадратные корни

Решать квадратные корни несложно. Например, требуется выяснить, сколько будет корень из 16. Для того чтобы решить этот простой пример, нужно вспомнить, сколько будет 2 в квадрате - 2 2 , затем 3 2 , и, наконец, 4 2 . Только теперь мы увидим, что результат (16) соответствует запросу. То есть, для того, чтобы извлечь корень, нам пришлось подбирать возможные значения. Оказывается, для того, чтобы решать корни, не существует точного и проверенного алгоритма. Для облегчения труда "решателя", математики рекомендуют заучить наизусть (именно назубок, как таблицу умножения) значения квадратов чисел до двадцати. Тогда можно будет запросто извлекать корень из чисел, которые больше сотни. И, наоборот, видеть сразу, что корень из этого числа извлечь нельзя, то есть ответ не будет иметь целое число.

Мы разобрались, как решать квадратные корни. А теперь давайте разберемся, какие квадратные корни решения не имеют. Например, отрицательные числа. Здесь понятно, что если два отрицательных числа перемножить – ответ получится со знаком плюс. Далее что следует знать. Корень извлечь можно из любого числа (кроме отрицательного, как упоминалось выше). Просто ответ может обернуться десятичной дробью. То есть содержать какое-то количество цифр после запятой. Например, корень из двух имеет значение 1.41421 и это еще не все цифры после запятой. Такие значения округляются для облегчения расчетов, иногда до второй цифры после запятой, иногда до третьей или четвертой. Кроме того частенько практикуется так и оставлять число под корнем в качестве ответа, если оно хорошо и компактно смотрится. Ведь и так ясно, что оно означает.

Как решать уравнения с корнями?

Чтобы решать уравнения с корнями, нужно применить одну из придуманных не нами методик. Например, возвести обе части такого уравнения в квадрат. Например:

Корень из X+3=5

Возведем в квадрат левую и правую части уравнения:

Теперь уже видно, как решать это уравнение. Сначала выясним, чему равен X 2 (а он равен 16), а затем извлечем из него корень. Ответ: 4. Однако здесь стоит сказать, что это уравнение на самом деле имеет два решения, два корня: 4 и -4. Ведь -4 в квадрате тоже даст 16.

Кроме этого метода иногда более привлекателен и удобен способ замены переменной, которая находится под корнем – другой переменной, для того, чтобы избавиться от этого корня.

Y = корень из X.

Впоследствии, решив уравнение, мы возвращаемся к замене и заканчиваем вычисления с корнем.

То есть, получаем X = Y 2 . А это и будет решение.

Следует сказать, что есть еще несколько приемов решения уравнений с корнями.

Как решать корни в степени?

Радикал, в основании которого нет степени, означает, что нужно извлечь из выражения или числа квадратный корень, то есть квадратная степень наоборот. Это просто и понятно. Например: корень из 9 = 3, (а 3 2 = 9), корень из 16 = 4 (4 2 = 16) и все в том же духе. Но что значит, если у корня есть степень? Это означает, что нужно, опять же, произвести действие, обратное возведению в эту самую степень. Например, нужно узнать значение корня кубического из 27.
Для этого, надо подобрать такое число, которое при возведении в куб, даст 27. Это 3 (3*3*3=27).

корень 3 из 27 = 3

Похожие действия нужно произвести, если степень корня равна 4, 5. Только в этом случае надо подобрать такое число, которое при возведении в степень n даст значение под корнем n -ной степени.

Тут нужно сказать, что степени корней и степени подкоренных выражений можно сокращать. Однако по правилам. Если число или переменная под корнем имеет степень, кратную степени корня – их можно сократить. Например:

корень 3 из X 6 = X 2

Эти правила действий с корнями и степенями просты, их нужно знать четко, и тогда расчет будет прост. Как решать корни в степени, мы разобрались, теперь продвигаемся дальше.

Как решать корень под корнем?

Это ужасное выражение корень под корнем на первый взгляд не решаемое. Но, чтобы правильно вычислить значение такого выражения, нужно знать свойства корней. В таком случае требуется просто заменить два корня – одним. Для этого степени этих радикалов нужно просто перемножить. Например:

корень 3 из корня 729 = (корень 3 * корень 2) из 729

То есть, здесь мы умножили между собой корень кубический на корень квадратный. В итоге получили корень шестой степени:

корень 6 из 729 = 3

Точно так же нужно решать и другие подобные корни под корнем.

Рассмотрев все предложенные примеры, легко согласиться, что решение корней – не такая уж и трудная задача. Конечно, когда дело сводится к простой, банальной арифметике, иногда легче воспользоваться привычным калькулятором. Однако перед тем как производить вычисления, нужно сделать все возможное, чтобы упростить себе задачу, максимально сократив количество и сложность арифметических вычислений. Тогда решение станет простым и, самое главное – интересным.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Каждое новое действие в математике мгновенно порождает обратное ему. Когда-то давно древние греки обнаружили, что квадратный кусок земли длиной и шириной в 2 метра будет иметь площадь 2*2 = 4 квадратных метра (в дальнейшем будет обозначаться m^2) . А теперь наоборот, если бы грек знал, что его участок земли квадратный и имеет площадь 4 m^2, как бы он узнал, какая длина и ширина его участка? Была введена операция, являющейся обратной к операции возведения в квадрат и стала называться извлечением квадратного корня. Люди стали понимать, что 2 в квадрате (2^2) равно 4. И наоборот, квадратный корень из 4 (далее будет обозначаться √(4)) будет равен двойке. Модели усложнялись, записи, описывающие процессы с корнями, также усложнялись. Многократно возникал вопрос, как решить уравнение с корнем.

Пусть некоторая величина x при умножении самой на себя один раз даёт 9. Это можно записать как x*x=9. Или же через степень: x^2=9. Чтобы найти х, следует извлечь корень из 9, что уже в какой-то степени является уравнением с радикалом: x=√(9) . Корень можно извлекать устно или использовать для этого калькулятор. Далее следует рассмотреть обратную задачу. Некая величина, при извлечении из неё квадратного корня, даёт значение 7. Если записать это в виде иррационального уравнения, получится: √(x) = 7. Для решения такой задачи необходимо обе части выражения возвести в квадрат. Учитывая, что √(x) *√(x) =x, получается x = 49. Корень сразу готов в чистом виде. Далее следует разобрать более сложные примеры уравнения с корнями.

Пусть от некой величины отняли 5, затем выражение возвели в степень 1/2. В итоге было получено число 3. Теперь данное условие необходимо записать как уравнение: √(x-5) =3. Далее следует умножить каждую часть уравнения саму на себя: x-5 = 3. После возведения во вторую степень, выражение было избавлено от радикалов. Теперь стоит решить простейшее линейное уравнение, перенеся пятёрку в правую часть и поменяв её знак. x = 5+3. x = 8. К сожалению, не все жизненные процессы можно описать такими простыми уравнениями. Очень часто можно встретить выражения с несколькими радикалами, иногда степень корня может быть выше второй. Для таких тождеств не существует единого алгоритма решений. К каждому уравнению стоит искать особый подход. Приводится пример, в котором уравнение с корнем имеет третью степень.

Корень кубический будет обозначаться 3√. Найти объём контейнера, имеющего форму куба со стороной 5 метров. Пусть объём равен x m^3. Тогда кубический корень из объёма будет равен стороне куба и равняться пяти метрам. Получено уравнение: 3√(x) =5. Для его решения необходимо возвести обе части в третью степень, x = 125. Ответ: 125 кубометров. Дальше пример уравнения с суммой корней. √(x) +√(x-1) =5. Сначала необходимо возвести обе части в квадрат. Для этого стоит вспомнить формулу сокращенного умножения для квадрата суммы: (a+b) ^2=a^2+2*ab+b^2. Применив к уравнению, получается: x + 2*√(x) *√(x-1) +x-1 = 25. Далее корни оставляются в левой части, а всё остальное переносится в правую: 2*√(x) *√(x-1) = 26 - 2x. Удобно поделить обе части выражения на 2: √((x) (x-1)) = 13 - x. Получено более простое иррациональное уравнение.

Далее снова следует возвести обе части в квадрат: x*(x-1) = 169 - 26x + x^2. Надо раскрыть скобки и привести подобные слагаемые: x^2 - x = 169 - 26x + x^2. Вторая степень пропадает, отсюда 25x = 169. x = 169/25 = 6,6. Выполнив проверку, подставив полученный корень в изначальное уравнение: √(6,6) +√(6,6-1) = 2,6 + √(5,6) = 2,6 + 2,4 = 5, можно получить удовлетворительный ответ. Также очень важно понимать, что выражение с корнем чётной степени не может быть отрицательным. Действительно, умножая любое число само на себя чётное число раз, невозможно получить значение меньше нуля. Поэтому такие уравнения, как √(x^2+7x-11) = -3 можно смело не решать, а писать что уравнение корней не имеет. Как упоминалось выше, решение уравнений с радикалами может иметь самые разнообразные формы.

Простой пример уравнения, где необходимо проводить замену переменных. √(y) - 5*4√(y) +6 = 0, где 4√(y) - корень четвёртой степени из y. Предлагаемая замена выглядит следующим образом: x = 4√(y) . Проведя таковую, получится: x^2 - 5x + 6 = 0. Получено приведённое квадратное уравнение. Его дискриминант: 25 - 4*6 = 25 - 24 = 1. Первый корень x1 будет равен (5 + √1) /2 = 6/2 = 3. Второй корень x2 = (5 - √1) /2 = 4/2 = 2. Также можно найти корни, воспользовавшись следствием из теоремы Виета. Корни найдены, следует провести обратную замену. 4√(y) = 3, отсюда y1 = 1,6. Также 4√(y) = 2, извлекая корень 4 степени получается что y2 = 1,9. Значения вычислены на калькуляторе. Но их можно и не делать, оставив ответ в виде радикалов.