Астрофизика сообщение. Астрофизика. Что изучает эта наука

В старину многие народы считали, что небо – это тысячеглазое всевидящее божество. Древние греки называли это божество Аргусом или Паноптесом. Звездочеты, таким образом, смело смотрели в глаза богам и даже, считалось, могли разглядеть в этих глазах судьбы людей, правителей и стран. Потому в древние времена звездочеты были в почете. Впрочем, кроме предсказаний судьбы работа древних наблюдателей небес приносила и несомненные земные результаты. Благодаря этим наблюдениям люди научились исчислять время и ориентироваться на земной поверхности и на глади вод.

И в Средние века, и в эпоху Возрождения астрономы присутствовали при дворах любых властителей Запада и Востока. Главной задачей их было составление астрологических прогнозов. В свободное от основных обязанностей время они могли смотреть на звезды, сколько душа пожелает. Датчанин Тихо Браге (1546 - 1601) для этого даже выстроил специальную обсерваторию на острове неподалеку от Копенгагена. Его астрономические наблюдения были настолько точны и многочисленны, что послужили основой для открытия законов движения планет, называемых законами Кеплера. Кстати, Иоганн Кеплер (1571 -1630) тоже зарабатывал на жизнь астрологией.

И вот в безбожном 18 веке астрономы дошли до предела безнравственности. Они заявили, что небесные тела – совсем не глаза Бога, а суть физические тела. Мертвые камни (если речь идет о планетах) или сгустки огня (если мы говорим о звездах). Собственно говоря, этим открытием астрономы подписали смертный приговор своему благополучию. Потому что одно дело – Божья воля, прочитанная на небесах, и совсем другое дело – какие-то летающие посреди холода и темноты каменные обломки.

С другой стороны, благодаря этому открытию появилась астрофизика. Астрофизика – это наука о строении и свойствах небесных тел. Она изучает химический состав планет, Солнца, других звезд, комет и галактик. Астрофизика базируется не только на наблюдениях небесных тел, но и с помощью экспериментальных методов изучает физические свойства этих отдаленных объектов. Экспериментальными методами астрофизики являются в первую очередь, фотография, фотометрия и спектральный анализ. За последние пятьдесят лет астрофизические приборы стали работать не только на поверхности Земли, не только в горных обсерваториях, но и на борту космических кораблей. Выход астрофизики в космос принес новые открытия и породил одну из интереснейших отраслей этой науки, экспериментальную астрономию. Потрогать Луну, просверлить скважину на Марсе – честное слово, это кайф!

Астрофизика – один из предметов, изучаемых на астрономических факультетах университетов. Астрофизики – это те, кто развивают эту науку. Надо сказать, что профессия эта – редкая. Ведь не так уж много астрофизиков требуется человечеству. Гораздо меньше, чем в Средние века государям требовалось астрологов.

Астрофизика, как и астрономия – наука романтическая. Красота звездного неба многих очаровывает с детства. До сих пор помню, как захватило у меня, десятилетнего, дыхание, когда я увидел Марс в объективе телескопа. А ведь стоял телескоп не где-нибудь на вершине Памира, а всего-навсего на крыше заурядного педагогического института в районном центре М.!

Так вот, красота сверкающего звездами неба многих не отпускает всю жизнь. И эти бедолаги идут на астрономические специальности в университетах, заранее зная, что ни больших денег, ни великой славы (которую тоже можно конвертировать в деньги) с этой специальностью не заработаешь. И жить, получив эту специальность, придется в какой-нибудь дыре, да на горе. В Пулковской обсерватории для всех места не хватит, да и выдающихся открытий там уже не сделать. Небо засвечивает находящийся рядом сияющий миллионом огней Санкт-Петербург.

Рабочий день астрофизика – тоже не сахар. Вернее, это рабочая ночь. Этакий ночной дозор. Астрофизик приходит в обсерваторию после заката, но еще при свете, в сумерках. Пока светло, быстро готовится аппаратура, расчехляется телескоп. Наблюдения начинаются в темноте и заканчиваются с рассветом. Романтика, однако, хотя, конечно, хочется спать.

Зимой же, когда ночи длинные, работа длится больше положенных по кодексу законов о труде восьми часов. Тогда очень радует рассвет и простывшая за ночь кровать.

Одна ночь наблюдения – это сотни фотографий, спектрограмм, записей и графиков. Наблюдения, сделанные за неделю, надо скрупулезно обрабатывать месяц. А результат – хуже, чем у поэта из стихотворения В.Маяковского: «В грамм добыча – в год труды» . Иногда (но не всегда) результатом является публикация, доклад на конференции.

Опять же, говоря словами В.Маяковского: «Если звезды зажигаются, значит это кому-нибудь нужно» . Теперь астрофизику приходится постоянно объяснять людям эту поэтическую максиму. Да, прошли благословенные времена Средневековья! Астрономия нынче финансируется плохо. Даже в школах астрономию, предмет для юных умов интереснейший, тоже не изучает. Все упирается в то же финансирование. Часов на астрономию не хватает!

Великие открытия? Они случаются. Но так же, как мест в Пулковской обсерватории, на всех астрофизиков их не хватает.

Например, 12 ноября 2014 года была произведена первая в истории посадка космического аппарата на поверхность кометы. Комета называлась кометой Чурюмова-Герасименко. Астрофизик Светлана Ивановна Герасименко, открывшая эту комету, вспоминает, что сделано это открытие было благодаря бракованной фотопластинке в далеком сентябре 1969 года. Но открытая в тот год комета получила всемирную известность только благодаря тому, что к ней был запущен космический робот.

И еще раз к вопросу о монетизации астрофизических открытий. За открытие новой кометы аспирантка Герасименко получила премию 30 рублей. Мелочь, а приятно. Опять же, если вдуматься, какая польза народному-то хозяйству от какой-то там небесной кометы? Ноль целых, шиш десятых. Так что еще много заплатили!

Нет, ребята, не стоит идти в астрофизики. Больших денег среди звезд не сыскать.

Но все-таки здорово, когда в окуляре телескопа смотришь на вспышку сверхновой звезды. Не в кино ее видишь, а в реальности. Так сказать, в режиме «он-лайн». И осознаешь, какой это страшный, всесметающий, был взрыв, и как давно это было, миллионы лет назад... И как далеко это было, если свет этой вспышки только сейчас вошел в твой глаз, преодолев непредставимое расстояние. И что никто, кроме тебя, сейчас этой вспышки не видит. Вот тут-то и представляешь себя Демиургом, творцом Вселенной. Потому что, кажется, потихоньку начинаешь догадываться, как эта Вселенная устроена и для чего построена.

И это дорогого стоит.

Астрономия — это наука, которая изучает небесные тела, их движение, строение, а также системы, образованные ими. Это древнейшая область знания: истоки астрономии теряются в глубине веков.

Можно сказать, что она эволюционировала вместе с человечеством. И сегодня астрономия не стоит на месте. Пользуясь новейшими технологиями, ученые постоянно уточняют и дополняют уже сложившиеся теории. Самые громкие открытия последних лет часто бывали связаны с теми явлениями, что изучают астрофизики. На полную мощность используя достижения в области техники, астрономы неизбежно сталкиваются с ограниченностью человеческого разума. Астрофизика — раздел астрономии, пожалуй, чаще других сталкивающийся с фактами, которые пока невозможно объяснить. Ученые, работающие под ее знаменем, пытаясь найти ответы на все более сложные вопросы, тем самым стимулируют технический прогресс. О том, что изучают астрофизики, что им уже удалось узнать и какие загадки Вселенная им предлагает сегодня, и пойдет речь ниже.

Особенности

Астрофизика занимается определением физических характеристик и их взаимодействия. В своих теориях она опирается на знания о законах природы, накопленные наукой в процессе изучения свойств материи на Земле.
Ученые-астрофизики сталкиваются с существенными ограничениями в своей работе. В отличие от коллег, изучающих микромир или макрообъекты в условиях Земли, они не могут проводить эксперименты. Многие из сил, действующих в космосе, проявляют себя лишь на огромном расстоянии или при наличии гигантских по массе и объему объектов. В лаборатории такое взаимодействие не изучишь, поскольку невозможно создать необходимые условия. Общая астрофизика в основном имеет дело с результатами пассивного наблюдения.

В таких условиях трудно себе представить получение данных об объектах. Непосредственного измерения нужных параметров в силу невозможности экспериментов в этом разделе астрономии не существует. В таком случае что изучают астрофизики и на чем основывают свои выводы? Главный источник информации для ученых в подобных условиях — анализ электромагнитных волн, которые излучают небесные тела.

С чего все начиналось

Астрономия — это наука, которая изучает небесные тела с незапамятных времен, однако такой раздел, как астрофизика, был в ней далеко не всегда. Фактически свое становление он начал в 1859 году, когда Г. Кирхгоф и Р. Бунзен по завершении серии экспериментов установили, что любой химический элемент обладает уникальным линейчатым спектром. Это означало, что по спектру небесного тела можно судить о его химическом составе. Так зародился спектральный анализ, а вместе с ним появилась и астрофизика.

Значимость

В 1868 году только что созданный метод сделал возможным обнаружение нового химического элемента - гелия. Его открыли во время наблюдения полного солнечного затмения и изучения хромосферы светила.

Современная астрофизика также во многом базируется на данных Усовершенствованная технология позволяет получать сведения практически обо всех характеристиках небесных тел, а также межзвездного пространства: температуре, составе, поведении атомов, напряжении магнитных полей и так далее.

Невидимое излучение

Существенно расширило возможности астрофизики открытие радиоизлучения. Его регистрация позволила изучать холодный газ, наполняющий межзвездное пространство и испускающий невидимый для глаза свет, а также процессы, протекающие в далеких пульсарах и нейтронных звездах. Огромное значение для всей астрономии имело открытие ставшего подтверждением складывавшейся в это время теории большого взрыва.

Космическая эра подарила астрофизикам новые возможности. Стали доступными ультрафиолетовое, рентгеновское и гамма-излучение, путь к Земле которым преграждает атмосфера. Телескопы, созданные с учетом новых открытий, позволили обнаружить горячий газ в скоплениях галактик, нейтронных звезд, некоторые характеристики черных дыр.

Проблемы астрофизики

Современная наука шагнула далеко вперед по сравнению с тем состоянием, в котором она пребывала в конце 19 века. Сегодня астрофизики пользуются всеми новейшими достижениями в области регистрации электромагнитного излучения и получения на их основе данных об удаленных объектах. Однако нельзя сказать, что этот раздел астрономии абсолютно беспрепятственно движется по пути изучения Вселенной. Условия, складывающиеся в далеком космосе, подчас настолько трудны для регистрации и понимания, что интерпретация полученных данных о тех или иных объектах затруднительна.

В окрестностях черной дыры, недрах нейтронных звезд и их магнитных полях могут проявляться новые физические свойства материи. Невозможность даже приблизительно воспроизвести экстремальные или предельные условия, в которых происходят подобные космические процессы, формирует основные сложности астрофизики.

Модель Вселенной

Одна из важнейших задач современной астрономии — понять, как развивается необъятный космос. На сегодняшний день существует две основные версии: открытая и закрытая Вселенная. Первая подразумевает постоянное и неограниченное расширение. В этой модели расстояние между галактиками только увеличивается, и спустя какое-то время космос станет безжизненной пустыней с редкими островками твердой материи. Другой вариант предполагает, что на смену расширению, которое для большинства является бесспорным фактом, придет фаза сжатия Вселенной. Однозначного ответа на вопрос о том, какая теория верна, пока нет. Более того, появляются открытия, значительно усложняющие понимание будущего Вселенной и вносящие определенный хаос в, казалось бы, стройную картину. К ним относится, например, обнаружение и энергии.

Черные дыры, гамма-всплески

Среди всего того, что изучают астрофизики, есть ряд объектов с особым налетом таинственности. Они также относятся к основным проблемам этого раздела астрономии. В их число входят черные дыры, многие физические процессы в пространстве которых совершенно не изучены, и гамма-всплески. Последние представляют собой выброс огромного количества энергии, импульсы гамма-излучения. Природа их тоже до конца не ясна.

Понимание подобных объектов и явлений может существенно изменить наше представление об устройстве Вселенной и законах космоса. Именно постоянное соприкосновение с тайнами мироздания и делает астрофизику передним краем науки, одновременно высвечивающей ограниченность современных знаний и стимулирующей дальнейшее их развитие. Можно сказать, что этот раздел астрономии стал своеобразным маркером прогресса: каждое открытие знаменует собой победу человеческого разума над еще одной тайной.

Раздел астрономии, изучающей физическое состояние и химический состав небесных тел и их систем, межзвездной и межгалактических сред, а также происходящие в них процессы называется астрофизикой. Основные разделы астрофизики включают: физику планет и их спутников, физику Солнца, звездных атмосфер, межзвездной среды, теорию внутреннего строения звезд и их эволюцию. В отличие от физики, в основе которой лежит эксперимент, астрофизика основывается главным образом на наблюдениях, Но во многих случаях условия, в которых находится вещество в небесных телах и системах отличается от доступных современным лабораториям (сверхвысокие и сверхнизкие плотности, высокая температура и т.д.). Благодаря этому астрофизические наблюдения приводят к открытию новых физических закономерностей.

Собственное значение астрофизики определяется тем, что в настоящее время основное внимание в релятивистской космологии переносится на физику Вселенной – состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии.

Релятивистская астрофизика изучает на основе общей теории относительности (теории тяготения А. Эйнштейна) объекты сверхплотного образования во Вселенной.

Методы астрофизики исследования Вселенной

Метод оптический изучение Вселенной при помощи телескопа, который является главным инструментом астрономических исследований (приложение 7). Наибольшее количество сведений о космических процессах приносит свет. Телескоп – это устройство для собирания света с помощью объектива: двояковыпуклой линзы или вогнутого зеркала. Оптические телескопы делятся на три типа: рефрактор (объектив – большая линза), рефлектор (объектив – вогнутое зеркало), зеркально – линзовый телескоп. В этих телескопах используют в качестве объектива как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень портативных коротких оптических труб. Основная цель телескопа собрать как можно больше света от небесного объекта. Свет через трубу телескопа собирается объективом, Полученное с помощью телескопа изображение небесного тела фиксируется на фотопластинке. Физика подарила исследователям Вселенной такой метод изучения световых лучей, как спектральный анализ. Если пропускать луч белого солнечного света через узкую щель, а затем сквозь стеклянную трехгранную призму, то он распадается на свои составные цвета и на экране появляется радужная цветовая полоска с постепенным переходом от красного до фиолетового – непрерывный спектр. Красный конец спектра образован лучами, наименее отклоняющимися при прохождении через призму, фиолетовый – наиболее отклоняемыми. Телескоп снабжают специальным устройством спектрографом. Он не только разлагает свет на составные части, но и фиксирует спектр на фотопластинке. Расшифровкой спектра, полученного от космического объекта, занимается физика. Расшифровка спектра помогает: а) Изучить химический состав космического объекта. Каждому химическому элементу соответствуют определенные спектральные линии. Например, в спектре паров натрия можно обнаружить близкорасположенные желтые линии, в спектре паров калия – фиолетовую и желтую линии. б) Определить температуру источников излучения, т.к. красный цвет соответствует низкой температуре (у звезд, 3 – 4 тыс. градусов по Цельсию), желтый – зеленый – средней (у звезд, 5 – 6 тыс. градусов по Цельсию), бело – голубой – высокой (у звезд, 10 – 11 тыс. градусов по Цельсию). в) Измерить скорость космического объекта согласно эффекту Доплера – зависимость измеряемой длины волны от взаимного движения наблюдателя и источника волн, если космический объект приближается к нам, то в его спектре спектральные линии смещаются к фиолетовому концу, в противоположном случае к красному (приложение 12).


Метод изучения космического радиоизлучения при помощи радиотелескопа. Долгое время астрономы могли исследовать космические объекты только по видимому излучению. Это было серьезным ограничением, так как видимый свет составляет небольшую часть спектра. Видимый свет соответствует интервалу длины волны от 4000 Ǻ (1 Ǻ = 10 -10 м) у фиолетовой границы до 7200 Ǻ – у красной. Свет, длина волны которого выходит за эти пределы не воспринимается нашим зрением. За фиолетовой областью видимого спектра идут ультрафиолетовое, рентгеновское и очень коротковолновое всепроникающее g – излучение. За красной границей спектра находится инфракрасное, микроволновое и радиоизлучение, длина волн которого может превосходить километры. В начале 30 –х годов XX столетия при изучении шумов, мешающих радиосвязи, был открыт источник небольших радиопомех, расположенный в направлении центра нашей Галактики. В основном источниками радиоволн являются космические объекты, находящиеся за пределами Солнечной системы. Радиоволны по сравнению со световыми лучами проходят там, где видимый свет пробиться не может. Вся информация о самых удаленных областях Вселенной целиком получена из радионаблюдений. Главными источниками космических радиопередач в большинстве случаев являются такие объекты, в которых протекают бурные физические процессы. Именно они представляют наибольший интерес для изучения развития Вселенной и форм космической материи. Радиоволны излучает и межзвездное пространство, а именно находящийся в нем ионизированный горячий газ. Нагрев и ионизацию газа (преимущественно водорода) вызывают горячие звезды и космические лучи. Другой источник радиоизлучения – нейтральный водород, которого в межзвездном пространстве значительно больше, чем ионизированного. Исследователи Вселенной умеют сегодня не только улавливать и переводить на доступный человеку язык информацию космических радиосигналов. Они научились также «прощупывать» с помощью радиолуча, направленного с Земли, поверхность небесных тел и принимать отраженные от них сигналы. Изучение космического «радиоэха» позволяет: измерять расстояние до небесных тел, определять скорость их движения и по характеру отражения радиоволн изучать поверхность космического объекта. Ученые осуществили радиолокацию ближайших планет, Луны и Солнца.

Метод нейтринной астрофизики . Источником энергии Солнца являются термоядерные реакции. В ходе этих реакций рождается нейтрино. Одна из отличительных особенностей нейтрино состоит в том, что эта частица чрезвычайно слабо взаимодействует с веществом. Длина свободного пробега нейтрино в веществе колоссальна. Пронизывая толщу солнечного вещества, они вылетают наружу в космическое пространство, и определенная их часть достигает поверхности Земли. Регистрируя солнечное нейтрино с помощью специальных устройств, (нейтринных телескопов) и вычисляя величину их потока, можно судить о характере физических процессов, протекающих в недрах Солнца.

Методы внеатмосферной астрономии . Внеатмосферное наблюдение – современное направление физики космоса, которое исследует космические объекты при помощи аппаратуры, вынесенной для устранения атмосферных помех за пределы земной атмосферы. Внеатмосферная астрономия дает возможность устранить дрожание изображения в телескопах, вызванное атмосферными неоднородностями, и довести пространственное разрешение оптического телескопа до его теоретически возможного (дифракционного) значения. Современная внеатмосферная астрономия вносит в астрофизику вклад вполне соизмеримый с вкладами оптической и радиоастрономии.

Методы инфракрасной, ультрафиолетовой, рентгеновской и гамма – астрономии. В целях изучения инфракрасного, ультрафиолетового, рентгеновского и g – излучения созданы ИК – телескопы, УФ – телескопы, рентгеновские и g – телескопы. Благодаря установке особой аппаратуры на ракеты и спутники Земли оказалось возможным фиксировать эти виды излучений.

Космические лучи удается наблюдать по следам, оставляемым в специальных ловушках (например, пластинках с ядерной эмульсией). Космические лучи представляют собой элементарные частицы (электроны, протоны, ядра углерода, железа), которые движутся так быстро, что проникают через любые тела, включая Землю в целом.

Астрофизика - область науки на стыке астрономии и физики, которая изучает физические процессы в космических масштабах. Что происходит внутри черных дыр? Что было во время Большого Взрыва? Что такое темная материя? Почему Вселенная расширяется? На эти и многие другие сложнейшие вопросы и пытается ответить астрофизика. Сфера действия астрофизиков захватывает воображение, будоражит ум и не обходится без смекалки и интуиции. Астрофизика - не просто отрасль науки, астрофизиками становятся биологи и химики, астронавты и инженеры. Это сложная смесь лучших умов человечества, которые пытаются ответить на фундаментальные ответы грандиознейшей из структур нашей жизни: Вселенной.

По данным астрономов большинство звезд медленно вращается вокруг галактических центров со скоростью не более 100 километров в секунду. Однако в этом правиле есть исключения. За последние несколько десятилетий ученые открыли в нашей галактике около 20 сверхскоростных звезд. Последним таким открытием является объект PSR J0002+6216. его движения составляет 1130 километров в секунду или более четырех миллионов километров в час. Вполне достаточно, чтобы за 6 минут добраться до той же Луны. По мнению астрономов из американской Национальной радиоастрономической обсерватории, которые его открыли, при сохранении такой динамики, в далеком будущем объект сбежит из нашей галактики.

Однажды моросящим утром астробиолог Шон Домагаль-Голдман сидел в кофейне в Сиэтле и не мигая смотрел на экран своего ноутбука, словно парализованный. Он запустил имитацию развивающейся планеты, как вдруг в атмосфере виртуальной планеты начал накапливаться кислород. Его концентрация выросла с нуля до пяти, а после и до десяти процентов.

Единственный способ изучения удаленных объектов — это наблюдение излучения, которое они производят. Поэтому большая часть астрофизики связана с построением теорий, объясняющих механизмы, производящие это излучение.

Астрофизика дает ученым идеи о том, как извлечь из этого максимально полезную информацию. Первые гипотезы о природе звезд возникли в середине XIX века. Это произошло в ходе развития появившейся тогда науки о спектральном анализе. Она производит наблюдение определенных частот света, которые отдельные вещества поглощают и выделяют при нагревании. Спектральный анализ остается и сейчас весьма существенным для триумвирата космических наук. Он используется как для исследований, так и для тестирования новых теорий.

Ранняя спектроскопия представила первые доказательства того, что звезды содержат вещества, также присутствующие и на Земле. Спектроскопия показала, что некоторые туманности являются полностью газообразными, а некоторые из них содержат звезды. Это позже помогло укрепить идею о том, что некоторые туманности вообще не были туманностями. Это были другие галактики!

Теория большого взрыва

В начале 1920-х годов Сесилия Пейн, используя спектроскопию, обнаружила, что звезды состоят преимущественно из водорода (по крайней мере, до своей старости). Спектры звезд также позволили астрофизикам определить скорость, с которой они двигаются в сторону Земли. Подобно тому, как звук, который излучает автомобиль, отличается по частоте в зависимости от того, двигается ли он к нам или от нас, из-за допплеровского сдвига частоты спектры звезд будут меняться соответственно

В 1930-х годах, объединив допплеровский сдвиг и теорию общей теории относительности Эйнштейна, получил убедительные доказательства того, что Вселенная расширяется. Это также было предсказано теорией Эйнштейна и вместе составляет основу теории Большого Взрыва.

Также в середине 19-го века физики лорд Кельвин (Уильям Томсон) и Густав фон Гельмгольц предположили, что гравитационное сжатие может привести к усилению энергетики Солнца. Но в конце концов они поняли, что энергии, произведенной таким образом, хватит только на 100 000 лет. Пятьдесят лет спустя знаменитая формула Энштейна E = mc 2 дала астрофизикам ключ к тому, каков истинный источник энергии звезд. Хотя, как оказалось, гравитационное сжатие также играет в этом процессе важную роль.

Когда ядерная физика, квантовая механика и физика частиц возникли в первой половине 20-го века, стало возможным сформулировать теории о том, как ядерный синтез может влиять на жизнь звезды. Эти теории описывают, как звезды формируются, живут и умирают. И успешно объясняют наблюдаемое распределение типов звезд, их спектров, светимостей, возрастов и других особенностей.

Физика звезд

Астрофизика — это физика звезд и других отдаленных тел во Вселенной. Но она также может работать и «близко к дому». Согласно теории Большого Взрыва, первые звезды почти полностью состояли из водорода. Процесс ядерного синтеза, который активировал их, заставил атомы водорода создать более тяжелый элемент — гелий. В 1957 году астрономическая группа Джеффри и Маргарет Бербидж вместе с физиками Уильямом Альфредом Фаулером и Фредом Хойлом показала, как по мере старения звезд они производят все более тяжелые и тяжелые элементы. Эти элементы передаются более поздним поколениям звезд во все большем количестве.

На заключительных этапах жизни старых звезд образуются элементы, обнаруженные на Земле. Такие как железо (32,1%), кислород (30,1%), кремний (15,1%). Одним из этих элементов является углерод. Он вместе с кислородом составляет массу всей живой материи, включая нас.

Таким образом, говорит, что хотя мы не все являемся звездами, все мы — звездная пыль.