Что называют магнитным полем. Что такое магнитное поле? Правило правой руки

Магнитное поле Земли - это образование, порождаемое источниками внутри планеты. Оно является объектом исследования соответствующего раздела геофизики. Далее рассмотрим подробнее, что собой представляет магнитное поле Земли, как оно образуется.

Общая информация

Недалеко от поверхности Земли, примерно на расстоянии трёх её радиусов, силовые линии от магнитного поля располагаются по системе "двух полярных зарядов". Здесь располагается область, называемая "плазменной сферой". С удалением от поверхности планеты нарастает влияние потока ионизированных частиц из солнечной короны. Это ведёт к сжатию магнитосферы со стороны Солнца, и напротив, магнитное поле Земли вытягивается с обратной, теневой стороны.

Плазменная сфера

Ощутимое воздействие на поверхностное магнитное поле Земли оказывает направленное движение заряженных частиц в верхних слоях атмосферы (ионосферы). Месторасположение последней - от ста километров и выше от поверхности планеты. Магнитное поле Земли удерживает плазмосферу. Однако её структура сильно зависит от активности солнечного ветра и взаимодействия его с удерживающим слоем. И частота магнитных бурь на нашей планете обусловлена вспышками на Солнце.

Терминология

Существует понятие "магнитная ось Земли". Это прямая, которая проходит через соответствующие полюсы планеты. "Магнитным экватором" называется большая окружность плоскости, перпендикулярная этой оси. Вектор на ней имеет приближенное к горизонтальному направление. Усреднённая напряжённость магнитного поля Земли значительно зависима от географического положения. Приблизительно она равна 0,5 Э, то есть 40 А/м. На магнитном экваторе этот же показатель равен примерно 0,34 Э, а вблизи полюсов он близок к 0,66 Э. В некоторых аномалиях планеты, например, в пределах Курской аномалии, показатель увеличен и составляет 2 Э. Силовые линии магнитосферы Земли со сложным строением, спроецированные на её поверхность и сходящиеся на её же полюсах, носят название "магнитных меридианов".

Природа возникновения. Предположения и догадки

Не так давно получило право на существование предположение о связи возникновения магнитосферы Земли с течением тока в жидкометаллическом ядре, находящемся на расстоянии четверти-трети радиуса нашей планеты. У учёных есть предположение и о так называемых "теллурических токах", протекающих вблизи земной коры. Следует сказать, что с течением времени происходит трансформация формирования. Магнитное поле Земли неоднократно изменялось в последние сто восемьдесят лет. Это зафиксировано в океанической коре, и об этом свидетельствуют исследования остаточной намагниченности. Путём сопоставления участков по обе стороны хребтов океана определяют время расхождения этих участков.

Сдвиг магнитных полюсов Земли

Местоположение этих участков планеты непостоянно. Регистрируется факт их смещений уже с конца девятнадцатого века. В Южном полушарии магнитный полюс сместился за это время на 900 км и оказался в акватории Индийского океана. В Северной части происходят аналогичные процессы. Здесь полюс смещается по направлению к магнитной аномалии в Восточной Сибири. С 1973 по 1994 годы расстояние, на которое сдвинулся здесь участок, составило 270 км. Эти предварительно рассчитанные данные подтвердились позже замерами. По последним данным, скорость движения магнитного полюса Северного полушария значительно увеличилась. Она выросла с 10 км/год в семидесятых годах прошлого века до 60 км/год в начале нынешнего. При этом напряжённость у земного магнитного поля неравномерно уменьшается. Так, за последние 22 года она в отдельных местах снизилась на 1.7%, а где-то на 10%, хотя есть и участки, где она, напротив, возросла. Ускорение в смещении магнитных полюсов (приблизительно на 3 км в год) даёт повод предположить, что наблюдаемое сегодня их перемещение не есть экскурс, это очередная инверсия.

Это косвенно подтверждается и увеличением так называемых "полярных щелей" на юге и севере магнитосферы. В образовавшиеся расширения стремительно проникает ионизированный материал солнечной короны и космоса. От этого в приполярных областях Земли собирается всё большее количество энергии, что само по себе чревато дополнительным разогревом полярных ледяных шапок.

Координаты

В науке, изучающей космические лучи, используют координаты геомагнитного поля, названные в честь учёного Мак-Илвайна. Он первым предложил использовать их, поскольку они основаны на изменённых вариантах активности заряженных элементов в магнитном поле. Для точки используются две координаты (L, B). Они характеризуют магнитную оболочку (параметр Мак-Илвайна) и индукцию поля L. Последний - параметр, равный соотношению среднего удаления сферы от центра планеты к его радиусу.

"Магнитное наклонение"

Несколько тысячелетий назад китайцы сделали удивительное открытие. Они выяснили, что намагниченные предметы способны располагаться в определённом направлении. А в середине шестнадцатого века Георг Картманн - немецкий учёный - сделал очередное открытие в этой области. Так появилось понятие "магнитное наклонение". Под этим названием подразумевается угол отклонения стрелки вверх либо вниз от горизонтальной плоскости под влиянием магнитосферы планеты.

Из истории исследований

В области северного магнитного экватора, отличного от географического, северный конец отходит вниз, а в южном, наоборот, - вверх. В 1600 году английским врачом Уильямом Гильбертом впервые были сделаны предположения о наличии магнитного поля Земли, вызывающего определённое поведение предметов, предварительно намагниченных. В своей книге он описал опыт с шаром, снабжённым железной стрелкой. В результате исследований он пришёл к выводу о том, что Земля представляет собой большой магнит. Эксперименты проводил и английский астроном Генри Геллибрант. В результате своих наблюдений он пришёл к выводу о том, что магнитное поле Земли подвержено медленным изменениям.

Хосе де Акоста описал возможность использования компаса. Он также установил, чем отличаются Магнитный и Северный полюсы, а в его знаменитой Истории (1590) была обоснована теория о линиях без магнитного отклонения. Значительный вклад в изучение рассматриваемого вопроса внес и Христофор Колумб. Ему принадлежит открытие непостоянства магнитного склонения. Трансформации поставлены в зависимость от изменения географических координат. Магнитное склонение - это угол отклонения стрелки от направления Север-Юг. В связи с открытием Колумба активизировалось исследование. Сведения о том, что собой представляет магнитное поле Земли, крайне необходимы были мореплавателям. Работал над этой проблемой и М. В. Ломоносов. Он для изучения земного магнетизма рекомендовал вести системные наблюдения, используя для этого постоянные пункты (подобие обсерваторий). Также очень важно было, по мнению Ломоносова, это осуществлять и на море. Эта мысль великого учёного была реализована в России спустя шестьдесят лет. Открытие Магнитного полюса на Канадском архипелаге принадлежит полярному исследователю англичанину Джону Россу (1831 год). А в 1841 он же открыл другой полюс планеты, но уже в Антарктиде. Гипотезу о происхождении магнитного поля Земли выдвинул Карл Гаусс. Вскоре он же доказал, что большая часть его питается из источника внутри планеты, но причина его незначительных отклонений находится во внешней среде.

Согласно современным представлениям, образовалась примерно 4,5 млрд лет назад, и с этого момента нашу планету окружает магнитное поле. Все, что находится на Земле, в том числе люди, животные и растения, подвергаются его воздействию.

Магнитное поле простирается до высоты около 100 000 км (рис. 1). Оно отклоняет или захватывает частицы солнечного ветра, губительные для всех живых организмов. Эти заряженные частицы образуют радиационный пояс Земли, а вся область околоземного пространства, в которой они находятся, называют магнитосферой (рис. 2). С освещенной Солнцем стороны Земли магнитосфера ограничена сферической поверхностью с радиусом примерно 10-15 радиусов Земли, а с противоположной стороны она вытянута подобно кометному хвосту на расстояние вплоть до нескольких тысяч радиусов Земли, образуя геомагнитный хвост. Магнитосфера отделена от межпланетного поля переходной областью.

Магнитные полюса Земли

Ось земного магнита наклонена по отношению к оси вращения Земли на 12°. Она располагается примерно на 400 км в стороне от центра Земли. Точки, в которых эта ось пересекает поверхность планеты, - магнитные полюса. Магнитные полюсаЗемли не совпадают с истинными географическими полюсами. В настоящее время координаты магнитных полюсов следующие: северный — 77° с.ш. и 102° з.д.; южный — (65° ю.ш. и 139° в.д.).

Рис. 1. Строение магнитного поля Земли

Рис. 2. Строение магнитосферы

Силовые линии, идущие от одного магнитного полюса к другому, называются магнитными меридианами . Между магнитным и географическим меридианом образуется угол, называемый магнитным склонением . Каждое место на Земле имеет свой угол склонения. В районе Москвы угол склонения равен 7° к востоку, а в Якутске — около 17° к западу. Это значит, что северный конец стрелки компаса в Москве отклоняется на Т вправо от географического меридиана, проходящего через Москву, а в Якутске — на 17° влево от соответствующего меридиана.

Свободно подвешенная магнитная стрелка располагается горизонтально только на линии магнитного экватора, который не совпадает с географическим. Если двигаться к северу от магнитного экватора, то северный конец стрелки будет постепенно опускаться. Угол, образованный магнитной стрелкой и горизонтальной плоскостью, называют магнитным наклонением . На Северном и Южном магнитных полюсах магнитное наклонение наибольшее. Оно равно 90°. На Северном магнитном полюсе свободно подвешенная магнитная стрелка установится вертикально северным концом вниз, а на Южном магнитном полюсе ее южный конец опустится вниз. Таким образом, магнитная стрелка показывает направление силовых линий магнитного ноля над земной поверхностью.

С течением времени положение магнитных полюсов относительно по земной поверхности меняется.

Магнитный полюс был открыт исследователем Джеймсом К. Россом в 1831 г. в сотнях километров от его нынешнего местонахождения. В среднем за один год он перемещается на 15 км. В последние годы скорость перемещения магнитных полюсов резко возросла. Например, Северный магнитный полюс сейчас перемещается со скоростью около 40 км в год.

Смена магнитных полюсов Земли называется инверсией магнитного поля .

На протяжении геологической истории нашей планеты земное магнитное поле изменяло свою полярность более 100 раз.

Магнитное поле характеризуется напряженностью. В некоторых местах Земли магнитные силовые линии отклоняются от нормального поля, образуя аномалии. Например, в районе Курской магнитной аномалии (КМА) напряженность поля в четыре раза выше нормы.

Существуют суточные изменения магнитного поля Земли. Причина этих изменений магнитного поля Земли — электриче- с кие токи, текущие в атмосфере на большой высоте. Вызваны они солнечным излучением. Пол действием солнечного ветра магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров. Основной же причиной возникновения солнечного ветра, как мы уже знаем, являются грандиозные выбросы вещества из короны Солнца. При движении к Земле они превращаются в магнитные облака и приводят к сильным, иногда экстремальным возмущениям на Земле. Особенно сильные возмущения магнитного поля Земли - магнитные бури. Некоторые магнитные бури начинаются неожиданно и почти одновременно по всей Земле, а другие развиваются постепенно. Они могут продолжаться несколько часов и даже суток. Часто магнитные бури происходят через 1-2 дня после солнечной вспышки из-за прохождения Земли через поток частиц, выброшенных Солнцем. Исходя из времени запаздывания скорость такого корпускулярного потока оценивают в несколько миллионов км/ч.

Во время сильных магнитных бурь нарушается нормальная работа телеграфа, телефона и радио.

Магнитные бури часто наблюдаются на широте 66-67° (в зоне полярных сияний) и возникают одновременно с полярными сияниями.

Строение магнитного поля Земли меняется в зависимости от широты местности. Проницаемость магнитного поля увеличивается в сторону полюсов. Над полярными областями силовые линии магнитного поля более или менее перпендикулярны земной поверхности и имеют воронкообразную конфигурацию. Через них часть солнечного ветра с дневной стороны проникает в магнитосферу, а затем и в верхнюю атмосферу. Сюда же в период магнитных бурь устремляются частицы из хвостовой части магнитосферы, достигая границ верхней атмосферы в высоких широтах Северного и Южного полушарий. Именно эти заряженные частицы вызывают здесь полярные сияния.

Итак, магнитные бури и суточные изменения магнитного ноля объясняются, как мы уже выяснили, солнечным излучением. Но какова основная причина, создающая постоянный магнетизм Земли? Теоретически удалось доказать, что на 99 % магнитное поле Земли вызывают источники, скрытые внутри планеты. Главное магнитное поле обусловлено источниками, расположенными в глубинах Земли. Их можно условно разделить на две группы. Основная их часть связана с процессами в земном ядре, где вследствие непрерывных и регулярных перемещений электропроводящего вещества создается система электрических токов. Другая — связана с тем, что горные породы земной коры, намагничиваясь главным электрическим полем (полем ядра), создают собственное магнитное поле, которое суммируется с магнитным полем ядра.

Кроме магнитного поля вокруг Земли существуют и другие поля: а) гравитационное; б) электрическое; в) тепловое.

Гравитационным полем Земли называют поле силы тяжести. Она направлена по отвесу перпендикулярно к поверхности геоида. Если бы у Земли была фигура эллипсоида вращения и в нем равномерно распределялись бы массы, то у нее было нормальное гравитационное поле. Разница между напряженностью реального гравитационного поля и теоретического — аномалия тяжести. Различный вещественный состав, плотность горных пород вызывают эти аномалии. Но возможны и другие причины. Их можно объяснить следующим процессом — уравновешение твердой и относительно легкой земной коры на более тяжелой верхней мантии, где и происходит выравнивание давления вышележащих слоев. Эти течения вызывают тектонические деформации, движение литосферных плит и тем самым создают макрорельеф Земли. Сила тяжести удерживает атмосферу, гидросферу, людей, животных на Земле. Силу тяжести нужно обязательно учитывать при изучении процессов в географической оболочке. Термином «геотропизм » называют ростовые движения органов растений, которые под влиянием силы земного тяготения всегда обеспечивают вертикальное направление роста первичного корня перпендикулярно поверхности Земли. Гравитационная биология использует растения в качестве экспериментальных объектов.

Если не учитывать силу тяжести, невозможно рассчитать исходные данные для запуска ракет и космических кораблей, сделать гравиметрическую разведку рудных ископаемых и, наконец, невозможно дальнейшее развитие астрономии, физики и других наук.

На просторах инетрнета есть масса тем, посвященных изучению магнитного поля. Необходимо отметить, что многие из них отличаются от того среднестатистического описания, которое существует в школьных учебниках. Моя задача состоит в том, чтобы собрать и систематизировать весь имеющийся в свободном доступе материал по магнитному полю для того, чтобы сфокусировать Новое Понимание магнитного поля. Изучение магнитного поля и его свойств можно с помощью разнообразных приемов. С помощью железных опилок, например грамотный анализ провел товарищ Фатьянов по адресуhttp://fatyf.narod.ru/Addition-list.htm

С помощью кинескопа. Я не знаю фамилии этого человека, но знаю его ник. Он называет себя "Ветерок". При подносе магнита к кинескопу на экране образуется "сотовая картина". Можно подумать, что "сетка" есть продолжение кинескопной сетки. Это метод визуализации магнитного поля.

Я стал изучать магнитное поле с помощью ферромагнитной жидкости. Именно магнитная жидкость максимально визуализирует все тонкости магнитного поля магнита.

Из статьи "что такое магнит" мы выяснили, что магнит это фрактализированная, т.е. уменьшенная в масштабе копия нашей планеты, магнитная геометрия которой максимально идентична простому магниту. Планета земля, в свою очередь, является копией того, из недр чего она была образована - солнца. Мы выснили, что магнит это своего рода индукционная линза, которая фокусирует на своем объеме все свойства глобального магнита планеты земля. Есть необходимость введения новых терминов, с помощью которых мы будем описывать свойства магнитного поля.

Индукционный поток - это поток, который берет свое начало на полюсах планеты и проходит через нас в геометрии воронки. Северный полюс планеты это вход в воронку, южный полюс планеты это выход воронки. Некоторые ученые называют этот поток эфирным ветром, говоря, что он "имеет галактическое происхождение". Но это не "эфирный ветер" и накакой не эфир, это "индукционная река", которая течет с полюса до полюса. Электричество в молнии имеет ту же самую природу, что и электричество появляемое при взаимодействии катушки и магнита.

Лучшее средство понять что есть магнитое поле - увидеть его. Размышлять и делать бесчисленные теории можно, но с позиции понимания физической сути явления - бесполезно. Думаю что все со мной согласятся, если я повторю слова не помню кого но суть такая что лучший критерий это опыт. Опыт и еще раз опыт.

Дома у себя я делал простые опыты, но много мне позволившие понять. Простой магнит цилиндрической формы... И так его и сяк крутил. Налил на него магнитной жидкости. Стоит зараза, не шевелится. Тут я вспомнил, что на каком то форуме вычитал, что два магнита сдавленные одноименными полюсами в герметичной области - повышают температуру области, а противоположными полюсами наооборот понижают. Если температура следствие взаимодействия полей, то почему бы ей не побыть и причиной? Я нагрел магнит используя "короткое замыкание" от 12 вт и резистор, просто прислонив нагретый резистор к магниту. Магнит нагрелся и магнитная жидкость начала сначало дергаться, а потом и вовсе стала подвижной. Магнитное поле возбуждается температурой. Но как же так, спросил я себя, ведь в букварях пишут о том, что температура ослабляет магнитные свойства магнита. И это правда, но это "ослабление" кагбы компенсируется возбуждением магнитного поля этого магнита. Иными словами магнитная сила не исчезает, но трансформируется в силу возбуждения этого поля. Отлично Все вращается и все кружится. Но почему вращающееся магнитное поле имеет именно такую геометрию вращения, а не какую то другую? На первый взгляд движение хаотично, но если посмотреть через микроскоп, то можно заметить, что в этом движении присутствует система. Система никак не принадлежащая магниту Но только локализующая его. Иными словами, магнит можно рассмотреть как энергетическую линзу, которая фокусирует в своем объеме возмущения.

Магнитное поле возбуждается не только от повышения температуры, но и от ее понижения. Думаю что правильней будет сказать, что магнитное поле возбуждается градиентом температур, чем одним каким то конкретным ее знаком. В том то и дело, что нет видимой "перестройки" структуры магнитного поля. Есть визуализация возмущения, которое проходит через область этого магнитного поля. Представьте себе возмущение, которое движется по спирали от северного полюса до южного через весь объем планеты. Так вот магнитное поле магнита = локальная часть этого глобального потока. Понимаете? Однако у меня нет уверенности в том, какого конкретно потока...Но факт в том, что потока. Причем потоков не один, а два. Первый внешний, а второй внутри него и вместе с первым движется, но в обратную сторону вращается. Магнитное поле возбуждается из-за градиента температуры. Но мы опять искажаем суть, когда говорим "магнитное поле возбуждается". Дело в том, что оно уже находится в возбужденном состоянии. Когда мы прикладываем градиент температур, мы искажаем это возбуждение до состояния повяления разбалансировки. Т.е. понимаем, что процесс возбуждения это постоянный процесс, в котором находится магнитное поле магнита. Градиент он искажает параметры этого процесса так, что мы оптически замечаем разницу между нормальным его возбуждением и тем возбуждением, которое вызвано градиентом.

Но почему в стационарном состоянии магнитное поле магнита неподвижно? НЕТ, оно также подвижно, но относительно движущихся систем отсчета, например нас, оно неподвижно. Мы движемся в пространстве с этим возмущением Ра и оно нам кажется наподвижным. Температура, которую мы прикладываем к магниту, создает кагбы местную разбалансировку этой фокусируемой системы. Появлется некая нестабильность в пространственной решетке, коя есть сотовая структура. Ведь пчелы строят свои дома не на пустом месте, но они кагбы облепляют структуру пространства своим строительным материалом. Таким образом, исходя из чисто опытных наблюдений, делаю вывод, что магнитное поле простого магнита это потенциальная система локальной разбалансировки решетки пространства, в котором как Вы уже догадались нет места атомам и малекулам, которых никто никогда не видел Температура она как "ключ зажигания" в этой локальной системе, включает разбалансировку. В данный момент я тщательно изучаю методы и средства управления этой разбалансировки.

Что есть магнитное поле и чем оно отличается от электромагнитного поля?

Что есть торсионное или энергоинформационное поле?

Это все есть одно и тоже, но локализующееся иными методамим.

Сила тока - есть плюс и сила отталкивания,

напряжение есть минус и сила притяжения,

короткое замыкание, или скажем локальная разбалансировка решетки - есть сопротивление этому взаимопроникновению. Или же взаимопроникновение отца, сына и святого духа. Помним, что метафора "адама и евы" есть старое понимание икс и ыгрик хромосом. Ибо понимание нового, это новое понимание старого. "Сила тока" - вихрь, исходящий от постоянно вращающегося Ра, оставляя позади себя информационное переплетение себя. Напряжение есть еще один вихрь, но внутри основного вихря Ра и движущийся вместе с ним. Визуально это можно представить в виде РАковины, рост которой происходит в направлении двух спиралей. Первая внешняя, вторая внутренняя. Или один внутрь себя и по часовой, а второй из себя и против часовой. Когда два вихря взамопроникают друг в друга, они образуют структуру, наподобии слоев Юпитера, которые движутся в разные стороны. Остается понять, механизм этого взаимопроникновения и система, которая образуется.

Примерные задачи на 2015 год

1. Найти методы и средства управления разбалансировкой.

2. Выявить материалы, наиболее влияющие на разбалансировку системы. Найти зависимость от состояния материала согласно таблицы 11 ребенка.

3. Если всякое живое существо, по своей сути, является такой же самой локализованной разбалансировкой, следовательно ее необходимо "увидеть". Иными словами необходимо найти метод фиксации человека в иных спектрах частот.

4. Главная задача в том, чтобы визуализировать не биологические спектры частот, в которых происходит непрерывный процесс творения человека. Например мы с помощью средства прогресса анализируем спектры частот, не входящие в биологический спектр чувств человека. Но мы их только регестрируем, но мы не можем их "осознать". Поэтому мы не видим дальше, чем могут осознать наши органы чувств. Вот моя главная задача на 2015 год. Найти методику технического осознания не биологического спектра частот с тем, чтобы увидеть информационную основу человека. Т.е. по сути его душу.

Особый вид изучения это магнитное поле в движении. Если мы нальем магнитную жидкость на магнит, она займет объем магнитного поля и будет стационарной. Однако нужно проверить опыт "Ветерка" где он подносил магнит к экрану монитора. Есть предположение что магнитное поле уже находится в возбужденном состоянии, однако объем жидкости его кагбы сдерживает в стационарном состоянии. Но я не прверял пока.

Магнитное поле может возбуждаться посредством приложения температуры к магниту, либо помещением магнита в индукционную катушку. Нужно заметить, что жидкость возбуждается только при определенном пространственном положении магнита внутри катушки, состовляя определенный угол к оси катушки, который можно найти опытным путем.

Я провел десятки опытов с движущейся магнитной жидкостью и поставил себе цели:

1. Выявить геометрию движения жидкости.

2. Выявить параметры, которые влияют на геометрию этого движения.

3. Какое место занимает движение жидкости в глобальном движении планеты Земля.

4. Зависит ли пространственное положение магнита и приобритаемой ей геометрии движения.

5. Почему "ленты" ?

6. Почему ленты скручиваются

7. От чего зависит вектор скручивания лент

8. Почему конусы смещаются только посредством узлов, которые есть вершины соты, причем скручиваются всегда только три близ лежащие ленты.

9. Почему смещение конусов происходит резко, по достижении определенной "накрученности" в узлах?

10. Почему размер конусов пропорционален объему и массе наливаемой на магнит жидкости

11. Почему конус разделен на два ярко выраженных сектора.

12. Какое место это "разделение" занимает в разрезе взаимодействия между полюсами планеты.

13. Как зависит геометрия движения жидкости от времени суток, времени года, солнечной активности, намерения эксперементатора, давления и дополнительных градиентов. Например резкое изменение "холодное горячее"

14. Почему геометрия конусов идентична с геометрией Варджи - специального вооружения возвращающихся богов?

15. Имеются ли данные в архивах специальных служб 5 автоматов какие либо сведения о назначении, наличии или хранении образцов данного вида вооружений.

16. Что говорят выпотрошенные кладовые знания различных тайных организаций об этих конусах и связана ли геометрия конусов со звездой Давида, суть которая есть идентичность геометрии конусов. (масоны, иузеиты, ватиканы, и прочие несогласованные образования).

17. Почему среди конусов всегда есть лидер. Т.е. конус с "коронкой" на вершине, который "организует" движения 5,6,7 конусов вокруг себя.

конуса в момент смещения. Рывок. "...только двигаясь буквой "Г" я к нему дойду"....

Для понимания того, что является характеристикой магнитного поля, следует дать определения многим явлениям. При этом заранее нужно вспомнить, как и почему оно появляется. Узнать, что является силовой характеристикой магнитного поля. При этом немаловажно то, что подобное поле может встречаться не только у магнитов. В связи с этим не помешает упомянуть характеристику магнитного поля земли.

Возникновение поля

Для начала следует описать возникновение поля. После можно описать магнитное поле и его характеристики. Оно появляется во время перемещения заряженных частиц. Может влиять на в особенности на токопроводящие проводники. Взаимодействие между магнитным полем и движущимися зарядами, либо проводниками, по которым течет ток, происходит благодаря силам, именуемым электромагнитными.

Интенсивность или силовая характеристика магнитного поля в определенной пространственной точке определяются с помощью магнитной индукции. Последняя обозначается символом В.

Графическое представление поля

Магнитное поле и его характеристики могут быть представлены в графической форме с помощью линий индукции. Данным определением называют линии, касательные к которым в любой точке будут совпадать с направлением вектора у магнитной индукции.

Названные линии входят в характеристику магнитного поля и применяются для определения его направления и интенсивности. Чем выше интенсивность магнитного поля, тем больше данных линий будет проведено.

Что такое магнитные линии

Магнитные линии у прямолинейных проводников с током имеют форму концентрической окружности, центр которой располагается на оси данного проводника. Направление магнитных линий возле проводников с током определяется по правилу буравчика, которое звучит так: если буравчик будет расположен так, что он будет ввинчиваться в проводник по направлению тока, тогда направление обращения рукоятки соответствует направлению магнитных линий.

У катушки с током направление магнитного поля будет определяться также по правилу буравчика. Также требуется вращать рукоятку по направлению тока в витках соленоида. Направление линий магнитной индукции будет соответствовать направлению поступательного движения буравчика.

Является основной характеристикой магнитного поля.

Создаваемое одним током, при равных условиях, поле будет различаться по своей интенсивности в разных средах из-за различающихся магнитных свойств в этих веществах. Магнитные свойства среды характеризуются абсолютной магнитной проницаемостью. Измеряется в генри на метр (г/м).

В характеристику магнитного поля входит абсолютная магнитная проницаемость вакуума, называемая магнитной постоянной. Значение, определяющее, во сколько раз абсолютная магнитная проницаемость среды будет отличаться от постоянной, именуется относительной магнитной проницаемостью.

Магнитная проницаемость веществ

Это безразмерная величина. Вещества, имеющие значение проницаемости менее единицы, зовутся диамагнитными. В данных веществах поле будет слабее, чем в вакууме. Данные свойства присутствуют у водорода, воды, кварца, серебра и др.

Среды с магнитной проницаемостью, превышающей единицу, зовутся парамагнитными. В данных веществах поле будет сильнее, чем в вакууме. К данным средам и веществам относят воздух, алюминий, кислород, платину.

В случае с парамагнитными и диамагнитными веществами значение магнитной проницаемости не будет зависеть от напряжения внешнего, намагничивающего поля. Это означает, что величина является постоянной для определенного вещества.

К особой группе относятся ферромагнетики. У данных веществ магнитная проницаемость будет достигать нескольких тысяч и более. У названных веществ, имеющих свойство намагничиваться и усиливать магнитное поле, существует широкое использование в электротехнике.

Напряженность поля

Для определения характеристик магнитного поля вместе с вектором магнитной индукции может применяться значение, именуемое напряженностью магнитного поля. Данный термин является определяющей интенсивность внешнего магнитного поля. Направление магнитного поля в среде с одинаковыми свойствами по всем направлениям вектор напряженности будет совпадать с вектором магнитной индукции в точке поля.

Сильные у ферромагнитов объясняются присутствием в них произвольно намагниченных малых частей, которые могут быть представлены в виде малых магнитов.

С отсутствующим магнитным полем ферромагнитное вещество может не иметь выраженных магнитных свойств, поскольку поля доменов приобретают разную ориентацию, и их общее магнитное поле равняется нулю.

По основной характеристике магнитного поля, если ферромагнит будет помещен во внешнее магнитное поле, к примеру, в катушку с током, то под влиянием наружного поля домены развернутся по направлению внешнего поля. Притом магнитное поле у катушки усилится, и магнитная индукция увеличится. Если же наружное поле достаточно слабое, то перевернётся лишь часть от всех доменов, магнитные поля которых по направлению близятся к направлению наружного поля. На протяжении увеличения силы внешнего поля число повернутых доменов будет возрастать, и при определенном значении напряжения внешнего поля почти все части будут развернуты так, что магнитные поля расположатся по направлению наружного поля. Данное состояние именуется магнитным насыщением.

Связь магнитной индукции и напряженности

Взаимосвязанность магнитной индукции ферромагнитного вещества и напряженности внешнего поля может изображаться при помощи графика, называемого кривой намагничивания. В месте изгиба графика кривой скорость возрастания магнитной индукции уменьшается. После изгиба, где напряженность достигает определённого показателя, происходит насыщение, и кривая незначительно поднимается, постепенно приобретая форму прямой. На данном участке индукция все еще растет, однако достаточно медленно и лишь за счет возрастания напряженности внешнего поля.

Графическая зависимость данных показателя не является прямой, значит, их отношение не постоянно, и магнитная проницаемость материала не постоянный показатель, а находится в зависимости от наружного поля.

Изменения магнитных свойств материалов

При увеличении силы тока до полного насыщения в катушке с ферромагнитным сердечником и последующим ее уменьшением кривая намагничивания не будет совпадать с кривой размагничивания. С нулевой напряженностью магнитная индукция не будет иметь такое же значение, а приобретет некоторый показатель, именуемый остаточной магнитной индукцией. Ситуация с отставанием магнитной индукции от намагничивающей силы именуется гистерезисом.

Для полного размагничивания ферромагнитного сердечника в катушке требуется дать ток обратной направленности, который создаст необходимую напряженность. Для разных ферромагнитных веществ необходим отрезок различной длины. Чем он больше, тем больший объем энергии необходим для размагничивания. Значение, при котором происходит полное размагничивание материала, именуется коэрцитивной силой.

При дальнейшем увеличении тока в катушке индукция вновь увеличится до показателя насыщения, но с иным направлением магнитных линий. При размагничивании в обратном направлении будет получена остаточная индукция. Явление остаточного магнетизма применяется при создании постоянных магнитов из веществ с большим показателем остаточного магнетизма. Из веществ, имеющих способность к перемагничиванию, создаются сердечники для электрических машин и приборов.

Правило левой руки

Сила, влияющая на проводник с током, обладает направлением, определяемым по правилу левой руки: при расположении ладони девой руки таким образом, что магнитные линии входят в нее, и четыре пальца вытянуты по направлению тока в проводнике, отогнутый большой палец укажет направление силы. Данная сила перпендикулярна вектору индукции и току.

Перемещающийся в магнитном поле проводник с током считается прообразом электродвигателя, который изменяет электрическую энергию в механическую.

Правило правой руки

Во время движения проводника в магнитном поле внутри него индуцируется электродвижущая сила, которая имеет значение, пропорциональное магнитной индукции, задействованной длине проводника и скорости его перемещения. Данная зависимость называется электромагнитной индукцией. При определении направления индуцированной ЭДС в проводнике используют правило правой руки: при расположении правой руки так же, как в примере с левой, магнитные линии входят в ладонь, а большой палец указывает направление перемещения проводника, вытянутые пальцы укажут направление индуктированной ЭДС. Перемещающийся в магнитном потоке под влиянием внешней механической силы проводник является простейшим примером электрического генератора, в котором преобразуется механическая энергия в электрическую.

Может быть сформулирован по-другому: в замкнутом контуре происходит индуцирование ЭДС, при любой смене магнитного потока, охватываемого данным контуром, ЭДЕ в контуре численно равняется скорости смены магнитного потока, который охватывает данный контур.

Данная форма предоставляет усреднённый показатель ЭДС и указывает на зависимость ЭДС не от магнитного потока, а от скорости его изменения.

Закон Ленца

Также нужно вспомнить закон Ленца: ток, индуцируемый при изменении магнитного поля, проходящего через контур, своим магнитным полем препятствует этому изменению. Если витки у катушки пронизываются разными по величине магнитными потоками, то индуцированная по целой катушке ЭДС равняется сумме ЭДЕ в разных витках. Сумма магнитных потоков разных витков катушки именуется потокосцеплением. Единица измерения данной величины, как и магнитного потока, - вебер.

При изменении электрического тока в контуре происходит смена и созданного им магнитного потока. При этом, согласно закону электромагнитной индукции, внутри проводника происходит индуцирование ЭДС. Она появляется в связи со сменой тока в проводнике, потому данное явление называют самоиндукцией, и индуцированная в проводнике ЭДС именуется ЭДС самоиндукции.

Потокосцепление и магнитный поток находятся в зависимости не от одной только силы тока, но и от величины и формы данного проводника, и магнитной проницаемости окружающего вещества.

Индуктивность проводника

Коэффициент пропорциональности именуется индуктивностью проводника. Он обозначает способность проводника создавать потокосцепление при прохождении сквозь него электричества. Это является одним из основных параметров электрических цепей. Для определенных цепей индуктивность является постоянным показателем. Она будет зависеть от величины контура, его конфигурации и магнитной проницаемости среды. При этом сила тока в контуре и магнитный поток не будут иметь значения.

Вышеописанные определения и явления дают объяснение тому, что является магнитным полем. Также приводятся основные характеристики магнитного поля, с помощью которых можно дать определение данного явления.

Уже давно магнитное поле вызывает множество вопросов у человека, но и сейчас остается малоизвестным явлением. Его характеристики и свойства пытались исследовать многие ученые, ведь польза и потенциал от применения поля были неоспоримыми фактами.

Давайте будем разбирать все по порядку. Итак, как действует и образуется любое магнитное поле? Правильно, от электрического тока. А ток, если верить учебникам по физике, – это имеющий направление поток заряженных частиц, не так ли? Так вот, когда ток проходит по любому проводнику, около него начинает действовать некая разновидность материи – магнитное поле. Магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах. Теперь это поле и материя имеют энергию, ее мы видим в электромагнитных силах, которые могут влиять на ток и его заряды. Магнитное поле начинает воздействовать на поток заряженных частиц, и они меняют начальное направление движения перпендикулярно самому полю.

Еще магнитное поле можно назвать электродинамичным, ведь оно образуется около движущихся и воздействует только на движущиеся частицы. Ну а динамичным оно является из-за того, что имеет особое строение во вращающихся бионах на области пространства. Заставить их вращаться и двигаться может обыкновенный электрический движущийся заряд. Бионы передают любые возможные взаимодействия в этой области пространства. Поэтому движущийся заряд притягивает один полюс всех бионов и заставляет их вращаться. Только он может вывести их из состояния покоя, больше ничего, ведь другие силы не смогут влиять на них.

В электрическом поле находятся заряженные частицы, которые очень быстро двигаются и могут преодолеть 300 000 км всего за секунду. Такую же скорость имеет и свет. Магнитное поле не бывает без электрического заряда. Это значит, что частицы невероятно близко связаны друг с другом и существуют в общем электромагнитном поле. То есть, если будут любые изменения в магнитном поле, то изменения будут и в электрическом. Этот закон также обратен.

Мы тут много говорим про магнитное поле, но как же его можно представить? Мы не можем увидеть его нашим человеческим невооруженным глазом. Мало того, из-за невероятно быстрого распространения поля, мы не успеваем его зафиксировать при помощи различных устройств. Но чтобы что-то изучать, надо иметь хоть какое-нибудь представление о нем. Еще часто приходится изображать магнитное поле на схемах. Для того чтобы было проще понять его, проводят условные силовые линии поля. Откуда же их взяли? Их придумали неспроста.

Попробуем увидеть магнитное поле при помощи мелких металлических опилок и обыкновенного магнита. Насыплем на ровную поверхность эти опилки и введем их в действие магнитного поля. Затем увидим, что они будут двигаться, вращаться и выстраиваться в рисунок или схему. Полученное изображение будет показывать примерное действие сил в магнитном поле. Все силы и, соответственно, силовые линии непрерывны и замкнуты в этом месте.

Магнитная стрелка имеет сходные характеристики и свойства с компасом, и ее применяют, чтобы определить направление силовых линий. Если она попадет в зону действия магнитного поля, по ее северному полюсу мы видим направление действия сил. Тогда выделим отсюда несколько выводов: верх обычного постоянного магнита, из которого исходят силовые линии, обозначают северным полюсом магнита. Тогда как южным полюсом обозначают ту точку, где силы замыкаются. Ну а силовые линии внутри магнита на схеме не выделяются.

Магнитное поле, его свойства и характеристики имеют довольно большое применение, потому что во многих задачах его приходится учитывать и исследовать. Это важнейшее явление в науке физике. С ним неразрывно связаны более сложные вещи, такие как магнитная проницаемость и индукция. Чтобы разъяснить все причины появления магнитного поля, надо опираться на реальные научные факты и подтверждения. Иначе в более сложных задачах неправильный подход может нарушить целостность теории.

А сейчас приведем примеры. Все мы знаем нашу планету. Вы скажете, что она не имеет магнитного поля? Может, вы и правы, но ученые говорят, что процессы и взаимодействия внутри ядра Земли рождают огромное магнитное поле, которое тянется на тысячи километров. Но в любом магнитном поле должны быть его полюса. И они существуют, просто расположены немного в стороне от географического полюса. Как же мы его чувствуем? Например, у птиц развиты способности навигации, и они ориентируются, в частности, по магнитному полю. Так, при его помощи гуси благополучно прибывают в Лапландию. Специальные навигационные устройства также используют это явление.