Какие свойства проявляет оксид серы 4. Сернистый газ — физические свойства, получение и применение. Общие данные о моноокисиде серы

В этой статье вы найдете информацию о том, что такое оксид серы. Будут рассмотрены его основные свойства химического и физического характера, существующие формы, способы их получения и отличия между собой. А также будут упомянуты области применения и биологическая роль данного оксида в его разнообразных формах.

Что представляет собой вещество

Оксид серы - это соединение простых веществ, серы и кислорода. Существует три формы оксидов серы, отличающиеся между собой степенью проявленной валентности S, а именно: SO (монооксид, моноокись серы), SO 2 (серный диоксид или сернистый газ) и SO 3 (триоксид или ангидрид серы). Все перечисленные вариации оксидов серы имеют схожие как химические, так и физические характеристики.

Общие данные о моноокисиде серы

Двухвалентный серный монооксид, или иначе серная моноокись - это неорганическое вещество, состоящее из двух простых элементов - серы и кислорода. Формула - SO. В условиях нормальной обстановки является газом без цвета, но с резким и специфическим запахом. Вступает в реакции с водным раствором. Довольно редкое соединение в земной атмосфере. К воздействию температур неустойчив, существует в димерной форме - S 2 O 2 . Иногда способен, взаимодействуя с кислородом, в результате реакции образовывать диоксид серы. Солей не образует.

Получают оксид серы (2) обычно при помощи сжигания серы или разложении ее ангидрида:

  • 2S2+O 2 = 2SO;
  • 2SO2 = 2SO+O2.

В воде вещество растворяется. В результате оксид серы образует тиосерную кислоту:

  • S 2 O 2 +H 2 O = H 2 S 2 O 3 .

Общие данные о сернистом газе

Оксид серы - очередная форма оксидов серы с химической формулой SO 2 . Имеет неприятный специфический запах и не имеет цвета. Подвергаясь давлению, может зажигаться при комнатной температуре. При растворении в воде образует нестойкую сернистую кислоту. Может растворяться в растворах этанола и серной кислоты. Является компонентом вулканического газа.

В промышленности получают сжиганием серы или обжигом ее сульфидов:

  • 2FeS 2 +5O 2 = 2FeO+4SO 2 .

В лабораториях, как правило, SO 2 получают при помощи сульфитов и гидросульфитов, подвергая их воздействию сильной кислоты, а также воздействию на металлы с маленькой степенью активности концентрированной H 2 SO 4 .

Как и другие серные оксиды, SO 2 является кислотным оксидом. Взаимодействуя со щелочами, образуя различные сульфиты, вступает в реакции с водой, создавая серную кислоту.

SO 2 чрезвычайно активен, и это ярко выражается в его восстановительных свойствах, где окислительная степень оксида серы возрастает. Может проявлять свойства окислителя, если на него воздействует сильный восстановитель. Последнюю характерную особенность используют для производства фосфорноватистой кислоты, или для отделения S от газов металлургической области деятельности.

Оксид серы (4) широко используется человеком для получения сернистой кислоты или ее солей - это его основная область применения. А также он участвует в процессах виноделия и выступает там в роли консерванта (E220), иногда им протравливают овощехранилища и склады, так как он уничтожает микроорганизмы. Материалы, которые нельзя подвергать отбеливанию хлором, обрабатывают оксидом серы.

SO 2 - довольно токсичное соединение. Характерные симптомы, указывающие на отравление им, - это откашливание, появление проблем с дыханием, как правило, в виде насморка, охриплости, появление необычного привкуса и першение в горле. Вдыхание такого газа может вызвать удушье, нарушение речевой способности индивида, рвоту, затруднение процесса глотания, а также легочный отек в острой форме. Максимально допустимой концентрацией этого вещества в рабочем помещении является 10мг/м 3 . Однако у различных людей организм может проявлять и разную чувствительность к сернистому газу.

Общие данные о серном ангидриде

Серный газ, или, как его называют, серный ангидрид, - это высший оксид серы с химической формулой SO 3 . Жидкость с удушливым запахом, легколетучая при стандартных условиях. Способна застывать, образовывая смеси кристаллического типа из его твердых модификаций, при температуре от 16.9 °C и ниже.

Детальный разбор высшего оксида

При окислении SO 2 воздухом под воздействием высоких температур, необходимым условием является наличие катализатора, например V 2 O 5 , Fe 2 O 3 , NaVO 3 или Pt.

Термическое разложение сульфатов либо взаимодействие озона и SO 2:

  • Fe 2 (SO 4)3 = Fe 2 O 3 +3SO 3 ;
  • SO 2 +O 3 = SO 3 +O 2 .

Окисление SO 2 при помощи NO 2:

  • SO 2 +NO 2 = SO 3 +NO.

К физическим качественным характеристикам относятся: наличие в состоянии газа плоского строения, тригонального типа и D 3 h симметрии, во время перехода от газа к кристаллу или жидкости образует тример циклического характера и зигзагообразную цепь, имеет ковалентную полярную связь.

В твердой форме SO 3 встречается в альфа, бета, гамма и сигма формах, при этом он имеет, соответственно, разную температуру плавления, степень проявления полимеризации и разнообразную кристаллическую форму. Существование такого количества видов SO 3 обусловлено образованием связей донорно-акцепторного типа.

К свойствам ангидрида серы можно отнести множество его качеств, основными из них являются:

Способность взаимодействовать с основаниями и оксидами:

  • 2KHO+SO 3 = K 2 SO 4 +H 2 O;
  • CaO+SO 3 = CaSO 4 .

Высший серный оксид SO 3 имеет достаточно большую активность и создает серную кислоту, взаимодействуя с водой:

  • SO 3 +H 2 O = H2SO 4.

Вступает в реакции взаимодействия с хлороводородом и образует хлоросульфатную кислоту:

  • SO 3 +HCl = HSO 3 Cl.

Для оксида серы характерным является проявление сильных окислительных свойств.

Применение серный ангидрид находит в создании серной кислоты. Небольшое его количество выделяется в окружающую среду во время использования серных шашек. SO 3 , образуя серную кислоту после взаимодействия с влажной поверхностью, уничтожает разнообразные опасные организмы, например грибки.

Подводя итоги

Оксид серы может находиться в разных агрегатных состояниях, начиная с жидкости и заканчивая твердой формой. В природе встречается редко, а способов его получения в промышленности довольно много, как и сфер, где его можно использовать. Сам оксид имеет три формы, в которых он проявляет различную степень валентности. Может быть очень токсичным и вызывать серьезные проблемы со здоровьем.

Оксид серы (сернистый газ, серы диоксид, ангидрид сернистый) - это бесцветный газ, имеющий в в нормальных условиях резкий характерный запах (похож на запах загорающейся спички). Сжижается под давлением при комнатной температуре. Сернистый газ растворим в воде, при этом образуется нестойкая серная кислота. Также это вещество растворяется в серной кислоте и этаноле. Это один из основных компонентов, входящих в состав вулканических газов.

Сернистый газ

Получение SO2 - диоксида серы - промышленным способом заключается в сжигании серы или обжиге сульфидов (используется в основном пирит).

4FeS2 (пирит) + 11O2 = 2Fe2O3 + 8SO2 (сернистый газ).

В условиях лаборатории сернистый газ можно получить путем воздействия сильных кислот на гидросульфиты и сульфиты. При этом получившаяся сернистая кислота сразу распадается на воду и сернистый газ. Например:

Na2SO3 + H2SO4 (серная кислота) = Na2SO4 + H2SO3 (сернистая кислота).
H2SO3 (сернистая кислота) = H2O (вода) + SO2 (сернистый газ).

Третий способ получения сернистого ангидрида заключается в воздействии концентрированной серной кислоты при нагревании на малоактивные металлы. Например: Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат меди) + SO2 (диоксид серы) + 2H2O (вода).

Химические свойства диоксида серы

Формула сернистого газа - SO3. Это вещество относится к кислотный оксидам.

1. Диоксид серы растворяется в воде, при этом образуется сернистая кислота. В обычных условиях данная реакция обратима.

SO2 (диоксид серы) + H2O (вода) = H2SO3 (сернистая кислота).

2. С щелочами диоксид серы образует сульфиты. Например: 2NaOH (гидроксид натрия) + SO2 (сернистый газ)= Na2SO3 (сульфит натрия) + H2O (вода).

3. Химическая активность сернистого газа достаточно велика. Наиболее выражены восстановительные свойства сернистого ангидрида. В таких реакциях степень окисления серы повышается. Например: 1) SO2 (диоксид серы) + Br2 (бром) + 2H2O (вода) = H2SO4 (серная кислота) + 2HBr (бромоводород); 2) 2SO2 (диоксид серы) + O2 (кислород) = 2SO3 (сульфит); 3) 5SO2 (диоксид серы) + 2KMnO4 (перманганат калия) + 2H2O (вода) = 2H2SO4 (серная кислота) + 2MnSO4 (сульфат марганца) + K2SO4 (сульфат калия).

Последняя реакция - это пример качественной реакции на SO2 и SO3. Происходит обесцвечивание раствора фиолетового цвета).

4. В условиях присутствия сильных восстановителей сернистый ангидрид может проявлять свойства окислительные. Например, для того чтобы в металлургической промышленности извлечь серу из отходящих газов, используют восстановление диоксида серы оксидом углерода (CO): SO2 (диоксид серы) + 2CO (оксид углерода) = 2CO2 + S (сера).

Также окислительные свойства этого вещества используют в целях получения фосфорноваристой ксилоты: PH3 (фосфин) + SO2 (сернистый газ) = H3PO2 (фосфорноваристая кислота) + S (сера).

Где применяют сернистый газ

В основном диоксид серы используют для получения кислоты серной. Также его применяют как в производстве слабоалкогольных напитков (вино и другие напитки средней ценовой категории). Благодаря свойству этого газа убивать различные микроорганизмы, им окуривают складские помещения и овощехранилища. Помимо этого, оксид серы используют для отбеливания шерсти, шелка, соломы (тех материалов, которые нельзя отбелить хлором). В лабораториях сернистый газ применяют в качестве растворителя и в целях получения различных солей кислоты сернистой.

Физиологическое воздействие

Сернистый газ обладает сильными токсическими свойствами. Симптомы отравления - это кашель, насморк, охриплость голоса, своеобразный привкус во рту, сильное першение в горле. При вдыхании диоксида серы в высоких концентрациях возникает затруднение глотания и удушье, расстройство речи, тошнота и рвота, возможно развитие острого отека легких.

ПДК сернистого газа:
- в помещении - 10 мг/м³;
- среднесуточная максимально-разовая в атмосферном воздухе - 0,05 мг/м³.

Чувствительность к диоксиду серы у отдельных людей, растений и животных различна. Например, среди деревьев наиболее устойчивы дуб и береза, а наименее - ель и сосна.

Большая часть оксида серы(IV) используется для производства сернистой кислоты. Оксид серы (IV) применяется также для получения различных солей сернистой кислоты. Серная кислота проявляет кислотные свойства в реакциях с основаниями и основными оксидами. Поскольку серная кислота двухосновна, она образует два ряда солей: средние - сульфаты, например Na2SO4, и кислые - гидросульфаты, например NaHSO4.

Растворяется также в этаноле и се́рной кислоте. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха.

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. Образование белого осадка BaSO4(нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Сернистая кислота существует только в растворе. Триоксид серы проявляется кислотные свойства. Эту реакцию используют для получения важнейшего продукта химической промышленности – серной кислоты. Поскольку сера в триоксиде серы имеет высшую степень окисления, то оксид серы(VI) проявляет окислительные свойства.

Вопрос: Какие химические свойства кислот вы знаете? Используется также в качестве консерванта (пищевая добавка Е220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. 4. Реакции самоокисления-самовосстановления серы возможны и при ее взаимодействии с сульфитами.

Таким образом, SО2, сернистая кислота и ее соли могут про­являть как окислительные, так и восстановительные свойства. Сероводород идет на производство серы, сульфитов, тиосульфатов и серной кислоты, в лабораторной практике – для осаждения сульфидов. Применяется в производстве фосфорной, соляной, борной, плавиковой и др. кислот.

Он проявляет типичные свойства кислотных оксидов и хорошо растворяется в воде, образуя слабую сернистую кислоту. Химические свойства серной кислоты в значительной степени зависят от её концентрации. Медный купорос CuSO4 5Н2O используют в сельском хозяйстве для борьбы с вредителями и болезнями растений.

Соединения серы со степенью окисления +1

3. Напишите уравнения реакций, характеризующих свойства разбавленной серной кислоты как электролита. Пластическая сера темного цвета и способна растягиваться, как резина. Процесс окисления одного оксида в другой является обратимым. Тепловые эффекты химических реакций. Периодическое изменение свойств оксидов, гидроксидов, водородных соединений химических элементов. Физические и химические свойства водорода.

Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы.

Разнообразие форм триоксида серы связано со способностью молекул SO3 полимеризоваться благодаря образованию донорно-акцепторных связей. Полимерные структуры SO3 легко переходят друг в друга, и твердый SO3 обычно состоит из смеси различных форм, относительное содержание которых зависит от условий получения серного ангидрида.

Железный купорос FеSО4 7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями. Глауберова соль» (мирабилит) Nа2SO4 10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.

Она неустойчива и разлагается на сернистый газ и воду. Сернистая кислота не относится к сильным кислотам. Она является кислотой средней силы и диссоциирует ступенчато. Серная кислота вступает в реакции трёх типов: кислотно-основные, ионообменные, окислительно-восстановительные.

Эти реакции лучше проводить с разбавленной серной кислотой. Для серной кислоты характерны ионообменные реакции. Выделение газа происходит в реакциях с солями неустойчивых кислот, распадающихся с образованием газов (угольной, сернистой, сероводородной) либо с образованием летучих кислот, таких как соляная.

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Задание: Составьте уравнение диссоциации сернистой кислоты.

Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Тиосульфат натрия содержит два атома серы в различных степенях окисления и проявляет восстановительные свойства.

SO2 обесцвечивает органические красителя и применяется для отбеливания шелка, шерсти и соломы. Концентрированная серная кислота служит для очистки нефтепродуктов от сернистых и непредельных органических соединений. Благодаря высокой гигроскопичности применяется для осушки газов, для концентрирования азотной кислоты.

Сероводород и сульфиды. При растворении сероводорода в воде образуется слабая сероводородная кислота, соли которой называют сульфидами. Соли сернистой кислоты, как двухосновной, могут быть средними - сульфитами, например сульфит натрия Na2SO3, и кислыми - гидросульфитами, например гидросульфит натрия NaHSO3.

Применяется он также и в качестве растворителя в лабораториях. Учитель: Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы (IV) и воду, поэтому существует только в водных растворах. В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой. Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

В окислительно-восстановительных процессах сернистый газ может быть как окислителем, так и восстановителем, потому что атом в этом соединении имеет промежуточную степень окисления +4.

Как окислитель SO 2 реагирует с более сильными восстановителями, например с :

SO 2 + 2H 2 S = 3S↓ + 2H 2 O

Как восстановитель SO 2 реагирует с более сильными окислителями, например с в присутствии катализатора, с и т.д.:

2SO 2 + O 2 = 2SO 3

SO 2 + Cl 2 + 2H 2 O = H 2 SO 3 + 2HCl

Получение

1) Сернистый газ образуется при горении серы:

2) В промышленности его получают при обжиге пирита:

3) В лаборатории сернистый газ можно получить:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

Применение

Сернистый газ находит широкое применение в текстильной промышленности для отбеливания различных изделий. Кроме того, его используют в сельском хозяйстве для уничтожения вредных микроорганизмов в теплицах и погребах. В больших количествах SO 2 идет на получение серной кислоты.

Оксид серы (VI ) – SO 3 (серный ангидрид)

Серный ангидрид SO 3 – это бесцветная жидкость, которая при температуре ниже 17 о С превращается в белую кристаллическую массу. Очень хорошо поглощает влагу (гигроскопичен).

Химические свойства

Кислотно-основные свойства

Как типичный кислотный оксид серный ангидрид взаимодействует:

SO 3 + CaO = CaSO 4

в) с водой:

SO 3 + H 2 O = H 2 SO 4

Особым свойством SO 3 является его способность хорошо растворяться в серной кислоте. Раствор SO 3 в серной кислоте имеет название олеум.

Образование олеума: H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Окислительно-восстановительные свойства

Оксид серы (VI) характеризуется сильными окислительными свойствами (обычно восстанавливается до SO 2):

3SO 3 + H 2 S = 4SO 2 + H 2 O

Получение и применение

Серный ангидрид образуется при окислении сернистого газа:

2SO 2 + O 2 = 2SO 3

В чистом виде серный ангидрид практического значения не имеет. Он получается как промежуточный продукт при производстве серной кислоты.

H 2 SO 4

Упоминания о серной кислоте впервые встречаются у арабских и европейских алхимиков. Ее получали, прокаливая на воздухе железный купорос (FeSO 4 ∙7H 2 O): 2FeSO 4 = Fe 2 O 3 + SO 3 + SO 2 либо смесь с : 6KNO 3 + 5S = 3K 2 SO 4 + 2SO 3 + 3N 2 , а выделяющиеся пары серного ангидрида конденсировали. Поглощая влагу, они превращались в олеум. В зависимости от способа приготовления H 2 SO 4 называли купоросным маслом или серным маслом. В 1595 г. алхимик Андреас Либавий установил тождественность обоих веществ.

Долгое время купоросное масло не находило широкого применения. Интерес к нему сильно возрос после того, как в XVIII в. был открыт процесс получения из индиго индигокармина – устойчивого синего красителя. Первую фабрику по производству серной кислоты основали недалеко от Лондона в 1736 г. Процесс осуществляли в свинцовых камерах, на дно которых наливали воду. В верхней части камеры сжигали расплавленную смесь селитры с серой, затем туда запускали воздух. Процедуру повторяли до тех пор, пока на дне ёмкости не образовывалась кислота требуемой концентрации.

В XIX в. способ усовершенствовали: вместо селитры стали использовать азотную кислоту (она при разложении в камере даёт ). Чтобы возвращать в систему нитрозные газы были сконструированы специальные башни, которые и дали название всему процессу – башенный процесс. Заводы, работающие по башенному методу, существуют и в наше время.

Серная кислота – это тяжелая маслянистая жидкость без цвета и запаха, гигроскопична; хорошо растворяется в воде. При растворении концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому ее надо осторожно приливать в воду (а не наоборот!) и перемешивать раствор.

Раствор серной кислоты в воде с содержанием H 2 SO 4 менее 70% обычно называют разбавленной серной кислотой, а раствор более 70% — концентрированной серной кислотой.

Химические свойства

Кислотно-основные свойства

Разбавленная серная кислота проявляет все характерные свойства сильных кислот. Она реагирует:

H 2 SO 4 + NaOH = Na 2 SO 4 + 2H 2 O

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl

Процесс взаимодействия ионов Ва 2+ с сульфат-ионами SO 4 2+ приводит к образованию белого нерастворимого осадка BaSO 4 . Это качественная реакция на сульфат-ион .

Окислительно – восстановительные свойства

В разбавленной H 2 SO 4 окислителями являются ионы Н + , а в концентрированной – сульфат-ионы SO 4 2+ . Ионы SO 4 2+ являются более сильными окислителями, чем ионы Н + (см.схему).

В разбавленной серной кислоте растворяются металлы, которые в электрохимическом ряду напряжений находятся до водорода . При этом образуются сульфаты металлов и выделяется :

Zn + H 2 SO 4 = ZnSO 4 + H 2

Металлы, которые в электрохимическом ряду напряжений находятся после водорода, не реагируют с разбавленной серной кислотой:

Cu + H 2 SO 4 ≠

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие , и некоторые органические вещества.

При взаимодействии концентрированной серной кислоты с металлами, которые в электрохимическом ряду напряжений находятся после водорода (Cu, Ag, Hg), образуются сульфаты металлов, а также продукт восстановления серной кислоты – SO 2 .

Реакция серной кислоты с цинком

Более активными металлами (Zn, Al, Mg) концентрированная серная кислота может восстанавливаться до свободной . Например, при взаимодействии серной кислоты с , в зависимости от концентрации кислоты одновременно могут образовываться различные продукты восстановления серной кислоты – SO 2 , S, H 2 S:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O

На холоде концентрированная серная кислота пассивирует некоторые металлы, например и , поэтому ее перевозят в железных цистернах:

Fe + H 2 SO 4 ≠

Концентрированная серная кислота окисляет некоторые неметаллы ( , и др.), восстанавливаясь до оксида серы (IV) SO 2:

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O

C + 2H 2 SO 4 = 2SO 2 + CO 2 + 2H 2 O

Получение и применение

В промышленности серную кислоту получают контактным способом. Процесс получения происходит в три стадии:

  1. Получение SO 2 путем обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

  1. Окисление SO 2 в SO 3 в присутствии катализатора – оксида ванадия (V):

2SO 2 + O 2 = 2SO 3

  1. Растворение SO 3 в серной кислоте:

H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Полученный олеум перевозят в железных цистернах. Из олеума получают серную кислоту нужной концентрации, приливая его в воду. Это можно выразить схемой:

H 2 SO 4 ∙ n SO 3 + H 2 O = H 2 SO 4

Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей и лекарственных средств.

Соли серной кислоты


Большинство сульфатов хорошо растворимы в воде (малорастворим CaSO 4 , еще менее PbSO 4 и практически нерастворим BaSO 4). Некоторые сульфаты, содержащие кристаллизационную воду, называются купоросами:

CuSO 4 ∙ 5H 2 O медный купорос

FeSO 4 ∙ 7H 2 O железный купорос

Соли серной кислоты имеют все . Особенным является их отношение к нагреванию.

Сульфаты активных металлов ( , ) не разлагаются даже при 1000 о С, а других (Cu, Al, Fe) – распадаются при небольшом нагревании на оксид металла и SO 3:

CuSO 4 = CuO + SO 3

Скачать:

Скачать бесплатно реферат на тему: «Производство серной кислоты контактным способом»

Скачать рефераты по другим темам можно

*на изображении записи фотография медного купороса

Оксид серы (IV) проявляет свойства

1) только основного оксида

2) амфотерного оксида

3) кислотного оксида

4) несолеобразующего оксида

Ответ: 3

Пояснение:

Оксид серы (IV) SO 2 является кислотным оксидом (оксидом неметалла), в котором сера имеет заряд +4. Этот оксид образует соли сернистой кислоты при H 2 SO 3 и при взаимодействии с водой образует саму сернистую кислоту H 2 SO 3 .

К несолеобразующим оксидам (оксидам, не проявляющих ни кислотных, ни основных, ни амфотерных свойств и не образующим соли) относятся NO, SiO, N 2 O (закись азота), CO.

Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

Кислотным и основным оксидом являются соответственно

2) CO 2 и Al 2 O 3

Ответ: 1

Пояснение:

Кислотные оксиды – оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Из представленного списка к ним относятся: SO 2 , SO 3 и CO 2 . При взаимодействии с водой они образуют следующие кислоты:

SO 2 + H 2 O = H 2 SO 3 (сернистая кислота)

SO 3 + H 2 O = H 2 SO 4 (серная кислота)

CO 2 + H 2 O = H 2 CO 3 (угольная кислота)

Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления. Из представленного списка к основным оксидам относятся: MgO, FeO.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Из представленного списка к амфотерным оксидам относятся: Al 2 O 3 , ZnO.

Оксид серы (VI) взаимодействует с каждым из двух веществ:

1) вода и соляная кислота

2) кислород и оксид магния

3) оксид кальция и гидроксид натрия

Ответ: 3

Пояснение:

Оксид серы (VI) SO 3 (степень окисления серы +6) является кислотным оксидом, реагирует с водой с образованием соответствующей серной кислоты H 2 SO 4 (степень окисления серы также +6):

SO 3 + H 2 O = H 2 SO 4

Как кислотный оксид SO 3 не взаимодействует с кислотами, т. е. с HCl реакция не идет.

Сера в SO 3 проявляет высшую степень окисления +6 (равную номеру группы элемента), поэтому SO 3 с кислородом не реагирует (кислород не окисляет серу в степени окисления +6).

С основным оксидом MgO образуется соответствующая соль – сульфат магния MgSO 4:

MgO + SO 3 = MgSO 4

Поскольку оксид SO 3 является кислотным, он взаимодействует с основными оксидами и основаниями с образованием соответствующих солей:

MgO + SO 3 = MgSO 4

NaOH + SO 3 = NaHSO 4 или 2NaOH +SO 3 = Na 2 SO 4 + H 2 O

Как было отмечено выше, с водой SO 3 реагирует с образованием серной кислоты.

С переходным металлом CuSO 3 не взаимодействует.

Оксид углерода (IV) реагирует с каждым из двух веществ:

1) водой и оксидом кальция

2) кислородом и оксидом серы (IV)

3) сульфатом калия и гидроксидом натрия

4) фосфорной кислотой и водородом

Ответ: 1

Пояснение:

Оксид углерода (IV) CO 2 является кислотным оксидом, поэтому взаимодействует с водой с образованием неустойчивой угольной кислоты H 2 CO 3 и с оксидом кальция с образованием карбоната кальция CaCO 3:

CO 2 + H 2 O = H 2 CO 3

CO 2 + CaO = CaCO 3

С кислородом углекислый газ CO 2 не реагирует, поскольку кислород не может окислить элемент, находящийся в высшей степени окисления (для углерода это +4 по номеру группы, в которой он находится).

С оксидом серы (IV) SO 2 реакция не идет, поскольку, являясь кислотным оксидом, CO 2 не взаимодействует с оксидом, обладающим также кислотными свойствами.

Углекислый газ CO 2 не взаимодействует с солями (например, с сульфатом калия K 2 SO 4), но взаимодействует с щелочами, поскольку он обладает основными свойствами. Реакция протекает с образованием кислой или средней соли в зависимости от избытка или недостатка реагентов:

NaOH + CO 2 = NaHCO 3 или 2NaOH + CO 2 = Na 2 CO 3 + H 2 O

CO2, являясь кислотным оксидом, не реагирует ни с кислотными оксидами, ни с кислотами, поэтому реакция между углекислым газом и фосфорной кислотой H 3 PO 4 не происходит.

CO 2 восстанавливается водородом до метана и воды:

CO 2 + 4H 2 = CH 4 + 2H 2 O

Основные свойства проявляет высший оксид элемента

Ответ: 3

Пояснение:

Основные свойства проявляют основные оксиды — оксиды металлов в степенях окисления +1 и +2. К ним относятся:

Из представленных вариантов к основным оксидам относится только оксид бария BaO. Все остальные оксиды серы, азота и углерода относятся либо к кислотным, либо к несолеобразующим: CO, NO, N 2 O.

Оксиды металлов со степенью окисления + 6 и выше являются

1) несолеобразующими

2) основными

3) амфотерными

Ответ: 4

Пояснение:

  • — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
  • — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
  • — оксиды переходных металлов в низших степенях окисления.

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид металла в степени окисления +6 обладает кислотными свойствами.

Кислотные свойства проявляет оксид, формула которого

Ответ: 1

Пояснение:

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид кремния SiO 2 с зарядом кремния +6 обладает кислотными свойствами.

Несолеобразующими оксидами являются N 2 O, NO, SiO, CO. CO – несолеобразующий оксид.

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

BaO принадлежит к основным оксидам.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Амфотерным оксидом является и оксид алюминия Al 2 O 3 .

Степень окисления хрома в его амфотерных соединениях равна

Ответ: 3

Пояснение:

Хром – элемент побочной подгруппы 6-й группы 4-го периода. Для него характерны степени окисления 0, +2, +3, +4, +6. Степени окисления +2 соответствуют оксид CrO, обладающий основными свойствами. Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 . Это — наиболее устойчивая степень окисления хрома. Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, простейшие из которых хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 .

К амфотерным оксидам относится

Ответ: 3

Пояснение:

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. ZnO – амфотерный оксид.

Несолеобразующими оксидами являются N 2 O, NO, SiO, CO.

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr (к этой группе относится оксид калия K 2 O);

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, SO 3 – кислотный оксид, соответствующий серной кислоте H 2 SO 4 .

7FDBA3 Какие из приведенных утверждений верны?

А. Основные оксиды – это оксиды, которым соответствуют основания.

Б. Основные оксиды образуют только металлы.

1) верно только А

2) верно только Б

3) верны оба утверждения

4) оба утверждения неверны

Ответ: 3

Пояснение:

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Основным оксидам в качестве гидроксида соответствуют основания.

Оба утверждения верны.

C водой при обычных условиях реагирует

1) оксид азота (II)

2) оксид железа (II)

3) оксид железа (III)

Ответ: 4

Пояснение:

Оксид азота (II) NO является несолеобразующим оксидом, поэтому не взаимодействует ни с водой, ни с основаниями.

Оксид железа (II) FeO является основным оксидом, не растворимым в воде. С водой не реагирует.

Оксид железа (III) Fe 2 O 3 является амфотерным оксидом, не растворимым в воде. С водой также не реагирует.

Оксид азота (IV) NO 2 является кислотным оксидом и реагирует с водой с образованием азотной (HNO 3 ; N +5) и азотистой (HNO 2 ; N +3) кислот:

2NO 2 + H 2 O = HNO 3 + HNO 2

В перечне веществ: ZnO, FeO, CrO 3 , CaO, Al 2 O 3 , Na 2 O, Cr 2 O 3
число оснόвных оксидов равно

Ответ: 3

Пояснение:

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

  • — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
  • — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
  • — оксиды переходных металлов в низших степенях окисления.

Из предложенных вариантов к группе основных оксидов относятся FeO, CaO, Na 2 O.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

К амфотерным оксидам относятся ZnO, Al 2 O 3 , Cr 2 O 3 .

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, CrO 3 – кислотный оксид, соответствующий хромовой кислоте H 2 CrO 4 .

382482

Оксид калия взаимодействует с

Ответ: 3

Пояснение:

Оксид калия (K 2 O) относится к основным оксидам. Как основный оксид K 2 O может взаимодействовать с амфотерными оксидами, т.к. с оксидами, проявляющими как кислотные, так и основные свойства (ZnO). ZnO является амфотерным оксидом. Не реагирует с основными оксидами (CaO, MgO, Li 2 O).

Реакция протекает следующим образом:

K 2 O + ZnO = K 2 ZnO 2

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Амфотерные оксиды – солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

Кроме того, существуют несолеобразующие оксиды N 2 O, NO, SiO, CO. Несолеобразующие оксиды — оксиды, не проявляющие ни кислотных, ни основных, ни амфотерных свойств и не образующие соли.

Оксид кремния (IV) взаимодействует с каждым из двух веществ

2) H 2 SO 4 и BaCl 2

Ответ: 3

Пояснение:

Оксид кремния (SiO 2) является кислотным оксидом, поэтому взаимодействует с щелочами и основными оксидами:

SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O