Коэффициент притяжения. Гравитационная постоянная

Все попытки экспериментаторов по уменьшению погрешности измерений гравитационной постоянной Земли до сего времени сводились к нулю. Как было отмечено ранее, со времен Кавендиша точность измерения этой постоянной практически не увеличилась. За два с лишним столетия точность измерения не сдвинулась с места. Такую ситуацию можно назвать по аналогии с «ультрафиолетовой катастрофой» как «катастрофа гравитационной постоянной». Из ультрафиолетовой катастрофы выбрались с помощью квантов, а как выйти из катастрофы с гравитационной постоянной?

Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:

Где, g – ускорение свободного падения (g=9,78 м/с 2 – на экваторе; g=9,832 м/с 2 – на полюсах).

R – радиус Земли, м,

M – масса Земли, кг.

Стандартное значение ускорения свободного падения, принятое при построении систем единиц, равно: g=9,80665 . Отсюда усредненное значение G будет равно:

В соответствии с полученным G , уточним температуру из пропорции:

6,68·10 -11 ~х=1~4,392365689353438·10 12

Данная температура соответствует по шкале Цельсия 20,4 o .

Такой компромисс, я думаю, вполне мог бы удовлетворить две стороны: экспериментальную физику и комитет (КОДАТА), чтобы периодически не пересматривать и не изменять значение гравитационной постоянной для Земли.

Можно «законодательно» утвердить нынешнее значение гравитационной постоянной для Земли G=6,67408·10 -11 Нм 2 /кг 2 , но скорректировать стандартное значение g=9,80665, несколько уменьшив его значение.

Кроме того, если использовать среднюю температуру Земли, равную 14 o С, то гравитационная постоянная будет равна G=6,53748·10 -11 .

Итак, у нас имеются три значения, претендующих на пьедестал гравитационной постоянной G для планеты Земля: 1) 6,67408·10 -11 м³/(кг·с²) ; 2) 6,68·10 -11 м³/(кг·с²) ; 3) 6,53748·10 -11 м³/(кг·с²) .

Комитету КОДАТА остается вынести окончательный вердикт, какую из них утвердить как гравитационную постоянную Земли.

Мне могут возразить, если гравитационная постоянная зависит от температуры взаимодействующих тел, то силы притяжения днем и ночью, зимой и летом должны отличаться. Да, именно так и должно быть, с малыми телами. Но Земля огромный, быстро вращающийся шар, имеет громадный запас энергии. Отсюда, интегральное количество крафонов зимой и летом, днем и ночью, вылетающих из Земли, одинаково. Поэтому, ускорение свободного падения на одной широте остается всегда постоянным.

Если переместиться на Луну, где разность температур дневного и ночного полушарий сильно разнятся, то гравиметры должны зафиксировать разницу силы притяжения.

Related Posts

11 комментариев

    Только один вопрос к Вам:

    Или у Вас в постранстве энергия не в сфере распространяется?

    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.

    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»

    Только один вопрос к Вам:
    Если Вы уже начали говорить об энергии, то почему напрочь забыли о 4Пи перед R^2?!
    Или у Вас в постранстве энергия не в сфере распространяется?
    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.
    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»
    ________________________________________________________
    Вместо одного заявленного вопроса оказалось три, но суть не в этом.
    1. Касаемо 4π. В формулах (9) и (10) R2 – это расстояние от тела (предмета) до центра Земли. Откуда здесь должна появиться 4π – не понятно.
    2. Что касается максимальной температура вещества в природе. Вы, очевидно, поленились открыть ссылку в конце статьи: «Гравитационная постоянная величина – переменная».
    3. Теперь относительно «осмысленного описания процесса гравитационного взаимодействия тел». Все осмыслено и описано. Относительно, в какую сторону летят эти самые крафоны, читаем статьи: « ». Солнечные фотоны стартуют с поверхности Светила без отдачи, с приобретением импульсов придачи. Фотон, в противовес материальному миру, не имеет инерции – его импульс возникает в момент отрыва от источника без отдачи!
    Явление отдачи наблюдается только в телах, когда под действием внутренних сил оно распадается на части, разлетающееся в противоположные стороны. Фотон не распадается на части, он не расстается со своим приобретенным импульсом до своего поглощения, поэтому для него выражение (3) будет справедливо.
    « » , и ч.2 .
    Цитата из 2-й части: «Крафоны из элементарного шарика вылетают спонтанно, по разным направлениям по нормали его поверхности. Притом, направлены они, в основном, в атмосферу, т.е. в более разреженный электромагнитный эфир (ЭМЭ) по сравнению с ЭМЭ вод Мирового океана. В принципе та же картина наблюдается и на материках».
    Уважаемые читатели, на тему: как возникает гравитация, и кто является ее переносчиком, читайте всю главу под названием: «Гравитация». Конечно, можно и выборочно, для этого кликайте по кнопке «Карта сайта» верхнего меню, расположенного над шапкой сайта.

    Добавление к предыдущему комментарию.

    12окт.2016г. На страницах электронного научно-практического журнала «Современные научные исследования и инновации» опубликована моя статья под названием: «Фотонно-квантовая гравитация». В статье изложена суть гравитации. Прочесть по ссылке:

    P.S. Алексей Вы правы, в данном журнале указанной статьи нет. Читай ниже мой комментарий.

    Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((

    «Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((»
    Статья: ГРАВИТАЦИЯ ЗЕМЛИ ФОТОННО-КВАНТОВАЯ ГРАВИТАЦИЯ переехала в другой журнал: «Scientific-Researches» №5(5), 2016, с. 79
    http://tsh-journal.com/wp-content/uploads/2016/11/VOL-1-No-5-5-2016.pdf

    05.01.2017. Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула

    «Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула»
    ———————————
    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    «Все тела, обладающие массой, возбуждают в окружающем пространстве гравитационные поля, подобно тому, как электрически заряженные частицы образуют вокруг себя электростатическое поле. Можно предположить, что тела несут в себе гравитационный заряд, аналогичный электрическому, или, по-другому, обладают гравитационной массой. С высокой точностью было установлено, что инертная и гравитационная массы совпадают.
    2
    Пусть имеется два точечных тела массами m1 и m2. Они удалены друг от друга на расстояние r. Тогда сила гравитационного притяжения между ними равна: F=C·m1·m2/r², где С – коэффициент, который зависит лишь от выбранных единиц измерения.

    3
    Если на поверхности Земли имеется небольшое тело, его размерами и массой можно пренебречь, т.к. габариты Земли намного превосходят их. При определении расстояния между планетой и поверхностным телом рассматривается только радиус Земли, т.к. высота расположения тела пренебрежимо мала в сравнении с ним. Получается, что Земля притягивает тело с силой F=M/R², где M – масса Земли, R – ее радиус.
    4
    Согласно закону всемирного тяготения, ускорение тел при действии силы тяжести на поверхности Земли равно: g=G M/ R². Здесь G – гравитационная постоянная, численно равная примерно 6,6742 10^(−11).
    5
    Ускорение свободного падения g и радиус земли R находятся из непосредственных измерений. Константа G с большой точностью определена в опытах Кэвендиша и Йолли. Итак, масса Земли M=5,976 10^27 г ≈ 6 10^27 г.

    фТавтология, на мой взгляд, разумеется ошибочный, заключается в том, что при вычислении массы Земли используется все тот же коэффициент G Кавендиша Йолли под названием гравитационная постоянная, которая совсем даже не постоянная, в чем я с Вами абсолютно согласен. Поэтому Ваш посыл «Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:» не совсем корректен. Ваш расчет константы G уже использован в расчете массы Земли. Ни в коей мере не хочу Вас укорить, просто очень хочу разобраться с этой гравитационной постоянной, которой в законе Роберта Гука присвоенного Ньютоном совсем даже не было. С глубоким уважением Микула.

    Уважаемый, Микула, Ваше желание понять и разобраться с гравитационной постоянной похвально. Учитывая, что понять данную константу желали многие ученые, но не многим удалось это сделать.
    «Константа G с большой точностью определена в опытах Кавендиша и Йолли».
    Нет! С не большой! Иначе, зачем бы наука тратила средства и время для ее регулярной перепроверки и уточнения, т.е. усреднения результатов, чем и занимается КОДАТА. А нужна она как раз для того чтобы «взвесить Землю» и узнать ее плотность, чем и прославился Кавендиш. Но как видите, G гуляет от одного опыта к другому. Тоже самое и с ускорением свободного падения.
    Гравитационная постоянная – это коэффициент для одного значения температуры, а температура, что дышло.
    Что предлагаю я? Для планеты Земля раз и навсегда установить одно значение G и сделать ее действительно постоянной c учетом g.
    Не поленитесь, прочтите все статьи в рубрике G (гравитационная постоянная), думаю, у Вас многое прояснится. Начните сначала:

    Путь Наш во мраке… И стукаемся Мы лбами не только об осклизлые стены подземелья в поисках проблесков к выходу, но и об лбы таких же несчастных, матерясь и проклиная… хромые, безрукие, слепые нищие … И не слышим друг друга. Протягиваем руку и получаем в неё плевок… и потому бесконечен Наш путь… И тем не менее… вот моя рука. Это моя версия понимания природы гравитации… и «сильного взаимодействия».
    Мезенцев Николай Фёдорович.

    Ваша рука, к сожалению, мне никак не помогла, а собственно зачем.

Этот сайт использует Akismet для борьбы со спамом. .


Ваш комментарий на модерации.

коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r 2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами. Другие обозначения Г. п.: γ или f (реже k 2 ). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц (См. СГС система единиц)

G = (6,673 ± 0,003)․10 -8 дн см 2 г -2

или см 3 г --1 сек -2 , в Международной системе единиц (См. Международная система единиц)

G = (6,673 ± 0,003)․10 -11 ․н м 2 кг --2

или м 3 кг -1 сек -2 . Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов (См. Крутильные весы).

При вычислении орбит небесных тел (например, спутников) относительно Земли используется геоцентрическая Г. п. - произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ± 0,00003)․10 14 ․м 3 сек -2 .

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п. - произведение Г. п. на массу Солнца:

GS s = 1,32718․10 20 ․ м 3 сек -2 .

Эти значения GE и GS s соответствуют системе фундаментальных астрономических постоянных (См. Фундаментальные астрономические постоянные), принятой в 1964 на съезде Международного астрономического союза.

Ю. А. Рябов.

  • - , физ. величина, характеризующая св-ва тела как источника тяготения; равна инертной массе. ...

    Физическая энциклопедия

  • - нарастание со временем отклонений от ср. значения плотности и скорости движения в-ва в косм. пр-ве под действием сил тяготения...

    Физическая энциклопедия

  • - нарастание возмущений плотности и скорости вещества в первоначально почти однородной среде под действием гравитационных сил. В результате гравитационной неустойчивости образуются сгустки вещества...

    Астрономический словарь

  • - тело большой массы, влияние которого на движение света похоже на действие обычной линзы, преломляющей лучи за счет изменения оптических свойств среды...

    Мир Лема - словарь и путеводитель

  • - подземная вода, способная передвигаться по порам, трещинам и другим пустотам горных пород под влиянием силы тяжести...

    Словарь геологических терминов

  • - вода свободная. Она передвигается под влиянием силы тяжести, в ней действует гидродинамическое давление...

    Словарь по гидрогеологии и инженерной геологии

  • - Влага свободная, передвигающаяся или способная к передвижению в п. или грунте под влиянием силы тяжести...

    Толковый словарь по почвоведению

  • - тяготения постоянная, - универс. физ. постоянная G, входящая в ф-лу, выражающую ньютоновский закон тяготения: G = *10-11Н*м2/кг2...

    Большой энциклопедический политехнический словарь

  • - местная ликвация по высоте слитка, связанная с различием в плотности твердой и жидкой фаз, а также не смешивающихся при кристаллизации жидких фаз...
  • - шахтная печь, в которой нагреваемый материал движется сверху вниз под действием силы тяжести, а газообразный теплоноситель - встречно...

    Энциклопедический словарь по металлургии

  • - син. термина аномалия силы тяжести...

    Геологическая энциклопедия

  • - см. в ст. Свободная вода....

    Геологическая энциклопедия

  • - масса, тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...
  • - то же, что Отвесная линия...

    Большая Советская энциклопедия

  • - тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...

    Большая Советская энциклопедия

  • - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами...

    Большая Советская энциклопедия

"Гравитационная постоянная" в книгах

автора Еськов Кирилл Юрьевич

автора

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы Рассказ о происхождении Земли и Солнечной системы нам придется начать издалека. В 1687 году И. Ньютон вывел закон всемирного

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Постоянная забота

Из книги Листы дневника. Том 1 автора Рерих Николай Константинович

Постоянная забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта. Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

6.10. Гравитационная редукция вектора состояния

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

6.10. Гравитационная редукция вектора состояния Есть веские причины подозревать, что модификация квантовой теории - необходимая, если мы намерены выдать ту или иную форму R за реальный физический процесс, - должна самым серьезным образом задействовать эффекты

Аналогия с вулканом: гравитационная и центробежная энергии

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Аналогия с вулканом: гравитационная и центробежная энергии Чтобы объяснить, как этот вулкан связан с законами физики, придется слегка углубиться в технические детали.Для простоты будем считать, что «Эндюранс» движется в экваториальной плоскости Гаргантюа.

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова)

Из книги 100 великих тайн Второй мировой автора Непомнящий Николай Николаевич

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова) В начале 1920-х годов в Германии была опубликована статья доцента Кёнигсбергского университета Т. Калуцы о «теории великого объединения», в которой он сумел опередить Эйнштейна, работавшего в то время

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Гравитационная

БСЭ

Гравитационная вертикаль

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная плотина

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная постоянная

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Способности кристаллов. Гравитационная подпитка

Из книги Энергия камня исцеляет. Кристаллотерапия. С чего начать? автора Бриль Мария

Способности кристаллов. Гравитационная подпитка Природные элементы, на протяжении миллионов лет выкристаллизовывавшиеся в глубинах земных недр, обладают особыми свойствами, позволяющими им максимально реализовать свои способности. А способности эти не так уж и малы.

Правило «Гравитационная горка»

Из книги Оздоровительно-боевая система «Белый Медведь» автора Мешалкин Владислав Эдуардович

Правило «Гравитационная горка» Мы уже договорились: все есть мысль; мысль есть Сила; движение Силы – волна. Поэтому боевое взаимодействие по сути не отличается от стирки белья. В обоих случаях имеет место волновой процесс.Вам надо усвоить, что волновой процесс жизни

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    Фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    Тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

Гравитационная постоянная, постоянная Ньютона - фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века.

Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно, впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809). По крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено.

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Митчеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

В 2000 г. было получено значение гравитационной постоянной

см 3 г -1 c -2 , с погрешностью 0,0014%.

Последнее значение гравитационной постоянной было получено группой ученых в 2013, работавших под эгидой Международного Бюро Мер и Весов, и оно составляет

см 3 г -1 c -2 .

В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено.

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по его уточнению продолжают различаться. В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени, но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов.

По астрономическим данным постоянная G практически не изменялась за последние сотни миллионов лет, ее относительное изменение не превышает 10 ?11 - 10 ?12 в год.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами m 1 и m 2 , находящимися на расстоянии r , равна:

Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2008 год значение было

G = 6,67428 (67)·10 ?11 м 3 ·с?2 ·кг?1

в 2010 году значение было исправлено на:

G = 6,67384 (80)·10 ?11 м 3 ·с?2 ·кг?1 , или Н·мІ·кг?2 .

В октябре 2010 в журнале Physical Review Letters появилась статья, предлагающая уточнённое значение 6,67234 (14), что на три стандартных отклонения меньше величины G , рекомендованной в 2008 г. комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г.

Пересмотр величины G , произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Являясь одной из фундаментальных величин в физике, гравитационная постоянная впервые была упомянута в 18-м веке. Тогда же были предприняты первые попытки измерить ее значение, однако в силу несовершенства приборов и недостаточных знаний в данной области, сделать это удалось лишь в середине 19-го столетия. Позже полученный результат неоднократно корректировался (в последний раз это было сделано в 2013 году). Однако же следует отметить, что принципиального различия между первым (G = 6,67428(67)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) и последним (G = 6,67384(80)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) значениями не существует.

Применяя данный коэффициент для практических расчетов, следует понимать, что константа является таковой в глобальных вселенских понятиях (если не делать оговорок на физику элементарных частиц и прочие малоизученные науки). А это значит, что гравитационная постоянная Земли, Луны или Марса не будут отличаться друг от друга.

Эта величина является базовой константой в классической механике. Поэтому гравитационная постоянная участвует в самых различных расчетах. В частности, не обладая сведениями о более-менее точном значении данного параметра, ученые не смогли бы вычислять столь важный в космической отрасли коэффициент, как ускорение свободного падения (который для каждой планеты или прочего космического тела будет своим).

Однако же Ньютону, озвучившему в общем виде, гравитационная постоянная была известна лишь в теории. То есть он смог сформулировать один из важнейших физических постулатов, не обладая сведениями о величине, на которой он, по сути, основывается.

В отличие от прочих фундаментальных констант, о том, чему равна гравитационная постоянная, физика может сказать лишь с определенной долей точности. Ее значение периодически получают заново, причем каждый раз оно отличается от предыдущего. Большинство ученых полагает, что данный факт связан не с ее изменениями, а с более банальными причинами. Во-первых, это методы измерения (для вычисления этой константы проводят различные эксперименты), а во-вторых, точность приборов, которая постепенно возрастает, данные уточняются, и получается новый результат.

С учетом того, что гравитационная постоянная является величиной, измеряемой 10 в -11 степени (что для классической механики сверхмалое значение), в постоянном уточнении коэффициента нет ничего удивительного. Тем более что коррекции подвергается символ, начиная с 14 после запятой.

Однако же есть в современной волновой физике иная теория, которую выдвинули Фред Хойл и Дж. Нарликар еще в 70-е годы прошлого века. Согласно их предположениям, гравитационная постоянная уменьшается со временем, что влияет на многие иные показатели, считающиеся константами. Так, американским астрономом ван Фландерном был отмечен феномен незначительного ускорения Луны и прочих небесных тел. Руководствуясь данной теорией, следует предположить, что никаких глобальных погрешностей в ранних вычислениях не было, а разница в полученных результатах объясняется изменениями самого значения константы. Эта же теория говорит о непостоянстве некоторых других величин, таких как