Названия свойств числовых неравенств. Основные свойства числовых неравенств

§ 1 Универсальный способ сравнения чисел

Познакомимся с основными свойствами числовых неравенств, а также рассмотрим универсальный способ сравнения чисел.

Результат сравнения чисел можно записать с помощью равенства или неравенства. Неравенство может быть строгим и нестрогим. Например, а>3 - это строгое неравенство; а≥3 - это нестрогое неравенство. Способ сравнения чисел зависит от вида сравниваемых чисел. Например, если надо сравнить десятичные дроби, то мы сравниваем их поразрядно; если необходимо сравнить обыкновенные дроби с разными знаменателями, то надо привести их к общему знаменателю и сравнить числители. Но существует универсальный способ сравнения чисел. Он состоит в следующем: находят разность чисел a и b; если a - b > 0, то есть положительное число, то a > b; если a - b < 0, то есть отрицательное число, то a < b; если a - b = 0, то a = b. Этот способ удобно использовать для доказательства неравенств. Например, доказать неравенство:

2b2 - 6b + 1 > 2b(b- 3)

Воспользуемся универсальным способом сравнения. Найдем разность выражений 2b2 - 6b + 1и 2b(b - 3);

2b2 - 6b + 1- 2b(b-3)= 2b2 - 6b + 1 - 2b2 + 6b; приведем подобные слагаемые и получим 1. Так как 1 больше нуля, положительное число, то 2b2 - 6b+1 > 2b(b-3).

§ 2 Cвойства числовых неравенств

Свойство 1. Если a> b, b > c, то a> c.

Доказательство. Если a > b, то значит, разность a - b > 0, то есть положительное число. Если b >c, значит, разность b - c > 0, положительное число. Сложим положительные числа a - b и b - c, раскроем скобки и приведем подобные слагаемые, получим (a - b) +(b - c) = a- b +b - c= a - c. Так как сумма положительных чисел - число положительное, значит, a - c положительное число. Следовательно, a > c, что и требовалось доказать.

Свойство 2. Если a < b, c- любое число, то a + с < b+ с. Это свойство можно трактовать так: «К обеим частям верного неравенства можно прибавить одно и то же число, при этом знак неравенства не изменится».

Доказательство. Найдем разность выражений a + с и b+ с, раскроем скобки и приведем подобные слагаемые, получим (a + с) - (b+ с) = a + с - b - с = a - b. По условию a < b, тогда разность a - b- отрицательное число. Значит, и разность (a + с) -(b+ с) отрицательна. Следовательно, a + с < b+ с, что и требовалось доказать.

Свойство 3. Если a < b, c - положительное число, то aс < bс.

Если a < b, c- отрицательное число, то aс > bс.

Доказательство. Найдем разность выражений aс и bс, вынесем за скобки с, тогда имеем aс-bс = с(a-b). Но так как a

Если отрицательное число a-b умножим на положительное число с, то произведение с(a-b) отрицательно, следовательно, разность aс-bс отрицательна, а значит, aс

Если же отрицательное число a-b умножить на отрицательное число с, то произведение с(a-b) будет положительно, следовательно, и разность aс-bс будет положительна, значит, aс>bс. Что и требовалось доказать.

Например, a-7b.

Так как деление можно заменить умножением на число обратное, = n∙, то доказанное свойство можно применить и для деления. Таким образом, смысл этого свойства в следующем: «Обе части неравенства можно умножить или разделить на одно и то же положительное число, при этом знак неравенства не изменится. Обе части неравенства можно умножить или разделить на отрицательное число, при этом необходимо поменять знак неравенства на противоположный знак».

Рассмотрим следствие к свойству 3.

Следствие. Если a

Доказательство. Разделим обе части неравенства a

сократим дроби и получим

Утверждение доказано.

Действительно, например, 2 < 3, но

Свойство 4. Если a > b и c > d, то a + c > b+ d.

Доказательство. Так как a>b и c >d, то разности a-b и c-d - положительные числа. Тогда сумма этих чисел также положительное число (a-b)+(c-d). Раскроем скобки и сгруппируем (a-b)+(c-d) = a-b+ c-d= (a+с)-(b+ d). В виду этого равенства полученное выражение (a+с)-(b+ d) будет положительным числом. Следовательно, a+ c> b+ d.

Неравенства вида a>b, c >d или a < b, c< d называют неравенствами одинакового смысла, а неравенства a>b , c

Свойство 5. Если a > b, c > d, то ac> bd, где a, b, c , d- положительные числа.

Доказательство. Так как a>b и с - положительное число, то, используя свойство 3, получим aс > bс. Так как c >d и b- положительное число, то bc > bd. Следовательно, по первому свойству ac > bd. Смысл доказанного свойства в следующем: «Если умножить почленно неравенства одинакового смысла, у которых левая и правая части - положительные числа, то получим неравенство того же смысла»

Например, 6 < a < 7, 4 < b< 5 тогда, 24 < ab < 35.

Свойство 6. Если a < b, a и b - положительные числа, то an< bn, где n- натуральное число.

Доказательство. Если почленно перемножить n данных неравенств a < b, то, согласно утверждению свойства 5, получим an< bn. Прочесть доказанное утверждение можно так: «Если обе части неравенства - положительные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства».

§ 3 Применение свойств

Рассмотрим пример на применение рассмотренных нами свойств.

Пусть 33 < a < 34, 3 < b< 4. Оценить сумму a + b, разность a - b, произведение a ∙ b и частное a: b.

1) Оценим сумму a + b. Используя свойство 4, получим 33 + 3< a + b < 34 + 4 или

36 < a+ b <38.

2) Оценим разность a - b. Так как нет свойства на вычитание, то разность a - b заменим суммой a +(-b). Сначала оценим (- b). Для этого, используя свойство 3, обе части неравенства 3 < b< 4 умножим на -1, при этом меняем знак неравенства на противоположный знак 3 ∙ (-1) > b∙ (-1) > 4 ∙ (-1). Получим -4< -b< -3. Теперь можно сложить два неравенства одного знака 33< a < 34 и -4< -b< -3. Имеем 2 9< a - b <31.

3) Оценим произведение a ∙ b. По свойству 5 перемножим неравенства одного знака

Множество всех действительных чисел можно представить, как объединение трех множеств: множество положительных чисел, множество отрицательных чисел и множество состоящее из одного числа - число нуль. Для того чтобы указать, что число а положительно, пользуются записью а > 0 , для указания отрицательного числа используют другую запиь a < 0 .

Сумма и произведение положительных чисел также являются положительными числами. Если число а отрицательно, то число положительно (и наоборот). Для любого положительного числа а найдется такое положительное рациональное число r , что r < а . Эти факты и лежат в основе теории неравенств.

По определению неравенство а > b (или, что то же самое, b < a) имеет место в том и только в том случае, если а - b > 0, т. е. если число а - b положительно.

Рассмотрим, в частности, неравенство а < 0 . Что означает это неравенство? Согласно приведенному выше определению оно означает, что 0 - а > 0 , т. е. -а > 0 или, иначе, что число положительно. Но это имеет место в том и только в том случае, если число а отрицательно. Итак, неравенство а < 0 означает, что число а отрицательно.

Часто используется также запись аb (или, что то же самое, ).
Запись аb , по определению, означает, что либо а > b , либо а = b . Если рассматривать запись аb как неопределенное высказывание, то в обозначениях математической логики можно записать

(a b) [(a > b) V (a = b)]

Пример 1. Верны ли неравенства 5 0, 0 0?

Неравенство 5 0 - это сложное высказывание состоящее из двух простых высказываний связанных логической связкой "или" (дизъюнкция). Либо 5 > 0 либо 5 = 0. Первое высказывание 5 > 0 - истинно, второе высказывание 5 = 0 - ложно. По определению дизъюнкции такое сложное высказывание истинно.

Аналогично обсуждается запись 00.

Неравенства вида а > b, а < b будем называть строгими, а неравенства вида ab, ab - нестрогими.

Неравенства а > b и с > d (или а < b и с < d ) будем называть неравенствами одинакового смысла, а неравенства а > b и c < d - неравенствами противоположного смысла. Отметим, что эти два термина (неравенства одинакового и противоположного смысла) относятся лишь к форме записи неравенств, а не к самим фактам, выражаемым этими неравенствами. Так, по отношению к неравенству а < b неравенство с < d является неравенством того же смысла, а в записи d > c (означающей то же самое) - неравенством противоположного смысла.

Наряду с неравенствами вида a > b , ab употребляются так называемые двойные неравенства, т. е. неравенства вида а < с < b , ас < b , a < cb ,
a
cb . По определению запись

а < с < b (1)
означает, что имеют место оба неравенства:

а < с и с < b.

Аналогичный смысл имеют неравенства асb, ас < b, а < сb.

Двойное неравенство (1) можно записать так:

(a < c < b) [(a < c) & (c < b)]

а двойное неравенство a ≤ c ≤ b можно записать в следующем виде:

(a c b) [(a < c)V(a = c) & (c < b)V(c = b)]

Перейдем теперь к изложению основных свойств и правил действий над неравенствами, договорившись, что в данной статье буквы a, b, с обозначают действительные числа, а n означает натуральное число.

1) Если а > b и b > с, то a > с (транзитивность).

Д о к а з а т е л ь с т в о.

Так как по условию а > b и b > c , то числа а - b и b - с положительны, и, следовательно, число а - с = (а - b) + (b - с) , как сумма положительных чисел, также является положительным. Это означает, по определению, что а > с .

2) Если а > b, то при любом с имеет место неравенство а + с > b + c.

Д о к а з а т е л ь с т в о.

Так как а > b , то число а - b положительно. Следовательно, число (а + с) - (b + с) = a + c - b - c = а - b также является положительным, т. е.
a + с > b + с.

3) Если a + b > c, то a > b - c , т. е. любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Доказательство вытекает из свойства 2) достаточно к обеим частям неравенства а + b > с прибавить число - b.

4) Если а > b и с > d, то а + с > b + d, т. е. при сложении двух неравенств одного и того же смысла получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

В силу определения неравенства достаточно показать, что разность
(а + с} - (b + c) положительна. Эту разность можно записать следующим образом:
(a + c) - (b + d) = {а - b) + (с - d) .
Так как по условию числа а - b и с - d положительны, то (a + с) - (b + d) также есть число положительное.

Следствие. Из правил 2) и 4) вытекает следующее Правило вычитания неравенств: если а > b, с > d , то a - d > b - с (для доказательства достаточно к обеим частям неравенства а + с > b + d прибавить число - c - d ).

5) Если а > b, то при с > 0 имеем ас > bc, а при с < 0 имеем ас < bc.

Иначе говоря, при умножении обеих частей неравенства ни положительное число знак неравенства сохраняется (т. е. получается неравенство, того же смысла), а при умножении на отрицательное число знак неравенства меняется на противоположный (т. е. получается неравенство противоположного смысла.

Д о к а з а т е л ь с т в о.

Если а > b , то а - b есть число положительное. Следовательно, знак разности ас-bс = с(а - b) совпадает со знаком числа с : если с - положительное число, то и разность ас - bc положительна и потому ас > bс , а если с < 0 , то эта разность отрицательна и потому bc - ас положительно, т. е. bc > ас .

6) Если а > b > 0 и с > d > 0, то ас > bd, т. е. если все члены двух неравенств одинакового смысла положительны, то при почленном умножении этих неравенств получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

Имеем ас - bd = ac - bc + bc - bd = c(a - b) + b{c - d) . Так как с > 0, b > 0, a - b > 0, с - d > 0, то ас - bd > 0, т. е. ас > bd.

Замечание. Из доказательства видно, что условие d > 0 в формулировке свойства 6) несущественно: для справедливости этого свойства достаточно, чтобы были выполнены условия a > b > 0, с > d, с > 0 . Если же (при выполнении неравенств a > b, с > d ) числа а, b, с не будут все положительными, то неравенство ас > bd может не выполняться. Например, при а = 2, b =1, c = -2, d = -3 имеем a > b, с > d , но неравенство ас > bd (т. е. -4 > -3) не выполнено. Таким образом, требование положительности чисел а, b, с в формулировке свойства 6) существенно.

7) Если a ≥ b > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о.

ИмеемЧислитель дроби, стоящей в правой части, положителен (см. свойства 5), 6)), знаменатель также положителен. Следовательно,. Этим свойство 7) доказано.

Замечание. Отметим важный частный случай правила 7), получающийся при а = b = 1: если с > d > 0, то. Таким образом, если члены неравенства положительны, то при переходе к обратным величинам получаем неравенство противоположного смысла. Предлагаем читателям проверить, что это правило сохраняется и в7) Если ab > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о. то.

Мы доказали выше несколько свойств неравенств, записанных с помощью знака > (больше). Однако все эти свойства можно было бы формулировать с помощью знака < (меньше), так как неравенство b < а означает, по определению, то же самое, что и неравенство а > b . Кроме того, как это нетрудно проверить, доказанные выше свойства сохраняются и для нестрогих неравенств. Например, свойство 1) для нестрогих неравенств будет иметь следующий вид: если аb и bс , то ас .

Разумеется, сказанным выше не ограничиваются общие свойства неравенств. Существует еще целый ряд неравенств общего вида, связанных с рассмотрением степенной, показательной, логарифмической и тригонометрических функций. Общий подход для написания такого рода неравенств заключается в следующем. Если некоторая функция у = f(х) монотонно возрастает на отрезке [а, b] , то при x 1 > x 2 (где x 1 и x 2 принадлежат этому отрезку) мы имеем f(x 1) > f(x 2). Аналогично, если функция y = f{x) монотонно убывает на отрезке [а, b] , то при х 1 > х 2 (где х 1 и х 2 принадлежат этому отрезку) мы имеем f(x 1) < f(x 2 ). Разумеется, сказанное не отличается от определения монотонности, но для запоминания и написания неравенств этот прием очень удобен.

Так, например, для любого натурального n функция у = х n является монотонно возрастающей на луче }