План-конспект занятия на тему: План занятия по геометрии. Тема: "Шар. Сечение шара плоскостью"

Теорема. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство. Пусть б -- секущая плоскость и О -- центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость б и обозначим через О" основание этого перпендикуляра.

Пусть X -- произвольная точка шара, принадлежащая плоскости б. По теореме Пифагора 0X2 = 00"2+О"Х2. Так как ОХ не больше радиуса R шара, то т. е. любая точка сечения шара плоскостью б находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом.

Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы -- большой окружностью.

Задачи

Задача 1 . Два сечения шара радиуса 10 см параллельными плоскостями имеют радиусы, равные 6 еж и 8 см. Найти расстояние между секущими плоскостями.

Решение. Находим расстояние каждой из параллельных плоскостей до центра шара:

в зависимости от того, лежит ли центр шара между плоскостями или нет, получаем два различных ответа к задаче:

Задача 2. Расстояние между центрами двух шаров равно d; радиусы их R1 и R2. Найти радиус окружности, по которой они пересекаются.

Решение. Искомый радиус служит высотой треугольника OMO1 (рис. 5). Площадь S треугольника ОМО2 находится по трем сторонам 001 = d, R1 R2 и искомый радиус равен r=2S/d. Прямая линия также может занимать по отношению к шару три существенно различных положения. Именно, она может пересечь поверхность шара в двух различных точках, не пересе­кать ее или иметь с ней одну общую точку. В последнем случае она будет называться касательной к шару

Задача 3 Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?

Ключевые слова: шар, сфера, центр шара, диаметр, касательная плоскость, плоскость симметрии,

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки.

Эта точка называется центром шара, а данное расстояние называется радиусом шара. Граница шара называется шаровой поверхностью или сферой. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально-противоположными точками шара. Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенного в эту точку, называется касательной плоскостью . Данная точка называется точкой касания. Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной. Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.

Теорема 20.3 . Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость .

Доказательство. Пусть - секущая плоскость и О - центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость и обозначим через О" основание этого перпендикуляра.

Пусть X - произвольная точка шара, принадлежащая плоскости. По теореме Пифагора 0X2 = 00"2+О"Х2. Так как ОХ не больше радиуса R шара, то, т. е. любая точка сечения шара плоскостью находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом.

Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы - большой окружностью.

Задача (30). Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?

Решение . Если радиус шара R (рис. 455), то радиус круга в сечении будет

Отношение площади этого круга к площади большого круга равно

Cтраница 1


Сечение шара плоскостью, проходящей через центр, называется большим кругом. Радиус большого круга равен радиусу шара.  

Сечение шара плоскостью всегда представляет собой круг. На рис. 153 показан шар, пересеченный горизонтальной плоскостью R и фронтально-проектирующей плоскостью Q, заданных следами Rv и Qv. Он проектируется на плоскость Н также в виде круга, имеющего общий центр с очерком горизонтальной проекции шара. Для определения крайних точек t и t большой ог. Промежуточные точки эллипса, например / i и / 2, могут быть получены приемом, описанным при решении аналогичной задачи при построении точек, лежащих на поверхности шара.  

Сечение шара любой вертикальной плоскостью, проходящей через центр, дает большой круг, называемый меридианом.  

Сечение шара плоскостью, расположенной от центра шара на расстоянии, меньшем радиуса, есть круг.  

Сечение шара плоскостью представляет собой круг. Плоскость, проходящая через центр шара, пересекает его по кругу, диаметр которого равен диаметру шара. Для построения изображения усеченного шара строят проекции осей эллипса, а также точек эллипса, лежащих на очерковых образующих шара.  

Сечение шара плоскостью, перпендикулярной его радиусу, делит радиус пополам.  

Сечение шара, проходящее через ось конуса - большой круг шара, в который вписан ДЛВ5 (рис. 185), где [ ЛВ ] - диаметр основания конуса.  

Сечение шара плоскостью, проходящей через основание пирамиды, есть круг, в который вписан ДЛВС. Так как С 90, то центр этого круга О лежит на середине гипотенузы.  

Сечение шара плоскостью, проходящей через центр шара, называется большим кругом. Кйсательной плоскостью к сфере (шару) называется плоскость имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Для того чтобы плоскость была касательной к сфере, необходимо и достаточно, чтобы эта плоскость была перпендикулярна к радиусу сферы и проходила через его конец.  

Поэтому сечение шара, проходящее через его центр и касающееся основания пирамиды, будет являться кругом, вписанным в треугольник SEF, где SE и SF - апофемы боковых граней, a EF - высота ромба.  

Рассмотрим сечение шара, проходящее через ось усеченного конуса. В сечении мы получим круг, в который вписана трапеция ABCD.  

Каждое сечение шара плоскостью, проходящей через его центр, дает большой круг.  

О Сечение шара, проходящее через ось конуса - это большой круг шара, в который вписан Д ABS (рис. 339), где [ АВ ] - диаметр основания конуса.  

Сечение поверхности шара

Любое сечение поверхности шара плоскостью является окружностью, которая проецируется без искажения только в том случае, если секущая плоскость параллельна плоскости проекций. В общем же случае мы будем получать эллипс. В том случае, если секущая плоскость перпендикулярна плоскости проекций, на этой плоскости проекцией окружности является отрезок прямой, который равен диаметру этой окружности.

На рисунке 109 показано пересечение поверхности шара горизонтально-проектирующей плоскостью Р . На горизонтальную плоскость сечение будет проецироваться в виде отрезка проекции р плоскости Р , который заключён между контуром шара и равен диаметру окружности сечения. На фронтальной плоскости мы получим эллипс. О 1 является центром окружности, который получен в сечении шара. Он расположен на одной высоте с центром шара О . Горизонтальная проекция о 1 центра О 1 окружности располагается посредине отрезка ab . Перпендикуляр, который опущен из точки о на прямую ab , попадает в точку о 1 , являющуюся горизонтальной проекцией центра окружности сечения. Фронтальная проекция о́ 1 центра окружности является центром интересующего нас эллипса.

Если рассматривать эллипс как проекцию некоторой окружности, то его большая ось всегда будет проекцией того диаметра окружности, который параллелен плоскости проекций, а малая ось эллипса будет представлять собой проекцию диаметра, перпендикулярного ему. Вследствие этого большая ось эллипса проекции всегда равна диаметру проецируемой окружности. Здесь диаметр окружности CD перпендикулярен плоскости Н и проецируется без искажения на фронтальную плоскость. Для нахождения концов большой оси эллипса необходимо отложить вниз и вверх от центра о 1 эллипса (по перпендикуляру к прямой о́о́ 1) отрезки о́ 1 с́ и о́ 1 , которые равны половине диаметра окружности сечения о́ 1 с́ = о́ 1 = 1/2(ab ). При этом диаметр АВ окружности параллелен горизонтальной плоскости, а его фронтальная проекция а́b́ представляет собой малую ось рассматриваемого эллипса.

Точки, отделяющие видимую часть эллипса от невидимой. Начнем с проведения фронтальной плоскости Q , которая делит шар пополам. Плоскость Q будет пересекать поверхность шара по окружности, проецирующейся на фронтальную плоскость в виде контура. Тогда часть линии сечения, расположенную на передней части шара, будет видно, если смотреть на шар спереди, а остальная её часть не будет видна. Плоскость Q пересечет плоскость Р по фронтали Ф 1 . Пересекаясь с контуром, ее фронтальная проекция Ф определит точки 1 , которые отделяют видимую часть кривой от невидимой. Промежуточные точки 2́ эллипса можно найти с помощью вспомогательной фронтальной плоскости R, пересекающей поверхность шара по окружности радиуса r 2 , а плоскость Р – по фронтали Ф 2 .