Прямолинейное и криволинейное движение 9. Криволинейное движение. Ускорение материальной точки

Мы знаем, что все тела притягиваются друг к другу. В частности, Луна, например, притягивается к Земле. Но возникает вопрос: если Луна притягивается к Земле, почему она вращается вокруг нее, а не падает на Землю?

Для того чтобы ответить на этот вопрос, необходимо рассмотреть виды движения тел. Мы уже знаем, что движение может быть равномерным и неравномерным , но существуют и другие характеристики движения. В частности, в зависимости от направления различают прямолинейное и криволинейное движение.

Прямолинейное движение

Известно, что тело двигается под действием приложенной к нему силы. Можно проделать несложный эксперимент, показывающий, как направление движения тела будет зависеть от направления приложенной к нему силы. Для этого потребуется произвольный предмет небольшого размера, резиновый шнур и горизонтальная или вертикальная опора.

Привязывает шнур одним концом к опоре. На другом конце шнура закрепляем наш предмет. Теперь, если мы оттянем наш предмет на некоторое расстояние, а потом отпустим, то увидим, как он начнет двигаться в направлении опоры. Его движение обусловлено силой упругости шнура. Именно так Земля притягивает все тела на ее поверхности, а также летящие из космоса метеориты.

Только вместо силы упругости выступает сила притяжения. А теперь возьмем наш предмет на резинке и толкнем его не в направлении к/от опоры, а вдоль нее. Если бы предмет не был закреплен, он бы просто улетел в сторону. Но так как его держит шнур, то шарик, двигаясь в сторону, слегка растягивает шнур, тот тянет его обратно, и шарик чуть меняет свое направление в сторону опоры.

Криволинейное движение по окружности

Так происходит в каждый момент времени, в итоге шарик движется не по первоначальной траектории, но и не прямолинейно к опоре. Шарик будет двигаться вокруг опоры по окружности. Траектория его движения будет криволинейной. Именно так вокруг Земли двигается Луна, не падая на нее.

Именно так притяжение Земли захватывает метеориты, которые летят близко от Земли, но не прямо на нее. Эти метеориты становятся спутниками Земли. При этом от того, каким был их первоначальный угол движения по отношению к Земле, зависит, как долго они пробудут на орбите. Если их движение было перпендикулярно Земле, то они могут находиться на орбите бесконечно долго. Если же угол был меньше 90˚, то они будут двигаться по снижающейся спирали, и постепенно все-таки упадут на землю.

Движение по окружности с постоянной по модулю скоростью

Еще один момент, который следует отметить, это то, что скорость криволинейного движения по окружности меняется по направлению, но одинакова по значению. А это означает, что движение по окружности с постоянной по модулю скоростью происходит равноускорено.

Так как направление движения меняется, значит, движение происходит с ускорением. А так как оно меняется одинаково в каждый момент времени, следовательно, движение будет равноускоренным. А сила притяжения является силой, которая обусловливает постоянное ускорение.

Луна двигается вокруг Земли именно благодаря этому, но если вдруг когда-либо движение Луны изменится, например, в нее врежется очень крупный метеорит, то она вполне может сойти со своей орбиты и упасть на Землю. Нам остается лишь надеяться, что этот момент не наступит никогда. Такие дела.

В зависимости от формы траектории движение можно подразделять на прямолинейное и криволинейное. Чаще всего можно столкнуться с криволинейными движениями, когда траектория представлена в виде кривой. Примером такого вида движения является путь тела, брошенного под углом к горизонту, движение Земли вокруг Солнца, планет и так далее.

Рисунок 1 . Траектория и перемещение при криволинейном движении

Определение 1

Криволинейным движением называют движение, траектория которого представляет собой кривую линию. Если тело движется по криволинейной траектории, то вектор перемещения s → направлен по хорде, как показано на рисунке 1 , а l является длиной траектории. Направление мгновенной скорости движения тела идет по касательной в той же точке траектории, где в данный момент располагается движущийся объект, как показано на рисунке 2 .

Рисунок 2 . Мгновенная скорость при криволинейном движении

Определение 2

Криволинейное движение материальной точки называют равномерным тогда, когда модуль скорости постоянный (движение по окружности), и равноускоренным при изменяющемся направлении и модуле скорости (движение брошенного тела).

Криволинейное движение всегда ускоренное. Это объясняется тем, что даже при неизмененном модуле скорости, а измененном направлении, всегда присутствует ускорение.

Для того чтобы исследовать криволинейное движение материальной точки, применяют два метода.

Путь разбивается на отдельные участки, на каждом из которых его можно считать прямолинейным, как показано на рисунке 3 .

Рисунок 3 . Разбиение криволинейного движения на поступательные

Теперь для каждого участка можно применять закон прямолинейного движения. Такой принцип допускается.

Самым удобным методом решения считается представление пути в качестве совокупности нескольких движений по дугам окружностей, как показано на рисунке 4 . Количество разбиений будет намного меньше, чем в предыдущем методе, кроме того, движение по окружности уже является криволинейным.

Рисунок 4 . Разбиение криволинейного движения на движения по дугам окружностей

Замечание 1

Для записи криволинейного движения необходимо уметь описывать движение по окружности, произвольное движение представлять в виде совокупностей движений по дугам этих окружностей.

Исследование криволинейного движения включает в себя составление кинематического уравнения, которое описывает это движение и позволяет по имеющимся начальным условиям определить все характеристики движения.

Пример 1

Дана материальная точка, движущаяся по кривой, как показано на рисунке 4 . Центры окружностей O 1 , O 2 , O 3 располагаются на одной прямой. Необходимо найти перемещение
s → и длину пути l во время движения из точки А в В.

Решение

По условию имеем, что центры окружности принадлежат одной прямой, отсюда:

s → = R 1 + 2 R 2 + R 3 .

Так как траектория движения – это сумма полуокружностей, то:

l ~ A B = π R 1 + R 2 + R 3 .

Ответ: s → = R 1 + 2 R 2 + R 3 , l ~ A B = π R 1 + R 2 + R 3 .

Пример 2

Дана зависимость пройденного телом пути от времени, представленная уравнением s (t) = A + B t + C t 2 + D t 3 (C = 0 , 1 м / с 2 , D = 0 , 003 м / с 3) . Вычислить, через какой промежуток времени после начала движения ускорение тела будет равно 2 м / с 2

Решение

Ответ: t = 60 с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Вопросы.

1. Рассмотрите рисунок 33 а) и ответьте на вопросы: под действием какой силы шарик приобретает скорость и движется от точки В к точке А? В результате чего эта сила возникла? Как направлены ускорение, скорость шарика и действующая на него сила? По какой траектории движется шарик?

Шарик преобретает скорость и движется от точки В к точке А под действием силы упругости F упр, возникающей из-за растяжения шнура. Ускорение а, скорость шарика v, и действующая на него сила упругости F упр, направлены от точки В к точке А, и поэтому шарик движется по прямой.

2. Рассмотрите рисунок 33 б) и ответьте на вопросы: почему в шнуре возникла сила упругости и как она направлена по отношению к самому шнуру? Что можно сказать о направлении скорости шарика и действующей на него силы упругости шнура? Как движется шарик: прямолинейно или криволинейно?

Сила упругости F упр в шнуре возникает из-за его растяжения, она направлена вдоль шнура по направлению к точке О. Вектор скорости v и сила упругости F упр лежат на пересекающихся прямых, скорость направлена по касательной к траектории, а сила упругости к точке О, поэтому шарик движется криволинейно.

3. При каком условии тело под действием силы движется прямолинейно, а при каком - криволинейно?

Тело под действием силы движется прямолинейно если его скорость v и сила F, действующая на него, направлены вдоль одной прямой, и, криволинейно если они направлены вдоль пересекающихся прямых.

Упражнения.

1. Шарик катился по горизонтальной поверхности стола от точки А к точке В (рис.35). В точке В на шарик подействовали силой F. В результате он стал двигаться к точке С. В каком из направлений, обозначенных стрелками 1, 2, 3 и 4, могла действовать сила F?

Сила F подействовала в направлении 3, т.к. у шарика появилась составляющая скорости перпендикулярная к начальному направлению скорости.

2. На рисунке 36 изображена траектория движения шарика. На ней кружочками отмечены положения шарика через каждую секунду после начала движения. Действовала ли на шарик сила на участке 0-3, 4-6, 7-9, 10-12, 13-15, 16-19? Если сила действовала, то как она была направлена по отношению к вектору скорости? Почему на участке 7-9 шарик повернул налево, а на участке 10-12 - направо по отношению к направлению движения перед поворотом? Сопротивление движению не учитывайте.

На участках 0-3, 7-9, 10-12, 16-19 на шарик действовала внешняя сила изменяющая направление его движения. На участках 7-9 и 10-12 на шарик действовала сила, которая с одной стороны изменяла его направление, а с другой - тормозила его движение в направлении по которому он двигался.

3. На рисунке 37 линией ABCDE изображена траектория движения некоторого тела. На каких участках на тело наверняка действовала сила? Могла ли на тело действовать какая-нибудь сила при его движении на других участках этой траектории? Все ответы обоснуйте.

Сила действовала на участках АВ и CD, так как шарик изменил направление, однако и на других участках могла действовать сила, но не изменяющая направление, а изменяющая скорость его движения, что не отразилось бы на его траектории.

Прямолинейное движение
Известно, что тело двигается под действием приложенной к нему силы. Можно проделать несложный эксперимент, показывающий, как направление движения тела будет зависеть от направления приложенной к нему силы. Для этого потребуется произвольный предмет небольшого размера, резиновый шнур и горизонтальная или вертикальная опора.

Привязывает шнур одним концом к опоре. На другом конце шнура закрепляем наш предмет. Теперь, если мы оттянем наш предмет на некоторое расстояние, а потом отпустим, то увидим, как он начнет двигаться в направлении опоры. Его движение обусловлено силой упругости шнура. Именно так Земля притягивает все тела на ее поверхности, а также летящие из космоса метеориты.

Только вместо силы упругости выступает сила притяжения. А теперь возьмем наш предмет на резинке и толкнем его не в направлении к/от опоры, а вдоль нее. Если бы предмет не был закреплен, он бы просто улетел в сторону. Но так как его держит шнур, то шарик, двигаясь в сторону, слегка растягивает шнур, тот тянет его обратно, и шарик чуть меняет свое направление в сторону опоры.

Криволинейное движение по окружности
Так происходит в каждый момент времени, в итоге шарик движется не по первоначальной траектории, но и не прямолинейно к опоре. Шарик будет двигаться вокруг опоры по окружности. Траектория его движения будет криволинейной. Именно так вокруг Земли двигается Луна, не падая на нее.

Именно так притяжение Земли захватывает метеориты, которые летят близко от Земли, но не прямо на нее. Эти метеориты становятся спутниками Земли. При этом от того, каким был их первоначальный угол движения по отношению к Земле, зависит, как долго они пробудут на орбите. Если их движение было перпендикулярно Земле, то они могут находиться на орбите бесконечно долго. Если же угол был меньше 90˚, то они будут двигаться по снижающейся спирали, и постепенно все-таки упадут на землю.

Движение по окружности с постоянной по модулю скоростью
Еще один момент, который следует отметить, это то, что скорость криволинейного движения по окружности меняется по направлению, но одинакова по значению. А это означает, что движение по окружности с постоянной по модулю скоростью происходит равноускорено.

Так как направление движения меняется, значит, движение происходит с ускорением. А так как оно меняется одинаково в каждый момент времени, следовательно, движение будет равноускоренным. А сила притяжения является силой, которая обусловливает постоянное ускорение.

Луна двигается вокруг Земли именно благодаря этому, но если вдруг когда-либо движение Луны изменится, например, в нее врежется очень крупный метеорит, то она вполне может сойти со своей орбиты и упасть на Землю. Нам остается лишь надеяться, что этот момент не наступит никогда. Такие дела.