Цепные реакции могут развиваться при условиях. Управляемая цепная реакция. Ядерные реакторы. Цепная реакция деления несколькоих ядер

Теория относительности говорит, что масса - это особая форма энергии. Из этого следует, что можно преобразовать массу в энергию и энергию в массу. На внутриатомном уровне такие реакции имеют место. В частности, некоторое количество массы самого вполне может превратиться в энергию. Это происходит по нескольким путям. Во-первых, ядро может распасться на некоторое количество более мелких ядер, эта реакция называется «распадом». Во-вторых, более мелкие ядра могут запросто соединиться, чтобы получилось более крупное, - это реакция синтеза. Во Вселенной такие реакции весьма распространены. Достаточно сказать, что реакция синтеза - источник энергии для звезд. А вот реакция распада используется человечеством на так как люди научились контролировать эти сложные процессы. Но что же такое цепная ядерная реакция? Как ею управлять?

Что происходит в ядре атома

Цепная ядерная реакция - процесс, идущий при столкновении элементарных частиц или ядер с другими ядрами. Почему «цепная»? Это совокупность последовательных одиночных ядерных реакций. В результате этого процесса происходит изменение квантового состояния и нуклонного состава у исходного ядра, появляются даже новые частицы - продукты реакции. Цепная ядерная реакция, физика которой позволяет исследовать механизмы взаимодействия ядер с ядрами и с частицами, - это основной метод для получения новых элементов и изотопов. Для того чтобы понять протекание цепной реакции, надо вначале разобраться с одиночными.

Что нужно для реакции

Для того чтобы осуществить такой процесс, как цепная ядерная реакция, необходимо сблизить частицы (ядро и нуклон, два ядра) на расстояние радиуса сильного взаимодействия (примерно один ферми). Если расстояния большие, то взаимодействие заряженных частиц будет чисто кулоновским. В ядерной реакции соблюдаются все законы: сохранение энергии, момента, импульса, барионного заряда. Цепная ядерная реакция обозначается набором символов а, b, с, d. Символ а обозначает исходное ядро, b - налетающую частицу, с - новую вылетающую частицу, а d обозначает результирующее ядро.

Энергия реакции

Цепная ядерная реакция может проходить как с поглощением, так и с выделением энергии, которая равняется разности масс частиц после реакции и до нее. Поглощаемая энергия определяет минимальную кинетическую энергию столкновения, так называемый порог ядерной реакции, при которой она может свободно протекать. Данный порог зависит от частиц, которые участвуют во взаимодействии, и от их характеристик. На начальном этапе все частицы находятся в заранее определенном квантовом состоянии.

Осуществление реакции

Основным источником заряженных частиц, которыми бомбардируется ядро, является который дает пучки протонов, тяжелых ионов и легких ядер. Медленные нейтроны получают благодаря использованию ядерных реакторов. Для фиксации налетающих заряженных частиц могут быть использованы разные типы ядерных реакций - как синтеза, так и распада. Вероятность их зависит от параметров частиц, которые сталкиваются. С этой вероятностью связана такая характеристика, как сечение реакции - величина эффективной площади, которая характеризует ядро в качестве мишени для налетающих частиц и которая является мерой вероятности вступления частицы и ядра во взаимодействие. Если в реакции принимают участие частицы с ненулевым значением спина, то сечение напрямую зависит от их ориентации. Так как спины налетающих частиц ориентированы не совсем хаотично, а более-менее упорядоченно, то все корпускулы будут поляризованы. Количественная характеристика ориентированных спинов пучка описывается вектором поляризации.

Механизм реакции

Что такое цепная ядерная реакция? Как уже говорилось, это последовательность более простых реакций. Характеристики налетающей частицы и ее взаимодействия с ядром зависят от массы, заряда, кинетической энергии. Взаимодействие определяется степенью свободы ядер, которые и возбуждаются при столкновении. Получение контроля над всеми этими механизмами позволяет проводить такой процесс, как управляемая цепная ядерная реакция.

Прямые реакции

Если заряженная частица, которая налетает на ядро-мишень, только касается его, то длительность столкновения будет равна необходимому для преодоления расстояния радиуса ядра. Такую ядерную реакцию называют прямой. Общей характеристикой для всех реакций такого типа является возбуждение малого числа степеней свободы. В таком процессе после первого столкновения частица имеет еще достаточно энергии для преодоления ядерного притяжения. К примеру, такие взаимодействия, как неупругое рассеивание нейтронов, обмен заряда, и относятся к прямым. Вклад таких процессов в характеристику под названием "полное сечение" достаточно мизерный. Однако распределение продуктов прохождения прямой ядерной реакции позволяет определить вероятность вылета от угла направления пучка, селективность заселенных состояний и определить их структуру.

Предравновесная эмиссия

Если частица не покинет область ядерного взаимодействия после первого же столкновения, то она будет вовлечена в целый каскад из последовательных столкновений. Это фактически как раз то, что называется цепной ядерной реакцией. В результате такой ситуации кинетическая энергия частицы распределяется среди составляющих частей ядра. Само же состояние ядра будет постепенно сильно усложняться. Во время этого процесса на каком-то нуклоне или же целом кластере (группе нуклонов) может быть сконцентрирована энергия, достаточная для эмиссии этого нуклона из ядра. Дальнейшая релаксация приведет к формированию статистического равновесия и образования составного ядра.

Цепные реакции

Что такое цепная ядерная реакция? Это последовательность ее составных частей. То есть множественные последовательные единичные ядерные реакции, вызванные заряженными частицами, появляются как продукты реакции на предыдущих шагах. Что называется цепной ядерной реакцией? К примеру, деление тяжелых ядер, когда множественные акты деления инициируются полученными при предыдущих распадах нейтронами.

Особенности цепной ядерной реакции

Среди всех химических реакций большое распространение получили именно цепные. Частицы с неиспользованными связями выполняют роль свободных атомов или радикалов. При таком процессе, как цепная ядерная реакция, механизм ее протекания обеспечивают нейтроны, которые не имеют кулоновского барьера и возбуждают ядро при поглощении. Если в среде появляется необходимая частица, то она вызывает цепь последующих превращений, которые будут продолжаться до разрыва цепи из-за потери частицы-носителя.

Почему теряется носитель

Есть всего две причины потери частицы-носителя непрерывной цепи реакций. Первая заключается в поглощении частицы без процесса испускания вторичной. Вторая - уход частички за предел объема вещества, которое поддерживает цепной процесс.

Два типа процесса

Если в каждом периоде цепной реакции рождается исключительно единичная частичка-носитель, то можно назвать этот процесс неразветвленным. Она не может привести к выделению энергии в больших масштабах. Если же появилось много частиц-носителей, то это называется разветвленной реакцией. Что такое цепная ядерная реакция с разветвлением? Одна из полученных в предыдущем акте вторичных частиц продолжит начатую ранее цепь, а вот другие создадут новые реакции, которые тоже будут ветвиться. С этим процессом будут конкурировать приводящие к обрыву процессы. Полученная в результате ситуация будет порождать специфические критические и предельные явления. Например, если обрывов больше, чем чисто новых цепей, то самоподдерживание реакции будет невозможным. Даже если возбудить ее искусственно, введя в данную среду нужное количество частиц, то процесс все равно будет затухать со временем (обычно довольно быстро). Если же количество новых цепей будет превосходить количество обрывов, то цепная ядерная реакция начнет распространяться по всему веществу.

Критическое состояние

Критическим состоянием отделяют область состояния вещества с развитой самоподдерживающейся цепной реакцией, и область, где данная реакция невозможна вообще. Этот параметр характеризуется равенством между количеством новых цепей и числом возможных обрывов. Как и наличие свободной частицы-носителя, критическое состояние является основным пунктом в таком списке, как «условия осуществления цепной ядерной реакции». Достижение этого состояния может быть определено целым рядом возможных факторов. тяжелого элемента возбуждается всего одним нейтроном. В результате такого процесса, как цепная ядерная реакция деления, появляется больше нейтронов. Следовательно, этот процесс может произвести разветвленную реакцию, где носителями и будут выступать нейтроны. В том случае, когда скорость захватов нейтронов без деления или вылетов (скорость потери) будет компенсироваться скоростью размножения несущих частиц, то цепная реакция будет протекать в стационарном режиме. Это равенство характеризует коэффициент размножения. В приведенным выше случае он равен единице. В благодаря введению между скоростью выделения энергии и коэффициентом размножения возможно осуществить управление протеканием ядерной реакции. Если же этот коэффициент будет больше чем единица, то реакция будет развиваться по экспоненте. Неуправляемые цепные реакции используют в ядерном оружии.

Цепная ядерная реакция в энергетике

Реактивность реактора определяется большим количеством процессов, которые происходят в его активной зоне. Все эти влияния определяются так называемым коэффициентом реактивности. Влияние изменения температуры графитовых стержней, теплоносителей или урана на реактивность реактора и интенсивность протекания такого процесса, как цепная ядерная реакция, характеризуются температурным коэффициентом (по теплоносителю, по урану, по графиту). Также есть зависимые характеристики по мощности, по барометрическим показателям, по паровым показателям. Для поддержания ядерной реакции в реакторе необходимо превращение одних элементов в другие. Для этого нужно учитывать условия протекания цепной ядерной реакции - наличие вещества, которое способно делиться и выделять из себя при распаде некоторое количество элементарных частиц, которые, как следствие, будут вызывать деление остальных ядер. В качестве такого вещества зачастую используют уран-238, уран-235, плутоний-239. Во время прохождения цепной ядерной реакции изотопы данных элементов будут распадаться и образовывать два и более других химических веществ. При этом процессе излучаются так называемые «гамма»-лучи, происходит интенсивное выделение энергии, образуются два или три нейтрона, способные продолжить акты реакции. Различают медленные нейтроны и быстрые, ведь для того чтобы ядро атома распалось, эти частички должны пролететь с определенной скоростью.

Управляемая цепная реакция.

Если цепную реакцию ограничить в ее развитии так, чтобы число нейтронов, образующихся в единицу времени, достигнув некоторого большого значения, далее перестало бы возрастать, то будет иметь место спокойно протекающая самоподдерживающаяся цепная реакция деления. Управлять реакцией удастся лишь в том случае, если окажется возможным регулировать коэффициент k эфф размножения нейтронов достаточно медленно и плавно, причем для оптимальной системы k эфф всего на 0,5% должен превышать единицу. Советские физики Я.Б. Зельдович и Ю.Б. Харитон теоретически показали (1939 г.), что управляемую цепную реакцию можно осуществить на природном уране.

Для развития цепного процесса в природном уране нейтроны необходимо замедлять до тепловых скоростей, поскольку в этом случае резко возрастает вероятность их захвата ядрами U с последующим делением. Для этой цели используются специальные вещества-замедлители .

Управление стационарно текущей цепной реакцией (k эфф =1) существенно упрощается благодаря наличию запаздывающих нейтронов (см.п.3.6). Оказывается, время T «разгона» реакции (время за которое число делений увеличивается в e»2,71 раз) при небольшой степени надкритичности (k эфф – 1 << 1) определятся только запаздывающими нейтронами:

T = t з ×b / (k эфф - 1),

где t з - среднее время жизни запаздывающих нейтронов (t з ~14,4с),

b - доля запаздывающих нейтронов (b ~ 0,68 % для U).

Поскольку величина t з ×b имеет порядок ~ 5×10 -2 c., то интенсивность реакции будет нарастать достаточно медленно, и реакция хорошо регулируется.

Управлять величиной k эфф можно путем автоматического введения в активную зону веществ, сильно поглощающих нейтроны, - поглотителей.

12.3.1. Ядерный реактор

Устройство, в котором осуществляется и поддерживается стационарная ядерная реакция деления, называется ядерным реактором, или атомным котлом.

Первый ядерный реактор построен под руководством Э. Ферми в конце 1942 года (США). Первый европейский реактор создан в 1946 году в Москве под руководством И. В. Курчатова.

В настоящее время в мире работает около тысячи ядерных реакторов различных типов, которые отличаются:

· по принципу работы (реакторы на тепловых, быстрых и т.д. нейтронах);

· по виду замедлителей (на тяжелой воде, графите и др.);

· по используемому топливу (урановые, ториевые, плутониевые);

· по целевому назначению (исследовательские, медицинские, энергетические, для воспроизводства ядерного горючего и др.)

Основными частями ядерного реактора (см. рис. 4.5) являются:

· активная зона (1), где находится ядерное топливо, протекает цепная реакция деления, выделяется энергия;

· отражатель нейтронов (2), окружающий активную зону;

· система регулирования цепного процесса в виде стержней-поглотителей (3) нейтронов;

· радиационная защита (4) от излучений;

· теплоноситель (5).

В гомогенных реакторах ядерное топливо и замедлитель перемешаны, образуют однородную смесь (например, соли актиноурана и тяжелая вода). В гетерогенных реакторах (рис. 4.6) ядерное топливо размещено в активной зоне в виде ТВЭЛов (тепловыделяющих элементов ) - блоков-стержней (1) небольшого сечения, заключенных в герметическую оболочку, слабо поглощающую нейтроны. Между ТВЭЛами находится замедлитель (2).

Нейтроны, образующиеся при делении ядер, не успев поглотиться в ТВЭЛах, попадают в замедлитель, где теряют свою энергию, замедляясь до тепловых скоростей. Попадая затем снова в один из ТВЭЛов, тепловые нейтроны имеют уже большую вероятность поглотиться способными к делению ядрами ( U, U, Pu). Те нейтроны, которые захватываются ядрами U, тоже играют положительную роль, восполняя в какой-то мере расход ядерного горючего.

Хорошими замедлителями являются легкие ядра: дейтерий, бериллий, углерод, кислород. Наилучшим замедлителем нейтронов является соединение дейтерия с кислородом - тяжелая вода . Однако, ввиду ее дороговизны, чаще используется углерод в виде очень чистого графита . Применяют также бериллий и его окись. ТВЭЛы и замедлитель составляют обычно правильную решетку (например, уран-графитовую).

За счет энергии деления ТВЭЛы разогреваются. Для охлаждения они размещаются в потоке теплоносителя (воздух, вода, водяной пар, He, CO 2 и др.).

Вследствие того, что в замедлителе и в ядрах-осколках деления происходит потеря нейтронов, реактор должен иметь надкритические размеры и вырабатывать излишек нейтронов. Управление цепным процессом (т.е. устранение излишка нейтронов) осуществляется управляющими стержнями (3) (см. рис. 4.5 или 4.6) из материалов, сильно поглощающих нейтроны (бористая сталь, кадмий).

Параметры реактора рассчитываются так, что при полностью введенных в активную зону стержнях-поглотителях реакция не идет. При постепенном извлечении стержней коэффициент размножения нейтронов растет, и при некотором их положении k эфф достигает единицы, реактор начинает работать. Перемещение стержней-поглотителей производится с пульта управления. Регулирование упрощается благодаря наличию запаздывающих нейтронов.

Основная характеристика ядерного реактора его мощность. Мощности в 1 МВт соответствует цепной процесс, при котором происходит 3×10 16 актов делений в 1 секунду. В реакторе имеются аварийные стержни, введение которых при внезапном увеличении мощности реакции немедленно ее сбрасывает.

В процессе работы ядерного реактора в нем происходит постепенное выгорание ядерного топлива , накапливаются осколки деления, образуются трансурановые элементы. Накопление осколков вызывает уменьшение k эфф. Этот процесс называется отравлением реактора (если осколки радиоактивные) и зашлаковыванием (если осколки стабильные). При отравлении k эфф уменьшается на (1¸3)%. Чтобы реакция не прекращалась, из активной зоны постепенно (автоматически) извлекаются специальные (компенсирующие) стержни. Когда ядерное топливо полностью выгорает, его извлекают (после прекращения реакции) и загружают новое.

Среди ядерных реакторов особое место занимают реакторы-размножители на быстрых нейтронах - бридеры . В них выработка электроэнергии сопровождается воспроизводством вторичного ядерного горючего (плутония) за счет реакции (3.5), благодаря чему используется эффективно не только изотоп U, но и U.(см.§3.6). Это позволяет кардинально решить проблему обеспечения ядерным горючим: на каждые 100 использованных ядер в таком реакторе производится 150 новых, способных к делению. Техника реакторов на быстрых нейтронах находится в стадии поисков наилучших инженерных решений. Первая опытно-промышленная станция такого типа (г. Шевченко) используется для производства электроэнергии и опреснения морской воды (Каспийское море).

Схема устройства ядерной бомбы

Цепная реакция деления

Испускаемые при делении ядер вторичные нейтроны (2,5 штуки на акт деления) могут вызвать новые акты деления, что делает возможным осуществление цепной реакции. Цепная реакция деления характеризуется коэффициентом размножения нейтронов К, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении . Необходимым условием развития цепной реакции деления является . При меньших реакция невозможна. При реакция идет при постоянном количестве нейтронов (постоянной мощности выделяемой энергии). Это самоподдерживающая реакция. При - затухающая реакция. Коэффициент размножения зависит от природы делящегося вещества, размеров и формы активной зоны. Минимальная масса делящегося вещества, необходимая для осуществления цепной реакции называется критической. Для критическая масса равна 9 кг, при этом радиус уранового шара равен 4 см.

Цепные реакции бывают управляемые и неуправляемые. Взрыв атомной бомбы является примером неуправляемой реакции. Ядерный заряд такой бомбы два или более кусков почти чистого или . Масса каждого куска меньше критической, поэтому цепная реакция не возникает. Поэтому чтобы произошел взрыв достаточно эти части соединить в один кусок, с массой больше чем критическая. Это нужно сделать очень быстро и соединение кусков должно быть очень плотным. В противном случае ядерный заряд разлетится на части, прежде чем успеет прореагировать. Для соединения используют обычное взрывчатое вещество. Оболочка служит отражателем нейтронов и, кроме того, удерживает ядерный заряд от распыления до тех пор, пока максимальное число ядер не выделит всю энергию при делении. Цепная реакция в атомной бомбе идет на быстрых нейтронах. При взрыве успевает прореагировать только часть нейтронов ядерного заряда. Цепная реакция приводит к выделению колоссальной энергии. Температура, развивающаяся при этом, достигает градусов. Разрушительная сила бомбы сброшенной на Хиросиму американцами, была эквивалентна взрыву 20000 тонн тринитротолуола. Образцу нового оружия по мощности в сотни раз превосходят первые. Если к этому добавить, что при атомном взрыве возникает огромное количество осколков деления, в том числе и весьма долгоживущих, то станет очевидным, какую ужасную опасность для человечества представляет это оружие.

Изменяя коэффициент размножения нейтронов можно осуществить управляемую цепную реакцию. Устройство, в котором осуществляется управляемая реакция, называется ядерным реактором. В качестве делящегося вещества служит природный или обогащенный уран. Чтобы предотвратить радиационный захват нейтронов ядрами урана, сравнительно небольшие блоки делящегося вещества размещают на некотором расстоянии друг от друга, а промежутки заполняют веществом, замедляющим нейтроны (замедлителем). Замедление нейтронов осуществляется за счет упругого рассеяния. В этом случае энергия, теряемая замедляемой частицей, зависит от соотношения масс сталкивающихся частиц. Максимальное количество энергии теряется в случае, если частицы имеют одинаковую массу. Этому условию удовлетворяют дейтерий, графит и бериллий. Первый уран-графитовый реактор был запущен в 1942 году в чикагском университете под руководством выдающегося итальянского физика Ферми. Для пояснения принципа работы реактора рассмотрим типичную схему реактора на тепловых нейтронах рис.1.




Рис.1.

В активной зоне реактора расположены тепловыделяющие элементы 1 и замедлитель 2, который замедляет нейтроны до тепловых скоростей. Тепловыделяющие элементы (твэлы) представляют собой блоки из делящегося материала, заключенные в герметичную оболочку, слабо поглощающую нейтроны. За счет энергии, выделяющиеся при делении ядер, твэлы разогреваются, а потому, для охлаждения они помещаются в поток теплоносителя (3-5 – канал теплоносителя). Активная зона окружается отражателем, уменьшающим утечку нейтронов. Управление цепной реакцией осуществляется специальными управляющими стержнями из материалов, сильно поглощающих нейтроны. Параметры реактора рассчитываются так, что при полностью вставленных стержнях реакция заведомо не идет. При постепенном вынимании стержней коэффициент размножения нейтронов растет и при некотором их положении доходит до единицы. В этот момент реактор начинает работать. По мере работы реактора количество делящегося материала в активной зоне уменьшается и происходит ее загрязнение осколками деления, среди которых могут быть сильные поглотители нейтронов. Чтобы реакция не прекратилась, из активной зоны с помощью автоматического устройства постепенно извлекаются управляющие стержни. Подобное управление реакций возможно благодаря существованию запаздывающих нейтронов, испускаемых делящимися ядрами с запаздыванием до 1 мин. Когда ядерное топливо выгорает, реакция прекращается. До нового запуска реактора выгоревшее ядерное топливо извлекают и загружают новое. В реакторе имеются также аварийные стержни, введение которых немедленно обрывает реакцию. Ядерный реактор является мощным источником проникающей радиации, примерно в раз превышает санитарные нормы. Поэтому любой реактор имеет биологическую защиту – систему экранов из защитных материалов (например, бетон, свинец, вода) – располагающуюся за его отражателем, и пульт дистанционного управления.

Впервые ядерная энергия для мирных целей была использована в СССР. В Обнинске в 1954 под руководством Курчатова введена в эксплуатацию первая атомная электростанция мощностью 5 МВт.

Однако, урановые реакторы на тепловых нейтронах могут решить задачу электроснабжения в ограниченном масштабе, который определяется количеством урана .

Наиболее перспективным путем развития атомной энергетики является разработка реакторов на быстрых нейтронах, так называемых реакторов размножителей. Такой реактор производит больше ядерного топлива, чем потребляет. Реакция идет на быстрых нейтронах, поэтому в ней могут участвовать не только но и , который превращается в . Последний химическим путем может быть отделен от . Этот процесс называется воспроизводством ядерного горючего. В специальных бридерных реакторах коэффициент воспроизводства ядерного топлива превышает единицу. Активной зоной бридеров является сплав урана, обогащенного изотопами , с тяжелым металлом, мало поглощающим нейтроны. В бридерных реакторах отсутствует замедлитель. Управление такими реакторами перемещением отражателя или изменением массы делящегося вещества.

Цепная ядерная реакция

Цепна́я я́дерная реа́кция - последовательность единичных ядерных реакций , каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами , полученными при делении ядер в предыдущем поколении.

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога , ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций , такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций - это минимум 10 7 К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счет неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Цепные реакции

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы . Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны , не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой . Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то самоподдерживающаяся цепная реакция (СЦР) оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объёму вещества при появлении хотя бы одной начальной частицы.

Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна, критическим состоянием . Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.

Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235 U число нейтронов, родившихся в одном акте деления, в среднем равно 2,5). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т. д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике . Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется в ядерном оружии .

См. также

  • Цепная химическая реакция

Литература

  • Климов А. Н. Ядерная физика и ядерные реакторы. - М. Атомиздат, .
  • Левин В. Е. Ядерная физика и ядерные реакторы / 4-е изд. - М.: Атомиздат, .
  • Петунин В. П. Теплоэнергетика ядерных установок. - М.: Атомиздат, .

Wikimedia Foundation . 2010 .

Смотреть что такое "Цепная ядерная реакция" в других словарях:

    Chain nuclear reaction последовательность ядерных реакций, возбуждаемых частицами (например, нейтронами), рождающимися в каждом акте реакции. В зависимости от среднего числа реакций, следующих за одной предыдущей меньшего, равного или… … Термины атомной энергетики

    цепная ядерная реакция - Последовательность ядерных реакций, возбуждаемых частицами (например, нейтронами), рождающимися в каждом акте реакции. В зависимости от среднего числа реакций, следующих за одной предыдущей меньшего, равного или превосходящего единицу реакция… …

    цепная ядерная реакция - grandininė branduolinė reakcija statusas T sritis fizika atitikmenys: angl. nuclear chain reaction vok. Kettenkernreaktion, f rus. цепная ядерная реакция, f pranc. réaction en chaîne nucléaire, f; réaction nucléaire en chaîne, f … Fizikos terminų žodynas

    Реакция деления атомных ядер тяжёлых элементов под действием нейтронов, в каждом акте к рой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления. Напр., при делении одного ядра изотопа урана 235U под действием … Большой энциклопедический политехнический словарь

    Цепная ядерная реакция - реакция деления атомных ядер под действием нейтронов, в каждом акте которой испускается не менее одного нейтрона, что обеспечивает поддержание реакции. Используется как источник энергии в ядерных зарядах (взрывная Ц. я. р.) и ядерных реакторах… … Словарь военных терминов

    цепная ядерная реакция деления на нейтронах - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN divergent reaction … Справочник технического переводчика

    Самоподдерживающаяся цепная ядерная реакция - 7. Самоподдерживающаяся цепная ядерная реакция СЦР Цепная ядерная реакция, характеризующаяся значением эффективного коэффициента размножения, превышающим или равным единице

Цепна́я я́дерная реа́кция - последовательность единичных ядерных реакций , каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами , полученными при делении ядер в предыдущем поколении.

Энциклопедичный YouTube

    1 / 3

    Ядерная физика. Ядерные реакции. Цепная ядерная реакция деления. АЭС

    Ядерные силы Энергия связи частиц в ядре Деление ядер урана Цепная реакция

    Ядерные реакции

    Субтитры

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергии. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога , ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций , такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций - это минимум 10 7 К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Цепные реакции

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы . Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны , не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой . Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то самоподдерживающаяся цепная реакция (СЦР) оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объёму вещества при появлении хотя бы одной начальной частицы.

Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна, критическим состоянием . Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.

Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235 U число нейтронов, родившихся в одном акте деления, в среднем равно от 2 до 3). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т. д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике . Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется в