Чему равен вес в физике. Академия занимательных наук. Физика. Видео

Выпуск 15

Пятнадцатая серия передачи посвящена новым физическим величинам — массе тела и его весу. Эти понятия часто путают и измеряют вес в килограммах. Но это является грубой ошибкой и профессор Даниил Эдисонович Кварк объяснит, почему это так. Можно ли изменить свой вес тела или даже сделать его совершенно невесомым? Физика отвечает утвердительно. Хотите узнать, как это сделать? Тогда смотрите видеоурок физики от Академии занимательных наук, посвящённый массе и весу тела.

Масса и вес тела

В чём заключается отличие между массой и весом тела? Вроде бы это одно и то же. Но почему тогда, стоя на весах, мы можем изменять их показания, выполняя те или иные действия (поднимая руки или сгибая туловище)? Видеоурок физики — это то, что нужно для выяснения этих вопросов. Да, разница есть. С точки зрения физики, неправильно интересоваться у продавца, сколько весит тот или иной продукт. А правильно — спросить, какова его масса! Вес это векторная величина, сила. Она всегда имеет направление. При неизменной массе тела, его вес можно изменить. Например, положив на весы банан и надавив на него рукой мы получим больший вес, в то время, как масса банана останется прежней. Вес тела — это сила, с которой это тело, притягиваясь к земле, давит на опору или растягивает подвес. Если масса тела измеряется в килограммах, то вес, как и любая сила — ньютонами. Теперь понятно, почему неверно говорить, что вес тела равен столько-то килограммам? Итак, вес тела всегда измеряется в ньютонах, в то время как масса тела может измерять в граммах, килограммах и т.д. В отличие от массы тела, вес тела не является постоянной величиной. Он может увеличиваться или уменьшаться, при этом масса тела останется прежней. Масса тела представляет собой скалярную величину. Почему если сильно раскачаться на качелях, начинает «захватывать дух»? Профессор Кварк считает, что это ощущение невесомости, похожее на то, которое бывает в космосе. Как же получается, что вес тела становится равным нулю, пусть даже на какое-то мгновение? А получается так потому, что в момент падения тело ни на что не давит и ничего не оттягивает, следовательно, не имеет веса. Вот ещё один пример, доказывающий, что вес тела может меняться при неизменной массе. В воде все тела весят меньше, чем на суше. Иначе мы не могли бы плавать, а шли прямиком ко дну. Слон с массой тела в 1 тонну весит на суше больше, чем в воде. Киты с массой более 30 тонн способны в воде парить как птицы.

Определение 1

Вес представляет силу влияния тела на опору (подвес, или иную разновидность крепления), препятствующую падению, и возникающую в поле действия сил тяжести. Единицей измерения веса в СИ принят ньютон.

Понятие веса тела

Понятие «вес» как таковое в физике не считается необходимым. Так, больше говорится о массе или о силе тела. Более содержательной величиной считается сила воздействия на опору, знание которой может помочь, например, при оценке способности конструкции удержать исследуемое тело в заданных условиях.

Вес возможно измерить с помощью пружинных весов, служащих также для косвенного измерения массы при их соответствующем градуировании. В то же время, рычажные весы в этом не нуждаются, поскольку в такой ситуации сравнению подлежат массы, на которые воздействует равное ускорение свободного падения либо сумма ускорений в неинерциальных системах отсчета.

При взвешивании за счет технических пружинных весов, вариации ускорения свободного падения обычно не учитываются, поскольку из влияние зачастую оказывается меньше того, что требуется на практике в отношении точности взвешивания. В некоторой степени, на результатах измерений может отражаться сила Архимеда, при условии взвешивания на рычажных весах тел различной плотности и их сравнительных показателей.

Вес и масса в физике представляют различные понятия. Так, вес считается векторной величиной, с которой тело будет непосредственно воздействовать на горизонтальную опору либо вертикальный подвес. Масса в то же время представляет скалярную величину, меру инертности тела (инертную массу) или заряд гравитационного поля (гравитационную массу). У таких величин будут отличаться и единицы измерения (в СИ масса обозначена в килограммах, а вес- в ньютонах).

Возможны также ситуации с нулевым весом и также ненулевой массой (когда речь идет об одном и том же теле, к примеру, при невесомости вес каждого тела будет равным нулевому значению, а вот масса у всех окажется разной).

Важные формулы для расчета веса тела

Вес тела ($P$), которое покоится в инерциальной системе отсчёта, равнозначен силе тяжести, воздействующей на него, и пропорционален массе $m$, а также ускорению свободного падения $g$ в данной точке.

Замечание 1

Ускорение свободного падения будет зависимым от высоты над земной поверхностью, а также от географических координат точки измерения.

Результатом суточного вращения Земли является широтное уменьшение веса. Так, на экваторе вес окажется меньшим, в сравнении с полюсами.

Другим фактором, влияющим на значение $g$, можно считать гравитационные аномалии, которые обусловлены особенностями строения земной поверхности. При местонахождении тела вблизи другой планеты (не Земли), ускорение свободного падения зачастую определяется за счет массы и размеров этой планеты.

Состояние отсутствия веса (невесомости) наступит в условиях отдаленности тела от притягивающего объекта или его пребывании в свободном падении, то есть в ситуации, когда

${g – w} = 0$.

Тело массой $m$, чей вес анализируется, может оказаться субъектом приложения определенных дополнительных сил, косвенно обусловленных фактом присутствия гравитационного поля, в частности, силы Архимеда и силы трения.

Отличие силы веса тела от силы тяжести

Замечание 2

Сила тяжести и вес представляют собой два различных понятия, участвующих непосредственно в теории гравитационного поля физики. Эти два совершенно разных понятия зачастую истолковывают неверно, используя их в неверном контексте.

Такая ситуация усугубляется еще и тем, что в стандартном понимании понятия массы (имеется в виду свойство материи) и веса также будут восприниматься как тождественные. Именно по этой причине правильное понимание тяжести и веса считается очень важным для научной среды.

Зачастую эти две практически аналогичные концепции применяются в формате взаимозаменяемых. Сила, которая направляется на объект со стороны Земли или другой планеты в нашей Вселенной (в более широком понимании - любого астрономического тела) будет представлять силу тяжести:

Сила, с которой тело оказывает непосредственное воздействие на опору или вертикальный подвес и будет считаться весом тела, обозначаемым как $W$ и представляющим собой векторно направленную величину.

Атомы (молекулы) тела будут отталкиваться от частиц основания. Следствием такого процесса становится:

  • осуществление частичной деформации не только опоры, но и также объекта;
  • возникновение сил упругости;
  • изменение в определенных ситуациях (в незначительной степени) формы тела и опоры, что будет происходить на макроуровне;
  • возникновение силы реакции опоры при параллельном на поверхности тела возникновении силы упругости, что становится ответной реакцией на опору (это и будет представлять вес).

В обиходе и повседневной жизни понятия "масса" и "вес" абсолютно идентичны, хотя семантическое их значение принципиально разное. Спрашивая "Какой у тебя вес?" мы подразумеваем "Сколько в тебе килограммов?". Однако на вопрос, с помощью которого мы пытаемся выяснить этот факт, ответ дается не в килограммах, а в ньютонах. Придется вернуться к школьному курсе физики.

Вес тела - величина, характеризующая силу, с которой тело оказывает давление на опору или подвес.

Для сравнения, масса тела ранее грубо определялась как "количество вещества", современное определение звучит таким образом:

Масса - физическая величина, отражающая способность тела к инерции и являющаяся мерой его гравитационных свойств.

Понятие массы вообще несколько шире представленного здесь, однако наша задача состоит несколько в другом. Вполне достаточно уяснить факт действительного различия между массой и весом.

Кроме того, - килограммы, а веса (как вида силы) - ньютоны.

И, пожалуй, самое главное отличие веса от массы содержит в себе сама формула веса, которая выглядит следующим образом:

где P - собственно вес тела (в Ньютонах), m - его масса в килограммах, а g - ускорение которое принято выражать в виде 9,8 Н/кг.

Иными словами, формула веса может быть понята на таком примере:

Гиря массой 1 кг подвешена к неподвижному динамометру, с тем, чтобы определить ее вес. Поскольку тело, да и сам динамометр, находятся в покое, то смело можно умножать его массу на ускорение свободного падения. Имеем: 1 (кг) х 9,8 (Н/кг)= 9,8 Н. Именно с такой силой действует гиря на подвес динамометра. Отсюда ясно, что вес тела равняется Однако это не всегда так.

Самое время сделать важное замечание. Формула веса равняется тяжести лишь в случаях, когда:

  • тело находится в состояние покоя;
  • на тело не действует сила Архимеда (выталкивающая сила). Любопытный факт, касающийся известно, что тело, погруженное в воду, вытесняет объем воды, равный своем весу. Но оно не просто выталкивает воду, тело становится "легче" на объем вытесненной воды. Вот почему поднять в воде девушку массой 60 кг можно шутя и смеясь, а на поверхности это сделать куда сложнее.

При неравномерном движении тела, т.е. когда тело совместно с подвесом движутся с ускорением a ,меняет свой облик и формула веса. Физика явления меняется незначительно, но в формуле такие изменения находят следующее отражение:

P=m (g-a).

Как можно заменить по формуле, вес может быть отрицательным, но для этого ускорение, с которым движется тело, должно быть больше ускорения свободного падения. И тут опять важно отличать вес от массы: отрицательный вес не влияет на массу (свойства тела остаются те же), однако он фактически становится направлен в противоположную сторону.

Хорош пример с ускоренным лифтом: при его резком ускорении на непродолжительное время создается впечатление"притягивания к потолку". С таким ощущением, конечно, столкнуться достаточно просто. Гораздо сложнее прочувствовать состояние невесомости, которое в полной мере ощущают космонавты на орбите.

Невесомость - по сути, отсутствие веса. Для того чтобы такое было возможным, ускорение, с которым движется тело, должно быть равно пресловутому усорению g (9,8 Н/кг). Добиться такого эффекта проще всего на околоземной орбите. Гравитация, т.е. притяжение, по-прежнему действует на тело (спутник), однако она пренебрежимо мала. А ускорение дрейфующего по орбите спутника также стремится к нулю. Тут-то и возникает эффект отсутствия веса, поскольку тело вообще не соприкасается ни с опорой, ни с подвесом, а попросту парит в воздухе.

Частично с таким эффектом можно столкнуться при взлете самолета. На секунду возникает ощущение подвешенности в воздухе: в этот момент ускорение, с которым движется самолет, равно ускорению свободного падения.

Вновь возвращаясь к отличиям веса и массы, важно помнить, что формула веса тела отличается от формулы массы, которая выглядит как:

m=ρ/V,

то есть плотность вещества, деленная на его объем.

ВЕС ТЕЛА

сила, с к-рой тело действует вследствие тяготения к Земле на опору (или подвес), удерживающую его от свободного падения. Если тело и опора неподвижны относительно Земли, то В. т. равен его силе тяжести. Единица В. т. (в СИ) - ньютон (Н).


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "ВЕС ТЕЛА" в других словарях:

    вес тела - Модуль равнодействующей сил тяжести, действующих на частицы этого тела. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика… … Справочник технического переводчика

    вес тела - Модуль равнодействующей сил тяжести, действующих на частицы этого тела … Политехнический терминологический толковый словарь

    См. Масса тела человека. * * * ВЕС ТЕЛА ЧЕЛОВЕКА ВЕС ТЕЛА ЧЕЛОВЕКА, см. Масса тела человека (см. МАССА ТЕЛА ЧЕЛОВЕКА) … Энциклопедический словарь

    См. Масса тела человека … Большой Энциклопедический словарь

    См. Масса тела человека … Большая советская энциклопедия

    То же, что масса тела человека … Естествознание. Энциклопедический словарь

    ПОНИЖЕННЫЙ ВЕС ТЕЛА - Вообще – состояние, при котором вес тела 10% или более ниже нормы для типа институции человека и его возраста. Как и ожирение, этот термин используется довольно свободно, так как невозможно дать определение, которое в равной степени относится ко… … Толковый словарь по психологии

    Вес: В физике: Вес сила воздействия тела на опору или подвес. Удельный вес отношение веса вещества к его объёму. Статистический вес, в квантовой механике и квантовой статистике число различных квантовых состояний с данной… … Википедия

    ВЕС, сила ГРАВИТАЦИОННОГО притяжения тела. Вес тела равен произведению массы тела на ускорение свободного падения. Масса остается постоянной, но вес зависит от расположения объекта на поверхности Земли. С увеличением высоты вес уменьшается … Научно-технический энциклопедический словарь

    Сущ., м., употр. часто Морфология: (нет) чего? веса и весу, чему? весу, (вижу) что? вес, чем? весом, о чём? о весе; мн. что? веса, (нет) чего? весов, чему? весам, (вижу) что? веса, чем? весами, о чём? о весах 1. Вес какого либо физического… … Толковый словарь Дмитриева

Книги

  • Весёлая энциклопедия для девочек и мальчиков. 300 вопросов , Скиба Тамара Викторовна. Любые родители мечтают найти книгу, которая в простой и увлекательной форме давала бы ответы на бесконечные вопросы маленьких почемучек. Детей интересует буквально всё:-Куда пропадает Солнце…
  • Весёлая анатомия. Формирование представлений о себе и о своем теле , Нищев Валерий Михайлович. Наглядно-дидактическое пособие с красочными рисунками и забавными стихотворениями поможет сформировать у дошкольников представления о строении своего тела, об элементарных правилах гигиены и…

Довольно много ошибок и неслучайных оговорок учащихся связано с силой веса. Само словосочетание «сила веса» не очень привычно, т.к. мы (учителя, авторы учебников и задачников, методических пособий и справочной литературы) более привыкли говорить и писать «вес тела». Тем самым, уже само словосочетание уводит нас от понятия того, что вес - сила, и приводит к тому, что вес тела путают с массой тела (в магазине часто слышим, когда просят взвесить сколько-то килограммов продукта). Вторая распространенная ошибка учащихся заключается в том, что силу веса путают с силой тяжести. Попытаемся же разобраться с силой веса на уровне школьного учебника.

Для начала заглянем в справочную литературу и попытаемся понять точку зрения авторов на данный вопрос. Яворский Б.М., Детлаф А.А. (1) в справочнике для инженеров и студентов весом тела называют силу, с которой это тело действует вследствие тяготения к Земле на опору (или подвес), удерживающую тело от свободного падения. Если тело и опора неподвижны относительно Земли, то вес тела равен его силе тяжести. Зададим несколько наивных вопросов к определению:

1. О какой системе отчета идет речь?

2. Имеется одна опора (или подвес) или их несколько (опор и подвесов)?

3. Если тело тяготеет не к Земле, а, например, к Солнцу, будет ли оно обладать весом?

4. Если тело в космическом корабле, движущемся с ускорением, ни к чему в обозримом пространстве «почти» не тяготеет, будет ли оно обладать весом?

5. Как расположена опора относительно горизонта, вертикален ли подвес для случая равенства веса тела и силы тяжести?

6. Если тело движется равномерно и прямолинейно вместе с опорой относительно Земли, то вес тела равен его силе тяжести?

В справочном руководстве по физике для поступающих в вузы и самообразования Яворского Б.М. и Селезнева Ю.А. (2) дают пояснение по последнему наивному вопросу, оставляя без внимания первые.

Кошкин Н.И. и Ширкевич М.Г. (3) весом тела предлагают считать векторную физическую величину, которую можно найти по формуле:

Приведенные ниже примеры покажут, что данная формула работает в случаях, когда никакие другие силы на тело не действует.

Кухлинг Х. (4) понятие веса не вводит как такового вообще, отождествляя его практически с силой тяжести, на чертежах сила веса приложена к телу, а не к опоре.

В популярном «Репетиторе по физике» Касаткиной И.Л. (5) вес тела определяется как сила, с которой тело действует на опору или подвес вследствие притяжения к планете. В последующих пояснениях и примерах, приведенных автором, даются ответы только на 3й и 6й из наивных вопросов.

В большинстве учебников по физике даются определения веса в той или иной мере схожие с определениями авторов (1), (2), (5). При изучении физики в 7-ом и 9-ом образовательных классах, возможно, это оправдано. В 10-х профильных классах с таким определением при решении целого класса задач не избежать различного рода наивных вопросов (вообще же, - совсем не нужно стремиться к избеганию любых вопросов).

Авторы Каменецкий С.Е., Орехов В.П. в (6) разграничивая и поясняя понятия силы тяжести и веса тела, пишут, что вес тела - это сила, которая действует на опору или подвес. И все. Не надо ничего читать между строк. Правда, все-таки еще хочется спросить, а, сколько опор и подвесов, а может ли быть у тела и опора и подвес сразу?

И, наконец, посмотрим определение веса тела, которое дает Касьянов В.А. (7) в учебнике физики 10-го класса: «вес тела - суммарная сила упругости тела, действующая при наличии силы тяжести на все связи (опоры, подвесы)». Если при этом помнить, что сила тяжести равна равнодействующей двух сил: силе гравитационного притяжения к планете и центробежной силы инерции, при условии, что эта планета вращается вокруг своей оси, или какой-либо еще силы инерции, связанной с ускоренным движением этой планеты, то с этим определением можно было бы согласиться. Так как при этом никто нам не мешает представить ситуацию, когда одна из составляющих силы тяжести будет пренебрежимо мала, например, случай с космическим кораблем в далеком космосе. И даже при этих оговорках так и подмывает убрать из определения обязательное наличие силы тяжести, ведь возможны ситуации, когда есть другие силы инерции, не связанные с движением планеты или Кулоновские силы взаимодействия с другими телами, например. Либо же согласиться с введением некоей «эквивалентной» силы тяжести в неинерциальных системах отчета и давать определение силы веса для случая, когда нет взаимодействия тела с другими телами, кроме тела, создающего гравитационное притяжение, опор и подвесов.

И все-таки, определимся, когда вес тела равен силе тяжести в инерциальных системах отчета?

Предположим у нас одна опора или один подвес. Достаточно ли условия, что опора или подвес неподвижны относительно Земли (Землю считаем инерциальной системой отчета), или движутся равномерно и прямолинейно? Возьмем неподвижную опору, расположенную под углом к горизонту. Если опора гладкая, то тело скользит по наклонной плоскости, т.е. не покоится на опоре и не находится в свободном падении. А если опора шероховатая на столько, что тело покоится, то либо наклонная плоскость не опора, либо вес тела не равен силе тяжести (можно, конечно, пойти дальше, и поставить под сомнение, что вес тела не равен по модулю и не противоположен по направлению силе реакции опоры, и тогда не о чем будет говорить вообще). Если же считать наклонную плоскость все-таки опорой, а предложение в скобках - иронией, то, решая уравнение для второго закона Ньютона, которое для данного случая будет и условием равновесия тела на наклонной плоскости, записанного в проекциях на ось Y, мы получим выражение для веса, отличного от силы тяжести:

Итак, в данном случае, не достаточно утверждать, что вес тела равен силе тяжести, когда тело и опора неподвижны относительно Земли.

Приведем пример с неподвижными относительно Земли подвесом и телом на нем. Металлический положительно заряженный шарик на нити помещен в однородное электрическое поле так, что нить составляет некоторый угол с вертикалью. Найдем вес шарика из условия, что векторная сумма всех сил равна нулю для покоящегося тела.

Как видим, в приведенных случаях, вес тела не равен силе тяжести при выполнении условия неподвижности опоры, подвеса и тела относительно Земли. Особенностями приведенных случаев является существование силы трения и силы Кулона соответственно, наличие которых и приводит собственно к тому, что тела удерживаются от движения. Для вертикального подвеса и горизонтальной опоры добавочные силы не нужны, чтобы удержать тело от движения. Таким образом, к условию неподвижности опоры, подвеса и тела относительно Земли, мы могли бы добавить, что при этом опора горизонтальна, а подвес вертикален.

Но решило бы это добавление наш вопрос? Ведь в системах с вертикальным подвесом и горизонтальной опорой могут действовать силы, уменьшающие или увеличивающие вес тела. Таковыми могут быть сила Архимеда, например, или сила Кулона, направленная вертикально. Подведем итог для одной опоры или одного подвеса: вес тела равен силе тяжести, когда тело и опора (или подвес) покоятся (или равномерно и прямолинейно движутся) относительно Земли, и на тело действуют только сила реакции опоры (или сила упругости подвеса) и сила тяжести. Отсутствие других сил в свою очередь предполагает, что опора горизонтальна, подвес вертикален.

Рассмотрим случаи, когда тело с несколькими опорами или (и) подвесами покоится (или равномерно и прямолинейно движется вместе с ними относительно Земли) и на него не действуют ни какие другие силы, кроме сил реакции опоры, сил упругости подвесов, притяжения к Земле. Используя определение силы веса Касьянова В.А. (7), найдем суммарную силу упругости связей тела в первом и во втором случаях, представленных на рисунках. Геометрическая сумма сил упругости связей F , по модулю равная весу тела, исходя из условия равновесия, действительно равна силе тяжести и противоположна ей по направлению, причем углы наклона плоскостей к горизонту и углы отклонения подвесов от вертикали на конечный результат не влияют.

Рассмотрим пример (рисунок ниже), когда в системе неподвижной относительно Земли тело имеет опору и подвес и в системе не действуют никакие другие силы, кроме сил упругостей связей. Результат аналогичен вышеизложенному. Вес тела равен силе тяжести.

Итак, если тело находится на нескольких опорах и (или) подвесах, и покоится вместе с ними (или равномерно и прямолинейно движется) относительно Земли, при отсутствии других сил, кроме силы тяжести и сил упругости связей, его вес равен силе тяжести. При этом расположение в пространстве опор и подвесов и их количество на конечный результат не влияет.

Рассмотрим примеры нахождения веса тела в неинерциальных системах отчета.

Пример 1. Найти вес тела массой m, движущегося в космическом корабле с ускорением а в «пустом» пространстве (на столько далеко от других массивных тел, что их тяготением можно пренебречь).

В данном случае на тело действует две силы: сила инерции и сила реакции опоры. Если ускорение по модулю равно ускорению свободного падения на Земле, то вес тела будет равен силе тяжести на Земле, и нос корабля космонавтами будет восприниматься как потолок, а хвост как пол.

Созданная таким образом искусственная тяжесть для космонавтов внутри корабля ничем не будет отличаться от «настоящей» земной.

В данном примере мы пренебрегаем вследствие ее малости гравитационной составляющей силы тяжести. Тогда на космическом корабле сила инерции и будет равна силе тяжести. В виду этого можно согласиться, с тем, что причиной возникновения веса тела в этом случае является сила тяжести.

Вернемся на Землю.

Пример 2.

Относительно земли с ускорением а движется тележка, на которой укреплено тело на нити массой m, отклонившейся на угол от вертикали. Найти вес тела, сопротивлением воздуха пренебречь.

Задача с одним подвесом, следовательно, вес равен по модулю силе упругости нити.

Таким образом, можно воспользоваться любой формулой для расчета силы упругости, а, значит, и веса тела (если сила сопротивления воздуха достаточно велика, то ее необходимо будет учесть в качестве слагаемого к силе инерции).

Поработаем еще с формулой

Следовательно, введя «эквивалентную» силу тяжести, мы можем утверждать, что в этом случае вес тела равен «эквивалентной» силе тяжести. И окончательно можем дать три формулы для его расчета:

Пример 3.

Найти вес автогонщика массой m в движущемся с ускорением а автомобиле.

При больших ускорениях сила реакции опоры спинки сидения становится существенной, и ее в данном примере будем учитывать. Общая сила упругости связей будет равна геометрической сумме обеих сил реакции опоры, которая в свою очередь равна по модулю и противоположна по направлению векторной сумме сил инерции и тяжести. Для данной задачи модуль силы веса найдем по формулам:

Эффективное ускорение свободного падения находится, как в предыдущей задаче.

Пример 4.

Шарик на нити массой m закреплен на вращающейся с постоянной угловой скоростью ω платформе на расстоянии r от ее центра. Найти вес шарика.

Нахождение веса тела в неинерциальных системах отчета в приведенных примерах показывает, как хорошо работает формула для веса тела предложенная авторами в (3). Усложним немного ситуацию в примере 4. Предположим, что шарик электрически заряжен, а платформа вместе совсем содержимым находится в однородном вертикальном электрическом поле. Каков вес шарика? В зависимости от направления силы Кулона вес тела уменьшится или увеличится:

Так получилось, что вопрос о весе естественным образом свелся к вопросу о силе тяжести. Если мы определим силу тяжести как равнодействующую сил гравитационного притяжения к планете (или к любому другому массивному объекту) и инерции, с учетом принципа эквивалентности, оставляя в тумане происхождение самой силы инерции, тогда обе составляющие силы тяжести или одна из них, по крайней мере, явятся причиной возникновения веса тела. Если в системе наряду с силой гравитационного притяжения, силой инерции и силами упругости связей есть другие взаимодействия, то они могут увеличить или уменьшить вес тела, привести к состоянию, когда вес тела станет равным нулю. И эти другие взаимодействия могут стать причиной появления веса в некоторых случаях. Зарядим шарик на тонкой непроводящей нити в космическом корабле, движущимся равномерно и прямолинейно в далеком «пустом» космосе (силами гравитации пренебрежем из-за их малости). Поместим шарик в электрическое поле, нить натянется, появится вес.

Обобщая сказанное, сделаем вывод, что вес тела равен силе тяжести (или эквивалентной силе тяжести) в любой системе, где на тело не действуют никакие другие силы, кроме сил гравитационных, инерции и упругости связей. Сила тяжести или «эквивалентная» сила тяжести чаще всего является причиной возникновения силы веса. Сила веса и сила тяжести имеют разную природу и приложены к разным телам.

Список литературы.

1. Яворский Б.М., Детлаф А.А. Справочник по физике для инженеров и студентов вузов, М., Наука, 1974г., 944с.

2. Яворский Б.М., Селезнева Ю.А. Справочное руководство по физике для

поступающих в вузы и самообразования., М., Наука, 1984г., 383с.

3. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике., М., Наука, 1980г., 208с.

4. Кухлинг Х. Справочник по физике., М., Мир, 1983г., 520с.

5. Касаткина И.Л. Репетитор по физике. Теория. Механика. Молекулярная физика. Термодинамика. Электромагнетизм. Ростов-на-Дону, Феникс, 2003г., 608с.

6. Каменецкий С.Е., Орехов В.П. Методика решения задач по физике в средней школе., М., Просвещение, 1987г., 336с.

7. Касьянов В.А. Физика. 10 класс., М., Дрофа, 2002г., 416с.