Что такое игрек хромосома. Хромосомный механизм и определение пола. Что говорят ученые

В организме каждого мужчины присутствует так называемая «Y-хромосома», которая и делает мужчину мужчиной. Обычно хромосомы в ядре любой клетки располагаются попарно. Вот и для Y-хромосомы есть соответствующая пара – X-хромосома. При зачатии будущий новый организм наследует всю свою генетическую информацию от родителей (половину хромосом от одного родителя, половину – от другого). От матери он может унаследовать только X-хромосому. От отца – либо X, либо Y. Если в плоде собираются две X-хромосомы, родится девочка. Если X и Y вместе – мальчик (две Y-хромосомы в одном организме оказаться не может). В течение долгих лет генетики считали, что никакой другой полезной функции на Y-хромосому природой не возложено. Однако они ошибались.

К зиме генетики надеются полностью расшифровать генетический код, заложенный в Y-хромосоме. Расшифровка Y-хромосомы входит в проект по расшифровке генома человека, который осуществляется международной группой генетиков. Информация о генетической карте этой хромосомы крайне важна, так как именно в ней лежат ответы на вопросы о причинах мужского бесплодия. Однако уже сейчас в ходе исследования стало понятно, что Y-хромосома далеко не так проста, как казалось вначале.

В течение почти ста лет генетики считали, что крохотная хромосома (а Y-хромосома действительно является самой маленькой в человеческом организме, заметно меньше, чем ее пара – X-хромосома) является просто «заглушкой». Первые догадки, что хромосомный набор мужчин отличается от такового у женщин, были выдвинуты в 1920-х годах. Y-хромосома стала первой хромосомой, обнаруженной с помощью микроскопа. Но сопоставить Y-хромосому хоть какую-то наследственную генетическую информацию оказалось невозможным; для X-хромосомы же исследовательские технологии тех времен (изучение нескольких поколений семей на предмет выявления наследственных признаков) вполне подошли.

В середине 20 века генетики имели «на подозрении» несколько весьма специфических генов, которые могли содержаться в Y-хромосоме. Однако в 1957 году, на собрании Американского Общества Человеческой Генетики, все эти теории оказались разрушенными. Y-хромосома была официально признана «пустышкой», не несущей в себе никакой важной наследственной информации. Утвердилась точка зрения, что «да, Y-хромосома несет в себе какой-то ген, определяющий пол человека, но больше на нее не возложено никаких функций».

И только сейчас генетики стали понимать, что Y-хромосома – нечто уникальное в мире генов. Она чрезвычайно узко специализирована: все гены, содержащиеся в ней (а их там оказалось около двух дюжин), либо отвечают за производство спермы организмом мужчины, либо отвечают за «сопутствующие» процессы. И, естественно, самый важный ген в этой хромосоме – SRY, тот самый ген, при наличии которого человеческий зародыш развивается по мужскому пути

Предмет генетических исследований - явления наследственности и изменчивости. Американский ученый Т-Х. Морган создал хромосомную теорию наследственности, доказывающую, что каждый биологический вид можно характеризировать определенным кариотипом, который содержит такие виды хромосом, как соматические и половые. Последние представлены отдельной парой, различающейся по мужской и женской особи. В данной статье мы изучим, какое строение имеют женские и мужские хромосомы и чем они отличаются между собой.

Что такое кариотип?

Каждая клетка, содержащая ядро, характеризуется определенным количеством хромосом. Оно получило название кариотипа. У различных биологических видов наличие структурных единиц наследственности строго специфично, например, кариотип человека составляет 46 хромосом, у шимпанзе - 48, речного рака - 112. Их строение, величина, форма отличаются у особей, относящихся к различным систематическим таксонам.

Число хромосом в клетке тела называется диплоидным набором. Он характерен для соматических органов и тканей. Если в результате мутаций кариотип изменяется (например, у больных синдромом Клайнфельтера количество хромосом 47, 48), то такие особи имеют сниженную фертильность и в большинстве случаев бесплодны. Другое наследственное заболевание, связанное с половыми хромосомами, - синдром Тернера-Шерешевского. Он встречается у женщин, имеющих в кариотипе не 46, а 45 хромосом. Это значит, что в половой паре присутствуют не две х-хромосомы, а только одна. Фенотипически это проявляется в недоразвитии половых желез, слабо выраженных вторичных половых признаках и бесплодии.

Соматические и половые хромосомы

Они отличаются как формой, так и набором генов, входящих в их состав. Мужские хромосомы человека и млекопитающих входят в гетерогаметную половую пару ХУ, обеспечивающую развитие как первичных, так и вторичных мужских половых признаков.

У самцов птиц половая пара содержит две одинаковые ZZ мужские хромосомы и называется гомогаметной. В отличие от хромосом, детерминирующих пол организма, в кариотипе находятся наследственные структуры, идентичные как у мужского, так и у женского пола. Они носят название аутосом. В кариотипе человека их 22 пары. Половые мужские и женские хромосомы образуют 23 пару, поэтому кариотип мужчины можно представить в виде общей формулы: 22 пары аутосом + ХУ, а женщины - 22 пары аутосом + ХХ.

Мейоз

Образование половых клеток - гамет, при слиянии которых формируется зигота, происходит в половых железах: семенниках и яичниках. В их тканях осуществляется мейоз - процесс деления клеток, приводящий к образованию гамет, содержащих гаплоидный набор хромосом.

Овогенез в яичниках приводит к созреванию яйцеклеток только одного вида: 22 аутосомы + Х, а сперматогенез обеспечивает созревание гомет двух видов: 22 аутосомы + Х или 22 аутосомы + У. У человека же пол будущего ребенка определяется в момент слияния ядер яйцеклетки и сперматозоида и зависит от кариотипа сперматозоида.

Хромосомный механизм и определение пола

Мы уже рассмотрели, в какой момент происходит определение пола у человека - в момент оплодотворения, и оно зависит от хромосомного набора сперматозоида. У других животных представители разного пола отличаются количеством хромосом. Например, у морских червей, насекомых, кузнечиков в диплоидном наборе самцов присутствует лишь одна хромосома из половой пары, а у самок - обе. Так, гаплоидный набор хромосом самца морского червя ацирокантуса можно выразить формулами: 5 хромосом + 0 или 5 хромосом + х, а самки имеют в яйцеклетках только один набор 5 хромосом + х.

Что влияет на половой диморфизм?

Кроме хромосомного есть еще и другие способы определения пола. У некоторых беспозвоночных - коловраток, - пол определяется еще до момента слияния гамет - оплодотворения, в результате которого мужские и женские хромосомы образуют гомологичные пары. Самки морской полихеты - динофилюса в процессе овогенеза образуют яйцеклетки двух видов. Первые - мелкие, обедненные желтком, - из них развиваются самцы. Другие - крупные, с огромным запасом питательных веществ - служат для развития самок. У медоносных пчел - насекомых ряда Перепончатокрылых - самки продуцируют два вида яйцеклеток: диплоидные и гаплоидные. Из неоплодотворенных яиц развиваются самцы - трутни, а из оплодотворенных - самки, являющиеся рабочими пчелами.

Гормоны и их воздействие на формирование пола

У человека мужские железы - семенники - продуцируют половые гормоны ряда тестостерона. Они влияют как на развитие (анатомическое строение наружных и внутренних половых органов), так и на особенности физиологии. Под воздействием тестостерона формируются вторичные половые признаки - строение скелета, особенности фигуры, оволосение тела, тембр голоса, В организме женщины яичники вырабатывают не только половые клетки, но и гормоны, являясь Половые гормоны, такие как эстрадиол, прогестерон, эстроген, способствуют развитию наружных и внутренних половых органов, оволосению тела по женскому типу, регулируют менструальный цикл и протекание беременности.

У некоторых позвоночных животных, рыб, и земноводных биологически активные вещества, продуцируемые гонадами, сильно влияют на развитие первичных и вторичных половых признаков, а виды хромосом при этом не оказывают настолько большого воздействия на формирование пола. Например, личинки морских полихет - бонеллии - под влиянием женских половых гормонов прекращают свой рост (размеры 1-3 мм) и становятся карликовыми самцами. Они обитают в половых путях самок, которые имеют длину тела до 1 метра. У рыб-чистильщиков самцы содержат гаремы из нескольких самок. Женские особи, кроме яичников, имеют зачатки семенников. Как только самец гибнет, одна из гаремных самок берет на себя его функцию (в её теле начинают активно развиваться мужские гонады, вырабатывающие половые гормоны).

Регуляция пола

В она осуществляется двумя правилами: первое определяет зависимость развития зачаточных половых желез от секреции тестостерона и гормона MIS. Второе правило указывает на исключительную роль, которую играет У-хромосома. Мужской пол и все соответствующие ему анатомические и физиологические признаки развиваются под воздействием генов, находящихся в У-хромосоме. Взаимосвязь и зависимость обоих правил в генетике человека называется принципом роста: у эмбриона, являющегося бисексуальным (то есть имеющим зачатки женских желез - мюллерова протока и мужских гонад - вольфова канала) дифференцировка эмбриональной половой железы зависит от наличия или отсутствия в кариотипе У-хромосомы.

Генетическая информация в У-хромосоме

Исследованиями ученых-генетиков, в частности Т-Х. Моргана, было установлено, что у человека и млекопитающих генный состав Х- и У-хромосом неодинаков. Мужские хромосомы у человека не имеют некоторых аллелей, присутствующих в Х-хромосоме. Однако в их генофонде представлен ген SRY, контролирующий сперматогенез, приводящий к формированию мужского пола. Наследственные нарушения этого гена в эмбрионе приводит к развитию генетического заболевания - синдрома Суайра. В результате женская особь, развивающаяся из такого эмбриона, содержит в кариотипе ХУ половую пару или только участок У-хромосомы, содержащий генный локус. Он активизирует развитие гонад. У больных женщин не дифференцируются вторичные половые признаки, и они бесплодны.

У-хромосома и наследственные заболевания

Как отмечалось ранее, мужская хромосома отличается от Х-хромосомы как размерами (она меньше), так и формой (имеет вид крючка). Также для нее специфичен и набор генов. Так, мутация одного из генов У-хромосомы фенотипически проявляется появлением пучка жестких волос на мочке уха. Этот признак характерен только для мужчин. Известно такое наследственное заболевание, вызванное как синдром Клайнфельтера. Больной мужчина имеет в кариотипе лишние женские или мужские хромосомы: ХХУ или ХХУУ.

Основными диагностическими признаками является патологический рост молочных желез, остеопороз, бесплодие. Заболевание достаточно распространено: на каждых 500 новорожденных мальчиков приходится 1 больной.

Подводя итог, отметим, что у человека, как и у других млекопитающих, пол будущего организма определяется в момент оплодотворения, вследствие определенной комбинации в зиготе половых Х- и У-хромосом.

Как заявил в 2006 году ныне премьер-министр (тогда еще президент) России Владимир Путин, «если бы у бабушки были определенные половые признаки, она была бы дедушкой». Речь шла о возможности принятия Россией санкций против Ирана, однако сравнение не совсем верно. Благодаря достижениям генетики мы знаем, что бабушка отличается от дедушки не только внешне, но и набором половых хромосом.

У большинства млекопитающих пол определяется именно ими: мужской организм является носителем X- и Y-хромосом, а женщины «обходятся» двумя Х-хромосомами. Когда-то этого разделения не существовало, однако в результате эволюции около 300 млн лет назад хромосомы дифференцировались. Существуют отклонения, в результате которых клетки некоторых мужчин содержат две X-хромосомы и одну Y-хромосому или одну X-хромосому и две Y-хромосомы; клетки некоторых женщин содержат три или одну X-хромосомы. Изредка наблюдаются женские XY-организмы или мужские XX-организмы, однако подавляющее большинство людей все-таки имеют стандартную конфигурацию половых хромосом. С этой особенностью, например, связан феномен заболевания гемофилией. Дефектный ген, ухудшающий свертываемость крови, сцеплен с Х-хромосомой и является рецессивным. По этой причине женщины лишь переносят заболевание, сами не страдая от него из-за наличия дублирующего гена из-за второй Х-хромосомы, а вот мужчины в аналогичной ситуации несут только дефектный ген и болеют.

Так или иначе, Y-хромосома традиционно считалась слабым местом мужских организмов, сокращающим генетическое разнообразие и препятствующим эволюции.

Однако последние исследования показали, что страхи об угасании рода мужского сильно преувеличены: Y-хромосома и не думает стагнировать.

Напротив, ее эволюция протекает весьма активно, она меняется гораздо быстрее других участков генетического кода человека.

Исследование, опубликованное в Nature , показало, что специфическая часть Y-хромосомы человека и одного из его ближайших родственников - шимпанзе - отличается весьма сильно. За 6 млн лет раздельной эволюции обезьяны и человека фрагмент хромосомы, отвечающий за производство половых клеток, изменился на треть или даже наполовину. Остальная часть хромосомы действительно достаточно постоянна.

Предположения ученых о консервативности Y-хромосомы основывались на объективных факторах: передаваясь от отца к сыну без изменений (для X-хромосомы есть целых три варианта - две от матери и одна от отца, все они могут обмениваться генами), она не может черпать генетическое разнообразие извне, изменяясь только за счет потери генов. Согласно этой теории, уже через 125 тысяч лет Y-хромосома окончательно угаснет, что может стать концом всего человечества.

Однако вот уже 6 млн лет раздельной эволюции человека и шимпанзе Y-хромосома успешно меняется и прогрессирует. В новой работе, проведенной в Массачусетском технологическом институте, рассказывается об Y-хромосоме шимпанзе. Y-хромосома человека была расшифрована в 2003 году той же группой под руководством профессора Дэвида Пейджа.

Результаты нового исследования удивили генетиков: они ожидали, что последовательность генов в двух хромосомах будет очень сходной.

Для сравнения: в общей массе ДНК человека и шимпанзе различными являются только 2% генов, а Y-хромосома отличается более чем на 30%!

Профессор Пейдж сравнил процесс эволюции мужской хромосомы с изменением облика дома, хозяева которого остаются прежними. «Несмотря на то что в доме живут одни и те же люди, почти постоянно одна из комнат полностью обновляется и ремонтируется. В результате через какой-то период времени в результате «покомнатного» ремонта меняется весь дом. Однако такая тенденция не является нормальной для целого генома», — отметил он.

Причина такой неожиданной неустойчивости Y-хромосомы пока точно не ясна. Ученые предполагают, что генетическое разнообразие в ней обеспечивается неустойчивостью к мутациям. Обычный механизм «починки» генов дает сбой на Y-хромосоме, открывая путь новым мутациям. Статистически большее количество из них закрепляются и меняют геном.

Кроме того, эти мутации подвергаются значительно более сильному давлению отбора. Это определяется их функцией - производством половых клеток. Любые выгодные мутации закрепятся с большей степенью вероятности, так как они действуют напрямую - повышая способность к размножению особи. В то же время обычные мутации оказывают косвенное действие — повышая сопротивляемость организма к болезни или к суровым условиям окружающей среды, например. Таким образом, выгодность мутации в неспецифическом участке ДНК выявится, только если организм попадет в соответствующие неблагоприятные условия. В других случаях мутантные и немутантные организмы будут работать аналогично. Фертильность же проявляется очень быстро - уже во втором поколении. Особь либо размножается в результате мутации более успешно и оставляет многочисленное потомство, либо размножается заметно хуже и не может увеличить долю своих генов в общей популяции. Этот механизм более эффективно функционирует у шимпанзе, самки которых постоянно спариваются с большим количеством самцов. В результате половые клетки вступают в прямую конкуренцию, и «селекция» идет максимально эффективно. У человека из-за более консервативных моделей размножения Y-хромосома эволюционировала не столь стремительно, считают генетики.

Эта гипотеза подтверждается тем, что части хромосомы, задействованные в производстве сперматозоидов, наиболее отличны у человека и шимпанзе.

Группа профессора Пейджа в сотрудничестве с Центром генома Вашингтонского университета продолжает работу по расшифровке Y-хромосомы других млекопитающих. Они надеются пролить свет на эволюцию половых хромосом и ее связь с моделями поведения в популяции.

Изображение с сайта unc.edu

Каждая женщина - это не просто загадка, а мозаика, состоящая из клеток с разными наборами активных хромосом. У человека 23 пары хромосом, и хромосомы одной пары несут одни и те же наборы генов. Исключение составляет пара половых хромосом. У мужчин одна из них называется X, а другая - Y, и они существенно отличаются своими наборами генов. X-хромосома значительно крупнее, чем Y, и содержит больше генов. Обе половые хромосомы женщин - Х, и они отличаются между собой также, как хромосомы внутри других 22 пар. У каждой женщины по две X-хромосомы, а у каждого мужчины - только по одной, и чтобы они были одинаково активны у женщин и мужчин, организм регулирует их работу. Для этого во всех клетках тела женщины одна из X-хромосом инактивируется. Какая именно из двух половых хромосом будет отключена, для каждой клетки решает случай, так что в части клеток тела женщины работает одна X-хромосома, а в оставшихся - другая.

Как следствие такой мозаичности у женщин редко проявляются болезни, связанные с повреждениями X-хромосом. Даже если у женщины оказывается X-хромосома с дефектом какого-либо гена, другая хромосома пары, работающая в половине клеток, спасает положение и не дает болезни проявиться. Чтобы болезнь, связанная с повреждением X-хромосомы «разыгралась» на полную мощь, женщине должны достаться целых две копии этой хромосомы с дефектом одного и того же гена. Это маловероятное событие. В то же время, если мужчина получает дефектную X-хромосому (она приходит от матери), у нее не будет пары, чтобы скомпенсировать ущерб, и заболевание покажет себя.

X-хромосома, к несчастью для мужчин, несет множество жизненно важных генов, так что ее поломка чревата печальными последствиями. Дальтонизм, гемофилия, миопатия Дюшена, синдром ломкой X-хромосомы, X-сцепленный иммунодефицит - это только самые известные генетические заболевания, от которых страдают почти исключительно мужчины.

Цветовая слепота

Распространено заблуждение, что дальтониками могут быть только мужчины. Это неверно, однако, женщины-дальтоники встречаются намного реже. Сложности с различением некоторых цветов испытывают лишь 0,4 процента женщин и около 5 процентов мужчин. Дальтонизм - это потеря или нарушение работы одного из пигментов, связанных с распознаванием света определенного цвета. Всего таких пигментов три, и они чувствительны к волнам красного, зеленого и синего цвета. Любой сложный цвет можно представить как комбинацию этих трех. В каждой клетке-колбочке, которые находятся в сетчатке и отвечают за распознавание цвета, находится лишь один тип пигмента. По неизвестным пока причинам, неполадки с работой пигментов, с помощью которых мы различаем красный и зеленый цвета, встречаются чаще, чем дефекты пигмента, необходимого, чтобы правильно узнавать синий цвет.

За синтез пигментов отвечают гены, находящиеся на X-хромосоме. Если мужчине досталась хромосома с дефектным геном, определяющим за узнавание, к примеру, красного цвета, то во всех колбочках его сетчатки будет активна лишь эта дефектная X-хромосома - другой у него просто нет. Поэтому у такого мужчины не будет колбочек, способных правильно распознать красный цвет. Сетчатка женщины имеет мозаичное строение, и если даже одна из X-хромосом несет поврежденный ген, эта хромосома будет активна лишь в части колбочек, отвечающих за распознавание соответствующего цвета. В других колбочках будет активна вторая хромосома, которая несет нормальный ген. Восприятие цвета у такой женщины будет немного измененным, но все же она будет способна различать все цвета, которые обычно различают люди.

Гемофилия

Другое известное заболевание, связанное с дефектами генов X-хромосомы - это гемофилия, нарушение свертывания крови. После травмы в крови здорового человека запускается сложная система реакций, приводящая к образованию нитей белка фибрина. Благодаря накоплению этих нитей, в месте повреждения кровь становится более густой и закупоривает рану. Если любая из стадий процесса нарушается, кровь не свертывается вовсе или делает это слишком медленно, так что больной может умереть от кровопотери даже после удаления зуба. Кроме того, больные с гемофилией страдают от спонтанных внутренних кровоизлияний из-за уязвимости стенок сосудов.

Каскад реакций, приводящий с итоге к образованию нитей фибрина и загустению крови, очень сложен, а чем сложнее система, тем больше мест, где она может сломаться. Известно три типа гемофилии, связанных с дефектами трех генов, кодирующих белки-участники каскада. Два из этих генов располагаются на X-хромосоме, поэтому гемофилией страдает один мужчина из 5000, а случаев заболеваний женщин за всю историю было зафиксировано лишь 60.

Миопатия Дюшена

Еще один важный ген, располагающийся на X-хромосоме - ген белка дистрофина, необходимого для поддержания целостности мембран мышечных клеток. При миопатии Дюшена работа этого гена нарушается, и дистрофин не образуется. У мужчин, которым досталась X-хромосома с таким поврежденным геном, развивается прогрессирующая мышечная слабость, в результате чего мальчики с такой болезнью уже к 12 годам не могут самостоятельно ходить. Как правило, больные погибают в возрасте около 20 лет из-за связанных со слабостью мышц нарушений дыхания. У девочек, получивших X-хромосому с неисправным геном дистрофина, из-за мозаичности белок отсутствует лишь в половине клеток тела. Поэтому женщины-носительницы дефектного гена дистрофина страдают лишь легкой мышечной слабостью, и то не всегда.

X-сцепленный тяжелый иммунодефицит

Больные с тяжелыми иммунодефицитами вынуждены жить в полностью стерильной среде, потому что они крайне уязвимы перед инфекционными заболеваниями. X-сцепленный тяжелый иммунодефицит возникает из-за мутации в гене, который кодирует общий компонент нескольких рецепторов, необходимых для взаимодействия клеток иммунной системы. Как очевидно из названия болезни, этот ген тоже располагается в X-хромосоме. Из-за неработающих рецепторов иммунная система с самого начала развивается неправильно, ее клетки малочислены, плохо функционируют и не могут координировать свои действия. К счастью, это тяжелое заболевание встречается редко: им страдает один мальчик из 100000. У девочек появление этой болезни можно считать практически невероятным.

Синдром ломкой X-хромосомы

Еще один важный ген, расположенный на X-хромосоме - ген FMR1, необходимый для нормального развития нервной системы. Работа этого гена может быть нарушена из-за патологического процесса, при котором в гене увеличивается число повторяющихся фрагментов ДНК. Дело в том, что точное копирование повторяющегося числа единиц всегда представляет собой трудность. Представим себе, что нам нужно аккуратно переписать длинное число, в котором есть много одинаковых цифр подряд - легко ошибиться и написать на несколько цифер больше или меньше. Точно так и в ДНК. При делении клеток, когда ДНК удваивается, число повторов может случайно измениться. Именно из-за увеличения числа повторов в коротком фрагменте ДНК на X-хромосоме может появиться «ломкий» участок, который легко рвется при делении клеток. Ген FMR1 находится рядом с «ломким» участком, и его работа нарушается. В результате такой патологии возникает умственная отсталость, которая проявляется у мужчин с «ломкой» X-хромосомой более явственно, чем у женщин.

Всегда ли лучше иметь две X-хромосомы, чем одну?

Кажется, что иметь две X-хромосомы выгоднее, чем одну: меньше риск заболеваний из-за неудачных генов. Как насчет самцов, имеющих такой состав половых хромосом: XXY? Можно ли ожидать, что они будут иметь преимущество перед самцами с обычным составом половых хромосом XY? Оказывается, состав хромосом XXY - не благо, а совсем наоборот. Мужчины с таким набором хромосом страдают от синдрома Клайнфельтера, при котором наблюдается множество патологии, но нет никаких преимуществ.

Более того, известны заболевания, для которых характерны еще большие количества X-хромосом, вплоть до пяти на генотип. Такие патологии встречаются как у женщин, так и у мужчин. При наличии избыточных X-хромосом все они, кроме одной, инактивируются. Однако, пусть лишние X-хромосомы и не работают, чем их больше, тем тяжелее заболевание. Интересно, что особенно страдает от наличия избыточных X-хромосом интеллект - каждая лишняя хромосома этого типа ведет к понижению IQв среднем примерно на 15 пунктов. Получается, что иметь запасной вариант X-хромосомы хорошо, но не всегда (мужчинам от дополнительной X-хромосомы лучше не становится). Иметь много запасных вариантов этой половой хромосомы - не выгодно ни для женщин, ни для мужчин.

Чем же дополнительные неактивные X-хромосомы вредны, и почему каждая лишняя хромосома усугубляет тяжесть заболевания? Во-первых, лишние X-хромосомы выключаются далеко не сразу, а только спустя первые 16 суток развития эмбриона. А чем раньше во время развития возникает нарушение, тем более разнообразными и многочисленными будут его проявления. Поэтому лишние хромосомы могут успеть «навредить» достаточно фундаментально, так, что патологии будут проявляться в совершенно разных сферах.

Во-вторых, некоторые гены на инактивированных X-хромосомах каким-то образом избегают отключения. Хотя Xи Y-хромосомы очень непохожи, все же они образуют пару и имеют небольшое количество одинаковых генов. Если половых хромосом слишком много, и на всех них эти гены останутся активными, в клетках нарушается генный баланс. Поэтому чем больше лишних хромосом, тем тяжелее болезнь.

X-хромосома несет на себе множество жизненно важных генов, и неудивительно, что ее дефекты имеют крайне неприятные проявления. Женщинам от природы дана возможность «подстраховаться» за счет дополнительной копии хромосомы, которая может уменьшить тяжесть заболевания. Однако такая «запаска» хороша только в единственном числе, а все дополнительные X-хромосомы ведут к развитию тяжелых патологий. Ну а мужчинам, у которых нет второй X-хромосомы, с самого их зачатия достается больше риска. Увы.

Юлия Кондратенко

Мужчина – разрушитель и творец одновременно, охотник и жертва, властитель и раб своей сути. Чего он заслуживает – любви или ненависти? Кто он и зачем пришел в этот мир? Могла ли природа обойтись без мужчин? Зачем нужны мужчины?

В этой книге приоткрыта завеса многих тайн мужского «Я». Оказывается, мужской пол необходим нам. Он – двигатель эволюции и научно-технического прогресса, истории и культуры. Возможно, что без мужчин мы так и остались бы всего лишь обезьянами, научившимися прямо ходить. Эта книга станет для вас источником не только интересной, но и полезной информации и поможет взглянуть на мужчин чуть-чуть иначе.

Книга:

<<< Назад
Вперед >>>

Говорят, что когда-то, очень-очень давно, когда жизнь на нашей планете была представлена только простейшими, все до единого микроорганизмы несли в себе только Х-хромосомы и никакого мужского пола не предполагалось. Он попросту был не нужен: все размножались делением и особо не грузились такой мелочью, как гендерная идентификация. Но потом произошла чудовищная мутация. Одна из Х-хромосом лишилась одного из четырех кончиков. То ли он просто потерялся, то ли два кончика срослись в один – непонятно. Получилась хромосома-инвалид, по форме напоминающая букву Y. Инвалид был микроскопически мал и передвигался в воде с помощью своих примитивных ресничек, тем не менее выжил и даже сумел наплодить себе подобных носителей таких ущербных хромосом. Так появился первый мужчина.

За все время своего существования, а если быть точнее, за 166 миллионов лет, Y-хромосома почему-то так и не эволюционировала в нечто более прекрасное.


Мужчина на генетическом уровне: Х– и Y-хромосомы , отвечающие за формирование мужского пола у большинства живых существ

Мало того, путешествуя во времени, она еще и лишилась 1393 из имевшихся в ней изначально 1438 генов. Впоследствии, правда, обездоленный Y кое-что поднакопил, и сейчас в составе хромосомы целых 78 генов, то есть в 18 (!) раз меньше, чем должно быть. Поэтому некоторые ученые оскорбительно называют мужскую гамету «почти полностью деградировавшей Х-хромосомой». Эти же некоторые ученые, подсчитав скорость потери генов Y-хромосомы, утверждают, что примерно через 125 тысяч лет несчастное недосущество окончательно деградирует, девальвирует, дезактивируется и навсегда исчезнет с лица Земли. Мужской пол опять растворится в эволюционных дебрях. Наверное, эти ученые – женщины.

Случается, отдельные слабые голоса в научном мире женщинам возражают и говорят: нет, мол, ничего подобного. Мы вот тут изучили хромосомы шимпанзе и со всей ответственностью заявляем: ничего никто не терял, все так и должно быть. И никуда хромосома исчезать не собирается, а так и будет существовать – да! – в таком виде! Нравится вам это или нет. Что-то нам подсказывает, что эти голоса принадлежат мужчинам.

Считается, что все генетически полезное для мужского пола накапливается в этой хромосоме и что она же собирает все то, что генетически вредно для женского пола (интересно, что вообще можно собрать с таким количеством генов?).

Y-хромосома – самая маленькая из всех человеческих хромосом, причем ее размер может сильно отличаться у разных мужчин. Она практически не способна к рекомбинированию – спонтанному соединению с другими хромосомами. Из всех 78 генов только 3 могут свободно перетасовываться в генетической колоде, что делает возможным с большой точностью определять предка по отцовской линии. И поэтому животноводы, подбирая пару производителей, следуют принципу превосходства мужской особи. Говоря простым языком, с точки зрения породы, более правильным должен быть кобель, а не сучка, жеребец, а не кобыла, кот, а не кошка. Это правило было известно с древнейших времен, и люди всегда стремились подобрать своим коровам, овцам и лошадям производителей, превосходящих самок по качествам.

Изменчивость неспособных к рекомбинации 75 генов Y-хромосомы обеспечивается только за счет мутаций. Другими словами, 95 % этой хромосомы представляют собой своего рода летопись всех мутаций, произошедших у данного вида животных. Генетическая информация по линии отца передается потомству в более устойчивом виде.


Подбирая пару производителей, животноводы предъявляют более высокие требования к мужской особи, нежели к женской

Соответственно, чем лучше отец, тем лучше потомство, чем хуже качества отца, тем хуже потомки. Но оставшиеся 5 % способных к рекомбинации генов дают нам такой богатый генетический материал, что это оправдывает все издержки, связанные с существованием мужского пола.

Самец может наделать сколько угодно детенышей, в отличие от самок, которые в количестве потомства сильно ограничены. Таким образом, у самцов возможности передачи новых генов значительно выше, чем у самок, поэтому мутации у мужского пола имеют большее значение для популяции, чем женские мутагенные изменения.

В настоящее время генетики нашли в Y-хромосоме около 160 единиц, способных изменяться. Почти 60 миллионов пар нуклеотидов этой хромосомы образуют хромосомные линии, которые по своей сути сходны с линиями молекулы ДНК, передающейся от яйцеклетки. Однако в ДНК присутствуют только точечные мутации, в то время как Y-хромосома с ее генетическими накоплениями – настоящий банк всевозможных изменений, хранимых ею практически все время своего существования. Поэтому Y-хромосома куда более ценна с точки зрения эволюции, чем Х-хромосома. Мало того, как выяснилось, Y-хромосома научилась противостоять деградации. Ее нуклеотидный состав симметричен, он состоит из двух одинаковых частей, расположенных зеркально относительно друг друга. Чтобы это было более понятно, приведем пример палиндрома в виде набора букв: АБААБА. Если это сочетание букв разделить на две части по средней линии, то мы получим зеркальную симметрию – палиндром.

Непарность Y-хромосомы – вот основа эволюции. Если у женщины одна из Х-хромосом каким-то образом изменилась, то вторая Х-хромосома, генетический близнец пострадавшей, будет противостоять мутации и сведет ее проявления к минимуму. А у мужчин хромосомы-дублера нет. Подсчитано, что у каждого мужчины в Y-хромосоме содержится не менее 600 нуклеотидов, отличающих его генотип от генотипа отца, – это в тысячи раз больше вариантов наследственности, чем может обеспечить естественная мутация.

Конечно, это не всегда дает только положительный результат. Непарность Y-хромосомы приносит и гнилые плоды. Существуют наследственные заболевания, которыми болеют только мужчины или преимущественно мужчины, а женщины, оставаясь здоровыми, всего лишь носительницы этого заболевания.

Самый известный пример – гемофилия, или несвертываемость крови. «Неправильный» ген передается от матери к сыну, но сама мать при этом остается здоровой. Женщина заболеет только в том случае, если у нее дефектный ген появится в обеих Х-хромосомах.

Такая же печальная история с дальтонизмом – особенностью цветового зрения у людей и приматов, при котором дальтоник полностью или выборочно не различает цветов. Женщины-дальтоники встречаются в 20 раз реже, чем мужчины, хотя носитель дальтонического гена – женский пол.

Конечно, у мужчин не вырастает третья рука или вторая голова. Эти мутации гораздо менее заметны, поскольку спрятаны глубоко в генах, и в крайних случаях могут быть обнаружены при серьезных медицинских исследованиях. У мужчин куда чаще, чем у женщин, обнаруживаются отклонения в строении тела, например дополнительная мышца или нестандартное развитие кровеносной системы. Это не просто ошибка природы. Природа экспериментирует, проверяя все возможные вариации – а вдруг такой финт будет полезен будущим поколениям?


Дарвин отмечал, что многопалость (полидактилия) у мужчин встречается в полтора раза чаще

При благоприятных условиях те, кто не имеет мутаций, и те, кто их имеет, размножаются одинаково. Но если условия окружающей среды резко меняются, то уже буквально во втором поколении выясняется, кто чего стоит и насколько оправданно нововведение. Если мутация удачная, то ее носитель закрепит себя в потомках. Если неудачная, то носитель погибнет, прекратив передачу нового гена последующим поколениям.

Конечно, у человека эволюция происходит не с такой скоростью, как у животных. Мы приносим куда меньше потомства и создаем для себя максимально комфортные условия для выживания. Но механизм работы Y-хромосомы теперь вполне понятен. Мужской пол – своего рода экспериментальный материал и кладовая новых генетических комбинаций. Мужскому полу теперь до скончания века приходится на своей шкуре отрабатывать все эволюционные новшества, а женскому – сохранять и преумножать лучшее.

Разделение на два пола – это и есть та самая специализация, то самое разделение труда, которое жизненно необходимо для наилучшего выполнения глобальной задачи всего живого: эволюционировать. Гермафродитизм в этом отношении невыгоден тем, что его носители ведут себя одинаково, у них стерты различия в полоролевом поведении и предназначении. У них нет выраженных самцов и самок, они представляют собой усредненное нечто и ведут себя одинаково. Соответственно, у них нет и разделения труда, и со своей сверхзадачей они справляются значительно хуже.


За то, что мы все такие разные, мы должны благодарить Y-хромосому

Наконец, именно двуполому размножению мы обязаны своей личной индивидуальностью. За то, что на земле нет двух одинаковых людей, мы должны благодарить Y-хромосому. Спасибо вам, мужчины!

<<< Назад
Вперед >>>