Давление насыщенного пара в зависимости температуры. Зависимость давления насыщенного пара от температуры. Анализ промышленной опасности при эксплуатации системы улавливания паров нефти при сливе из цист

Давлением (упругостью) насыщенного пара индивидуального вещества или смеси веществ называют давление паровой фазы, находящейся в равновесном состоянии (т. е. в предельном, неизменяющемся состоянии) с жидкой фазой при данной температуре. В нефтепереработке широко применяют стандартный метод с бомбой Рейда (Reid) по ГОСТ 1756-2000, которая имеет две герметично соединенные на резьбе камеры высокого давления, объем паровой камеры в 4 раза больше объема камеры для жидкости. В нижнюю камеру заливают исследуемую жидкость, например бензин, камеры соединяют и нагревают в термостате до стандартной температуры 38 °С. После выдержки для достижения равновесия между паровой фазой (насыщенные пары) и жидкой фазой по манометру на паровой камере определяют давление насыщенного пара. Такой экспериментальный метод является приближенным (так как для достижения равновесного состояния в принципе требуется бесконечно большое время и в паровой камере до опыта присутствуют воздух и водяные пары), но этот метод достаточен для оценки условий транспортировки и хранения, величины потерь от испарения, товарных характеристик бензинов, стабильных газовых конденсатов и сжиженных газов. Например, продукцией ГПЗ являются этан, пропан, бутан, газовый бензин (или их смеси). Газовый бензин - это сжиженные углеводороды, извлеченные из попутного нефтяного и природного газов. Давление насыщенного пара товарного газового бензина должно быть 0,07-0,23 МПа (0,7-2,4 кг/см2), пропана (жидкость) - не более 1,45 МПа (14,8 кг/см2), бутана (жидкость) - не более 0,48 МПа (4,9 кг/см2), а автобензинов и стабильных газовых конденсатов для отгрузки в железнодорожных цистернах - не более 66,7-93,3 кПа (500-700 мм рт.ст.). Таким образом, давление насыщенного пара зависит от состава исходной жидкости и температуры. Давление насыщенного пара углеводородов и их смесей - важнейшая характеристика для расчета разных массообменных процессов (однократное испарение жидких смесей, однократная конденсация газовых смесей, абсорбция углеводородных газов, ректификация жидкого многокомпонентного сырья и др.).

Поэтому в литературе приводятся как справочные данные, так и многочисленные эмпирические формулы для определения давления насыщенного пара для различных температур и давлений. Основные физические свойства некоторых углеводородов и газов приведены в табл. 2.3 и 2.4.

Так как велиична давления насыщенного пара за-всиит от температуры воздуха, при повыешнии по-следней воздух может воспринять больше водяно-го пара, при этом давлнеие насыщения увеличивается. Повышение давлнеия насыщения происходит не линей-но, а по слонжой кривой. Этот факт является настоль-ко важным для строительной физкии, что его не слеудет упускать из виду. Например, при темпертауре 0 °С (273,16 К) давлнеие насыщенного пара рнас состав-ляет 610,5 Па (Паскаль), при +10 °С (283,16 К) оно оказывеатся равным 1228,1 Па, при +20°С (293,16 К) 2337,1 Па, а при +30 °С (303,16 К) оно равно 4241,0 Па. Следоваетльно, при повышении температуры на 10 °С (10 К) давлнеие насыщенного пара повышеатся при-близительно вдвое.

Зависимость парциального давлнеия водяного па-ра от измеенний температуры приведена на рис. 3.

АБСОЛЮТНАЯ ВЛАЖНОСТЬ ВОЗДУХА f

Плотность водяного пара, т.е. содеражние его в воз-духе, называтес3я абсолютной влажностью воздуха и измеряется в г/м.

Максимум плотонсти водяного пара, который возмо-жен при опредеелнной температуре воздуха, называется плотнсотью насыщенного пара, которая, в свою очеердь создает давление насыщения. Плотонсть насыщенного пара fнас и его давлнеие рнас увеличиваются с по-вышнеием температуры воздуха. Ее повышение также является криволиенйным, однако ход этой кривой не такой круотй, как ход кривой рнас. Обе кривые зависят от велчиин 273,16/Тфакт[К]. Поэтмоу, ес-ли известно отношение рнас/fнас, они могут быть взамино проверены.

Абсолютная влажность возудха в воздухонепрони-цаемом замкнутом прострнастве не зависит от темпе-

ратуры до тех пор, пока не достигеатся плотонсть на-сыщенного пара. Зависимость абсолютной влажности возудха от его температуры покаазна на рис. 4.

ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ ВОЗДУХА

Отношение фактичсекой плотности водяного пара к плотонсти насыщенного пара или отноешние абсолют-ной влажности воздуха к максимальной влажности возудха при определенной его темпертауре называет-ся относительной влажностью воздхуа. Она выражает-ся в процентах.

При пониежнии температуры воздухонепроницаемого замкнутого пространства относительная влажность воз-духа повышеатся до тех пор, пока значнеие ϕ не ста-нет равным 100% и тем самым не будет достингута плот-ность насыщенного пара. При дальнйешем охлажеднии соответствующее избыточное количество водяного па-ра конденсируется.

При повыешнии температуры замкнутого простраснт-ва значение относительной влажности воздуха снижает-ся. Рис. 5 иллюстиррует зависимость относительной влажности возудха от температуры. Относительную влажность возудха измеряют при помощи гигроемтра или психрометра. Очень наденжый аспирационный психрометр Ассмана измеряет разнсоть температур двух точных термометров, один из котоырх, обернут влажной марелй. Охлаждение вследствие испарения воды оказывеатся тем большим, чем суше окружающий возудх. Из отношения разности темпеартур к фактичес-кой температуре воздуха можно опредлеить относитель-ную влажность окружающего воздуха.

Вместо нетончого волосяного гигрометра, который иногда применяют при выскоой влажности, исполь-зуют литий-хлроидный измерительный щуп. Он сос-

тоит из металлиечской гильзы со стеклотканевой обо-локчой, раздельной обмотки из нагревательной прово-локи и термоемтра сопротивления. Тканевая оболчока заполнена водным литий-хлоридным раствором и на-хоидтся под действием переменного напряжения между обеими обмотакми. Вода испаряется, происохдит крис-таллизация соли и сопротилвение существенно повы-шается. Вследствие этого содеражние водяного пара в окружающем возудхе и мощность накала уравнове-шиваются. По разнсоти температур между окружаю-щим воздхуом и встроенным термометром при помо-щи специальной измерительной схемы определяют относительную влажность воздуха.

Измерительный щуп реагриует на влияние влажнос-ти возудха на гигроскопчиеское волокно, которое вы-полнено так, чтобы между двумя электрдоами возни-кал достатчоной силы ток. Последний растет по мере увелиечния относительной влажности в опредеелнной зависимости от температуры воздуха.

Емкостным измерительным щупом является конден-сатор с перфорирвоанной плитой, снабженной гигро-скопическим диэлектирком, емкость которого изме-няется с изменнеием относительной влажности, а также темпертауры окружающего воздуха. Измерительный щуп можно применять как состваную часть так называмеого элемента RC схемы мультивибартора. При этом влаж-ность воздуха перевоидтся в определенную частоту, которая может иметь выскоие значения. Таким обрзаом достигают чрезвычайно большой чувствительности при-бора, котроая позволяет фиксировать минимальные измеенния влажности.

ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ ВОДЯНОГО ПАРА р

В отлчиие от давления насыщенного пара рнас, ко-троое обозначает максимальное парциальное давлнеие водяного пара в возудхе при определенной темпера-туре, понятие парциальное давлнеие водяного пара р ознаачет давление пара, который нахоидтся в нена-сыщенном состоянии, поэтому в каждом случае это давлнеие должно быть меньше, чем рнас.

По мере увелиечния содержания водяного пара в сухом возудхе значение р приблиажется к соответ-ствующему значению рнас. При этом атмосфреное давление Робщ остатеся постоянным. Поскольку пар-циальное давление водяного пара р предстваляет собой лишь часть общего давлнеия всех компоннетов смеси, его величину невозможно опредлеить путем пря-мого измерения. Напротив, давлнеие пара рнас мож-но определить, если в сосуде снаачла создать вакуум, а затем ввести в него воду. Велиична повышения дав-ления вследтсвие испарения соответствует значению рнас, относящемуся к темпертауре насыщенного па-ром пространства.

При изветсном рнас можно косвенно измеирть р следующим образом. В сосуде нахоидтся смесь воздуха и водяного пара внаачле неизвестного состава. Давле-ние внутри сосуда Pобщ = pв + p, т.е. атмосфреному давлнеию окружающего воздуха. Если теперь запе-реть сосуд и ввести в него опредеелнное количество воды, то давлнеие внутри сосуда повысится. После насыещния водяного пара оно составит pв + рнас. Ус-танолвенную с помощью микромаонметра разность дав-лений рнас - p вычитают из уже извеснтого значения давления насыщенного пара, котроое соответствует тем-пературе в сосуде. Результат будет соответсвтовать пар-циальному давлению p первоначального содержмио-го сосуда, т.е. окружающего воздуха.

Проще вычилсить парциальное давление p, исполь-зуя данные таблиц давлнеия насыщенного пара рнас для определенного уровня темпертауры. Величина отноше-ния p/рнас соответтсвует величине отношения плот-ности водяного пара f к плотонсти насыщенного пара fнас, котроая равна значнеию относительной влаж-

ности воздхуа. Таким образом, полуачем уравне-

ние р =рнас.

Вследствие этого, при изветсных темпертауре воздуха и давлении насыщения рнас можно быстро и наглядно опредлеить значение парциального давления p. Напрмиер, относительная влажность воздуха составляет 60%, а темпертаура воздуха равна 10°С. Тогда, поскольку при этой темпертауре давление насыщенного пара pнас = 1228,1 Па, парциальное давлнеие р будет равно 736,9 Па (рис 6).

ТОЧКА РОСЫ ВОДЯНОГО ПАРА т

Соедржащийся в воздухе водяной пар обычно нахоидтся в ненасыщенном состоянии и поэотму имеет определенное парциальное давлнеие р и определенную относительную влажность возудха <р < 100%.

Если воздух нахоидтся в прямом конткате с твердыми материалами, температура поверхонсти которых ниже его температуры, то при соответсвтующей разнице температур воздух гранинчого слоя охлаждается и относительная влажность его повышеатся до тех пор, пока ее значнеие не достгиает 100%, т.е. плотности насыщенного пара. Даже при незначиетльном дальнйешем охлаждении на поверхности твердого матеирала начинает конденсироваться водяной пар. Это происохдит до тех пор, пока не устаноивтся новое равновесное состояние темпертауры поверхности материала и плотонсти насыщенного пара. Вследствие высокой плотонсти охлажденный воздух опускается, а более теплый - поднимеатся. Количество конденсата будет увеличиавться, пока не устаноивтся равновесие и процесс конденсации не прекратится.

Процесс конденсации связан с высвободжением тепла, количество которого соответствует теполте парообразования воды. Это приводит к повыешнию температуры поверхности твердых веществ.

Точкой росы т назывеатся температура поверхонсти, плотность пара вблизи которой станоивтся равной плотности насыщенного пара, т.е. относительная влажность возудха достигает 100%. Конденсация водяного пара начинеатся сразу же после того, как его темпертаура опускается ниже точки росы.

Если изветсны температура воздуха вв и относительная влажность , можно состваить уравнение p(вв) = рнас(т) = pнас. Для расечта требуемого значения рнас используют табилцу давлений насыщенного пара.

Рассмотрим пример такого расечта (рис. 7). Темпертаура воздуха вв = 10°С, относительная влажность воздуха= 60%, pнас (+10 °С) = 1228,1 П рнас(т) = = 0 6 х 1228,1 Па = 736,9 Па, точка росы= +2,6°С (таблица).

Точку росы можно опредлеить графическим способом с помощью кривой давлнеия насыщения Точку росы можно рассчтиать только в том слуаче, когда кроме температуры воздуха изветсна также его относитель-ная влажность. Вместо расечта можно воспользовать-ся измерением. Если медленно охладжать полирован-ную поверхность плиты (или мембрнаы), выполненную из теплопроовдного материала, до тех пор, пока не нач-нется выпаедние на ней конденсата, и измеирть затем темпертауру этой поверхности, можно прямым путем найти точку росы окружающего возудха Примене-ние этого метода не треубет знания относительной влаж-ности воздуха, хотя можно дополниетльно по темпе-ратуре возудха и точке росы вычислить значение

На этом приницпе базируется действиегигрометра для опредеелния точки росы Даниеля и Рейнольта, кото-рый разраобтан в первой полоивне XIX столетия. В последнее время благдоаря применению электроники он был настолько улучешн, что позволяет опредлеить точку росы с очень выскоой точностью. Таким обра-зом, можно соответсвтующим образом калибровать нормальный гигрометр и контролриовать его с помощью гигромтера, предназначенного для определения точки росы.

Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 12. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (IV, 5), а вдали от критической температуры уравнением (IV, 8).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (IV, 8)

(IV, 9)

Представив уравнение (IV, 9) в виде неопределенного интеграла, получим:

(IV, 10),

где С - константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах (в этом случае тангенс наклона прямой равен ). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.13 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Рис. 13. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

Однако уравнение (IV, 10) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур - от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом, т.к. при этом существенно возрастает его давление. Поэтому уравнение, охватывающее зависимость P = f(T) в широком интервале температур, неизбежно становится эмпирическим.

Сверхкритическое состояние – четвертая форма агрегатного состояния вещества, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.



Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С и –147° С), поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем.

Сейчас сложились и продуктивно сосуществуют два самостоятельных направления использования сверхкритических флюидов. Эти два направления различаются конечными целями того, что достигается с помощью этих сверхкритических сред. В первом случае СКФ используются для экстракции необходимых веществ из различных материалов, продуктов или отходов производства. И в этом есть огромная экономическая заинтересованность. Во втором случае СКФ используют непосредственно для осуществления ценных, часто новых химических превращений. Надо подчеркнуть, что достоинства СКФ в качестве экстрагентов обусловлены прежде всего тем, что они оказались способными исключительно эффективно растворять неполярные соединения, в том числе и твердые вещества. Это основное достоинство резко усиливается уже упоминавшейся нами высокой диффузионной способностью СКФ и их исключительно низкой вязкостью. Обе последние особенности приводят к тому, что скорость экстракции становится чрезвычайно высокой. Приведём только некоторые примеры.

Так, деасфальтизация смазочных масел осуществляется с использованием сверхкритического пропана. Сырое масло растворяется в сверхкритическом пропане при давлении, заметно более высоком, чем Р кр . При этом в раствор переходит всё, кроме тяжелых асфальтовых фракций. Из-за огромной разницы в вязкостях сверхкритического раствора и асфальтовой фракции механическое разделение осуществляется очень легко. Затем сверхкритический раствор поступает в расширительные емкости, в которых давление постепенно снижается, оставаясь, однако, выше Р кр вплоть до последней ёмкости. В этих ёмкостях последовательно выделяются из раствора всё более легкие примесные фракции нефтей из-за снижения их растворимости с падением давления. Разделение фаз в каждой из этих ёмкостей опять осуществляется очень легко вследствие резкого различия их вязкостей. В последней ёмкости давление ниже Р кр , пропан при этом испаряется, в результате выделяется очищенное от нежелательных примесей масло.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счёт высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

В настоящее время большое практическое значение имеет высокая растворимость H 2 в сверхкритических средах, поскольку полезные процессы гидрирования очень распространены. Так, например, разработан эффективный процесс каталитического гидрирования CO 2 в сверхкритическом состоянии, приводящий к образованию муравьиной кислоты. Процесс протекает очень быстро и чисто.

Испарение жидкостей. Насыщенные и ненасыщенные пары. Давление насыщенного пара. Влажность воздуха.

Испарение - парообразование, происходящее при любой температуре со свободной поверхности жидкости. Неравномерное распределение кинетической энергии молекул при тепловом движении приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с другими молекулами. Большей кинетической энергией обладают молекулы, имеющие большую скорость, а температура тела зависит от скорости движения его молекул, следовательно, испарение сопровождается охлаждением жидкости. Скорость испарения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жидкости.

Конденсация - процесс перехода вещества из газообразного состояния в жидкое.

Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала испарения концентрация вещества в газообразном состоянии достигнет такого значения, при котором число молекул, возвращающихся в жидкость, становится равным числу молекул, покидающих жидкость за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества. Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называют насыщенным паром. (Паром называют совокупность молекул, покинувших жидкость в процессе испарения.) Пар, находящийся при давлении ниже насыщенного, называют ненасыщенным.

Вследствие постоянного испарения воды с поверхностей водоемов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосферное давление представляет собой сумму давления сухого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром. Насыщенный пар в отличие от ненасыщенного не подчиняется законам идеального газа. Так, давление насыщенного пара не зависит от объема, но зависит от температуры. Эта зависимость не может быть выражена простой формулой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от температуры составлены таблицы, по которым можно определить его давление при различных температурах.

Давление водяного пара, находящегося в воздухе при данной температуре, называют абсолютной влажностью, или упругостью водяного пара. Поскольку давление пара пропорционально концентрации молекул, можно определить абсолютную влажность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в килограммах на метр кубический (р).

Большинство явлений, наблюдаемых в природе, например быстрота испарения, высыхание различных веществ, увядание растений, зависит не от количества водяного пара в воздухе, а от того, насколько это количество близко к насыщению, т. е. от относительной влажности, которая характеризует степень насыщения воздуха водяным паром. При низкой температуре и высокой влажности повышается теплопередача и человек подвергается переохлаждению. При высоких температурах и влажности теплопередача, наоборот, резко сокращается, что ведет к перегреванию организма. Наиболее благоприятной для человека в средних климатических широтах является относительная влажность 40-60%. Относительной влажностью называют отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т. е.

Относительная влажность колеблется в широких пределах. Причем суточный ход относительной влажности обратен суточному ходу температуры. Днем, с возрастанием температуры и, следовательно, с ростом давления насыщения, относительная влажность убывает, а ночью возрастает. Одно и то же количество водяного пара может либо насыщать, либо не насыщать воздух. Понижая температуру воздуха, можно довести находящийся в нем пар до насыщения. Точкой росы называют температуру, при которой пар, находящийся в воздухе, становится насыщенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начинается конденсация водяного пара. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами.

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Давление насыщенного пара.

При сжатии насыщенного пара, температура которого под-держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста-новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р 0 , при котором жидкость находит-ся в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р 0 эта зависимость выражается равенством:

p 0 =nkT.

Так как давление насыщенного пара не зависит от объема, то, следова-тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p 0 (T) отличается от зави-симости (p 0 =nkT ) для идеального газа.

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га-за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p 0 =nkT ), давление насы-щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из-менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.