Как найти примерное значение корня. Приближенное вычисление квадратных корней

Извлечение квадратного корня «вручную»

На примере возьмём число 223729. Для извлечения корня мы должны проделать следующие операции:

А) разбить число справа на лево на разряды по две цифры в разряде, ставя штрихи наверху- 223729→ 22"37"29". Если бы это было число с нечётным числом цифр, как например, 4765983, то при разбиении к первой цифре слева надо приписать нуль, т.е. 4765983→04"76"59"83".

Б) Навесить на число радикал и написатьзнак равенства:

22"37"29"→=… .

После этого начинаем, собственно, вычислять корень. Это делается шагами, причём на каждом шаге обрабатывается один разряд исходного числа, т.е. две очередных цифры слева направо, и получается одна цифра результата.

Шаг 1 ― извлечение квадратного корня с недостатком из первого разряда:

= 4… (с недостатком)

Итог шага 1 есть первая цифра искомого числа:

Шаг 2 ― первую полученную цифру возводим в квадрат, приписываем под первым разрядом и ставим знак минус вот так:

И производим вычисление так, как это уже написано.

Шаг 3 ― приписываем справа к результату вычитания две цифры следующего разряда и слева от получившегося числа ставим вертикальную черту вот так:

После этого, воспринимая цифры, стоящие после знака =, как обычное число, умножаем его на 2 и приписываем слева от вертикальной черты пропуск, в котором ставим точку и под этой точкой тоже ставим точку:

Поставленная точка обозначает поиск цифры. Эта цифра будет второй в итоговом числе, т.е. встанет после цифры 4. Ищется она по следующему правилу:

Это наибольшая цифра k такая, что число 8 k , т.е. число, получающееся из 8 приписыванием цифры k , умноженное на k , не превосходит 637.

В данном случае это цифра 7, т.к. 87∙7=609<637, но 88∙8=704>637. Итак, мы имеем:

Шаг 4 ― проведём горизонтальную черту и под ней запишем результат вычитания:

637 – 609 = 28. К числу 28 приписываем последний разряд исходного подкоренного числа и получим число 2829. Слева от него проводим вертикальную черту, умножаем теперь уже 47 на 2 и полученное число 94 приписываем слева от вертикальной черты, оставив место в виде точки для поиска последней цифры. Цифра 3 подходит в точности без остатка, так как 943∙3=2829, значит, это последняя цифра искомого числа, т.е. = 473.

943 2829

В принципе, если бы остаток получился ненулевой, можно было бы поставить после найденных цифр числа запятую, списать в качестве следующего разряда два десятичных знака числа, или два нуля, если таковые отсутствуют, и продолжать все более и более точно извлекать квадратный корень. Вот например:

= 4,123…

Приближенные методы извлечения квадратного корня

(без использования калькулятора).

1 метод.

Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 ?х), и пользовались формулой . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью калькулятора 5,2915026. Как видим способ вавилонян дает хорошее приближение к точному значению корня.

2 метод.

Исаак Ньютон разработал метод извлечения квадратного корня, который восходил еще к Герону Александрийскому (около 100 г. н.э.). Метод этот (известный как метод Ньютона) заключается в следующем.

Пусть а 1 - первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа - точного квадрата, не превосходящего х) .

Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10 √2 Ответ в принципе очень прост. Возьмем вместо √2 его приближение в виде конечной десятичной дрдби - это- рациональное число. Возводить в рациональную степень мы умеем; дело сводится к возведению в целую степень и извлечению корня. Мы получим приближенное значение числа. Можно взять десятичную дробь подлиннее (это снова рациональное число). Тогда придется извлечь корень большей степени; ведь знаменатель рациональной дроби увеличится, но зато мы получим более точное приближение. Конечно, если взять приближенное значение √2 в виде очень длинной дроби, то возведение в степень будет делом очень трудным. Как справиться с этой задачей?

Вычисление квадратных корней, кубичных корней и других корней невысокой степени - вполне доступный нам арифметический процесс; вычисляя, мы последовательно, один за другим, пишем знаки десятичной дроби. Но для того, чтобы возвести в иррациональную степень или взять логарифм (решить обратную задачу), нужен такой труд, что применить прежнюю процедуру уже не просто. На помощь приходят таблицы. Их называют таблицами логарифмов или таблицами степеней, смотря по тому, для чего, они предназначены. Они экономят время: чтобы возвести число в иррациональную степень, мы не вычисляем, а только перелистываем страницы.

Хотя вычисление собранных в таблицы значений - процедура чисто техническая, а все же дело это интересное и имеет большую историю. Поэтому посмотрим, как это делается. Мы вычислим не только х = 10 √2 , но решим и другую задачу: 10 х = 2, или x = log 10 2. При решении этих задач мы не откроем новых чисел; это просто вычислительные задачи. Решением будут иррациональные числа, бесконечные десятичные дроби, а их как-то неудобно объявлять новым видом чисел.

Подумаем, как решить наши уравнения. Общая идея очень проста. Если вычислить 10 1 и 10 1/10 , и 10 1/100 , и 10 1/1000 , и т. д., а затем перемножить результаты, то мы получим 10 1,414… или l0 √2 Поступая так, мы решим любую задачу такого рода. Однако вместо 10 1/10 и т. д. мы будем вычислять 10 1/2 , и 10 1/4 и т. д. Прежде чем начинать вычисления, объясним еще, почему мы обращаемся к числу 10 чаще, чем к другим числам. Мы знаем, что значение таблиц логарифмов выходит далеко за рамки математической задачи вычисления корней, потому что

Это хорошо известно всем, кто пользовался таблицей логарифмов, чтобы перемножить числа. По какому же основанию b брать логарифмы? Это безразлично; ведь в основу таких вычислений положен только принцип, общее свойство логарифмической функции. Вычислив логарифмы один раз по какому-нибудь произвольному основанию, можно перейти к логарифмам по другому основанию при помощи умножения. Если умножить уравнение (22.3) на 61, то оно останется верным, поэтому если перемножить все числа в таблице логарифмов по основанию b на 61, то можно будет пользоваться и такой таблицей. Предположим, что нам известны логарифмы всех чисел по основанию b. Иначе говоря, можно решить уравнение b а = с для любого с; для этого существует таблица. Задача состоит в том, как найти логарифм этого же числа с по другому основанию, например x. Нам нужно решить уравнение х а’ = с. Это легко сделать, потому что х всегда можно представить так: х = b t . Найти t, зная х и b, просто: t = log b x. Подставим теперь х = b t в уравнение х а’ = с; оно перейдет в такое уравнение: (b t) а’ = b ta’ = c. Иными словами, произведение ta’ есть логарифм с по основанию b. Значит, а’ = a/t. Таким образом, логарифмы по основанию х равны произведениям логарифмов по основа нию b на постоянное число l/t. Следовательно, все таблицы логарифмов эквивалентны с точностью до умножения на число l/log b x. Это позволяет нам выбрать для составления таблиц любое основание, но мы решили, что удобнее всего взять за основание число 10. (Может возникнуть вопрос: не существует ли все-таки какого-нибудь естественного основания, при котором все выглядит как-то проще? Мы попытаемся ответить на этот вопрос позднее. Пока все логарифмы будут вычисляться по основанию 10.)

Теперь посмотрим, как составляют таблицу логарифмов. Работа начинается с последовательных извлечений квадратного корня из 10. Результат можно увидеть в табл. 22.1. Показатели степеней записаны в ее первом столбце, а числа 10 s - в третьем. Ясно, что 10 1 = 10. Возвести 10 в половинную степень легко -это квадратный корень из 10, а как извлекать квадратный корень из любого числа, знает каждый. (Квадратный корень лучше всего извлекать не тем способом, которому обычно учат в школе, а немного иначе. Чтобы извлечь квадратный корень из числа N, выберем достаточно близкое к ответу число а, вычислим N/a и среднее а’ =1/2; это среднее будет новым числом а, новым приближением корня из N. Этот процесс очень быстро приводит к цели: число значащих цифр удваивается после каждого шага.) Итак, мы нашли первый квадратный корень; он равен 3,16228. Что это дает? Кое-что дает. Мы уже можем сказать, чему равно 10 0,5 , и знаем по крайней мере один логарифм.

Логарифм числа 3,16228 очень близок к 0,50000. Однако нужно еще приложить небольшие усилия: нам нужна более подробная таблица. Извлечем еще один квадратный корень и найдем 10 1/4 , что равно 1,77828. Теперь мы знаем еще один логарифм: 1,250 -это логарифм числа 17,78; кроме того, мы можем сказать, чему равно 10 0,75: ведь это 10 (0,5+0,25) , т. е. произведение второго и третьего чисел из третьего столбца табл. 22.1. Если сделать первый столбец таблицы достаточно длинным, то таблица будет содержать почти все числа; перемножая числа из третьего столбца, мы получаем 10 почти в любой степени. Такова основная идея таблиц. В нашей таблице содержится десять последовательных корней из 10; основной труд по составлению таблицы вложен в вычисления этих корней.

Почему же мы не продолжаем повышать точность таблиц дальше? Потому что мы кое-что уже подметили. Возведя 10 в очень малую степень, мы получаем единицу с малой добавкой. Это, конечно, происходит потому, что если возвести, например, 10 1/1000 в 1000-ю степень, то мы снова получим 10; ясно, что 10 1/1000 не может быть большим числом: оно очень близко к единице. Более того, малые добавки к единице ведут себя так, будто их каждый раз делят на 2; поглядите-ка на таблицу повнимательнее: 1815 переходит в 903, потом в 450, 225 и т. д. Таким бразом, если вычислить еще один, одиннадцатый, квадратный корень, он с большой точностью будет равен 1,00112, и этот результат мы угадали еще до вычисления. Можно ли сказать, какова будет добавка к единице, если возвести 10 в степень ∆/1024, когда ∆ стремится к нулю? Можно. Добавка будет приблизительно равна 0,0022511∆. Конечно, не в точности 0,0022511∆; чтобы вычислить эту добавку поточнее, делают такой трюк: вычитают из 10 s единицу и делят разность на показатель степени s. Отклонения полученного таким образом частного от его точного значения одинаковы для любой степени s. Видно, что эти отношения (табл. 22.1) примерно равны. Сначала они сильно различаются, но потом все ближе подходят друг к другу, явно стремясь к какому-то числу. Что это за число? Проследим, как меняются числа четвертого столбца, если опускаться вниз по столбцу. Сначала разность двух соседних чисел равна 0,0211, потом 0,0104, потом 0,0053 и, наконец, 0,0026. Разность каждый раз убывает наполовину. Сделав еще один шаг, мы доведем ее до 0,0013, потом до 0,0007, 0,0003, 0,0002 и, наконец, примерно до 0,0001; надо последовательно делить 26 на 2. Таким образом, мы спустимся еще на 26 единиц и найдем для предела 2,3025. (Позднее мы увидим, что правильнее было бы взять 2,3026, но давайте возьмем то, что у нас получилось.) Пользуясь этой таблицей, можно возвести 10 в любую степень, если ее показатель каким угодно способом выражается через I/I024.

Теперь легко составить таблицу логарифмов, потому что все необходимое для этого мы уже припасли. Процедура этого изображена в табл. 22.2, а нужные числа берутся из второго и третьего столбцов табл. 22.1.

Предположим, что мы хотим знать логарифм 2. Это значит, что мы хотим знать, в какую степень надо возвести 10, чтобы получить 2. Может быть, возвести 10 в степень 1/2? Нет, получится слишком большое число. Глядя на табл.. 22.1, можно сказать, что нужное нам число лежит между 1/4 и 1/2. Поиск его начнем с 1/4; разделим 2 на 1,778…, получится 1,124…; при делении мы отняли от логарифма двух 0,250000, и теперь нас интересует логарифм 1,124…. Отыскав его, мы прибавим к результату 1/4 = 256/1024. Найдем в табл.22.1 число, которое бы при движении по третьему столбцу сверху вниз стояло сразу за 1,124… . Это 1,074607. Отношение 1,124… к 1,074607 равно 1,046598. В конце концов мы представим 2 в виде произведения чисел из табл. 22.1:
2 = (1,77828) (1,074607) (1,036633). (1,0090350) (1,000573).
Для последнего множителя (1,000573) в нашей таблице места не нашлось; чтобы найти, его логарифм, надо представить это число в виде 10∆/1024 ≈ 1 + 2,3025∆/1024. Отсюда легко найти, что ∆ = 0,254. Таким образом, наше произведение можно представить в виде десятки, возведенной в степень 1/1024 (266 + 32+16 + 4 + 0,254). Складывая и деля, мы получаем нужный логарифм: log 10 2 = 0,30103; этот результат верен до пятого десятичного знака!

Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с ∆. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем
10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Составить таблицы логарифмов с точностью до четырнадцатого десятичного знака таким методом- дело очень трудное. Зато целых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных машин оказалось возможным составить таблицы логарифмов независимо от Мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.

Составляя таблицы, мы натолкнулись на интересный факт; если показатель степени ε очень мал, то очень легко вычислить 10 ε ; это просто 1+2,3025ε. Это значит, что 10 n/2,3025 = 1 + n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из логарифмов по основанию 10 простым умножением. Теперь настало время выяснить, не существует ли математически выделенного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой естественной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025…. Это соответствует переходу к новому основанию - натуральному, или основанию е. Заметим, что log e (l + n) ≈ n или е n ≈ 1 + n, когда n → 0.

Легко найти само число е; оно равно 101/ 2,3025 или 10 0,4342294… Это 10 в иррациональной степени. Для вычисления е можно воспользоваться таблицей корней из 10. Представим 0,434294… сначала в виде 444,73/1024, а числитель этой дроби в виде суммы 444,73 = 256 + 128 + 32 + 16 + 8 + 4 + 0,73. Число е поэтому равно произведению чисел
(1,77828) (1,33352) (1,074607) (1,036633) (1,018152) (1,009035) (1,001643) = 2,7184.
(Числа 0,73 нет в нашей таблице, но соответствующий ему результат можно представить в виде 1 + 2,3025∆/1024 и вы—числить при ∆ = 0,73.) Перемножив все 7 сомножителей, мы получим 2,7184 (на самом деле должно быть 2,7183, но и этот результат хорош). Используя такие таблицы, можно возводить число в иррациональную степень и вычислять логарифмы иррациональных чисел. Вот как надо обращаться с иррациональностями!

Тип урока: комбинированный.

Просмотр содержимого документа
«Приближенные вычисления квадратного корня.»

8 класс

Дата:

Урок № 9.

Тема: Приближенные вычисления квадратного корня.

Цели: 1. Научить учащихся находить приближенные значения квадратных корней.

2. Развивать наблюдательность, умение анализировать, сравнивать, делать выводы.

    Воспитывать позитивное отношение к учебному труду

Тип урока: комбинированный.

Формы организации урока: индивидуальная, коллективная

Оборудование: проектная доска, карточки для рефлексии настроений, микрокалькулятор

Три пути ведут к знанию: путь размышления

Это путь самый благородный,

путь подражания – это путь самый легкий

и путь опыта – это путь самый горький.

Конфуций

Ход урока.

    Организационный момент

    Этап проверки домашнего задания

№ 60 – у доски выполняет 1 учащийся, на месте проверяет правильность выполнения задания другой ученик

    Устная работа: проектируется на доску

а) Найди значение корня:

б) Имеет ли смысл выражение:

в) Найди число, арифметический квадратный корень которого равен 0; 1; 3; 10; 0,6

    Этап объяснения нового материала

Для того, чтобы вычислить приближенное значение квадратного корня, необходимо использовать микрокалькулятор. Для этого нужно ввести в калькулятор подкоренное выражение и нажать на клавишу со знаком радикала. Но не всегда под рукой имеется калькулятор, поэтому находить приближенное значение квадратного корня можно следующим образом:

Пусть надо найти значение .

Так как , то . Теперь среди чисел, расположенных на отрезке от 1 до 2 возьмем соседние числа 1,4 и 1,5, получим: , далее возьмем числа 1,41 и 1,42,эти числа удовлетворяют неравенству . Если продолжить данный процесс возведения в квадрат соседних чисел, то получим следующую систему неравенств:

Проецируется на доску.

Из этой системы, сравнивая цифры после запятой, получаем:

Приближенные значения квадратных корней можно брать по избытку и по недостатку, т.е. по недостатку с точностью до 0,0001 и по избытку.

    Закрепление изученного материала.

Уровень «А»

0,2664 0,2 – по недостатку

№93 (используется калькулятор)

5. Валеологическая пауза: упражнения для глаз.

Уровень «В»

6. Историческая справка о необходимости нахождения значения квадратных корней

(Заранее предлагается желающему ученику подготовить сообщение на эту тему, используя интернет)

Предлагается формула для нахождения приближенного значения квадратного корня из иррационального числа:

Уровень «С» № 105

7. Рефлексия.

    Итог урока.

    Домашнее задание: № 102,

При решение задач, связанных с вычислениями, получаются числовые результаты, которые часто не являются точными, т.к. при постановке задачи и в ходе вычислений возникают погрешности.

Источниками погрешностей являются:

1) погрешности исходных данных;

2) погрешности округления промежуточных и окончательных результатов;

3) погрешности приближенного метода решения задачи.

При выполнении действий над приближенными числами надо:

1) зная точность исходных данных, уметь оценивать точность результата;

2) брать исходные данные с такой точностью, чтобы обеспечить заданную точность результата.

2.1 Погрешности приближенных чисел

Пусть число х является точным значением, а число а - приближенным значением некоторой величины.

Определение. Разность между числом x и его приближенным значением а называется погрешностью приближенного числа а: Δ = |х-а |.

Пусть х=10,5, а=10, тогда Δ=10,5-10=0,5.

Пусть х=9,5, а=10, тогда Δ=9,5-10=-0,5.

Определение. Абсолютная величина разности между числом x и его приближенным значением а называется абсолютной погрешностью приближенного числа а: Δа = |х-а|

Пусть х=10,5, а=10, тогда Δа =|10,5-10|=0,5.

Пусть х=9,5, а=10, тогда Δa=|9,5-10|=0,5.

Часто точное число х неизвестно. Тогда нельзя найти Δа = |х-а|, поэтому используют оценку абсолютной погрешности - предельную абсолютную погрешность Δ а ≥ Δа =x-а|. При этом число х заключено в границах:

а - Δ а  х  а + Δ а или кратко: х = а ± Δ а.

Читают: х равно а с точностью Δ а.

Для того, чтобы определить качество производимых вычислений, надо определить, какую долю составляет абсолютная погрешность от измеряемой величины. Для этого используют относительную погрешность.

Определение. Относительной погрешностью δа приближенного числа а называется отношение абсолютной погрешности Δа к модулю числа х:

или
.

Оценкой относительной погрешности ба является предельная относительная погрешность:

Пример. Дано число х=0,4287 и его приближенное значение а=0,4264. Найти абсолютную и относительную погрешности числа а.

Решение. Вычислим абсолютную погрешность числа а:

Δа=|0,4287- 0,4264| = 0,0023.

Вычислим относительную погрешность числа а:

или 5,4%.

Замечания. 1. При записи погрешности принято оставлять 1-2 значащих цифры. Погрешности всегда округляют в сторону увеличения. При этом границы точного числа х расширяются.

2. Если число х неизвестно, то при нахождении относительной погрешности используют число а.

3. Относительную погрешность часто выражают в процентах, домножая ее на 100%.

2.2. Значащие и верные цифры приближенного числа

Для оценки точности приближенного числа а принято записывать его в виде десятичной дроби. Точность вычислений определяется не числом десятичных знаков (цифр после запятой), а числом верных значащих цифр результата.

Определение. Значащими цифрами числа а называются все его цифры, кроме нулей, записанных перед первой цифрой, отличной от нуля, и нули в конце записи, если они служат для сохранения разряда или точности числа.

Пример. Определить значащие цифры числа а.

а = 0,02701 => значащие цифры: 2,7,0,1.

а = 0,0270 => значащие цифры: 2,7,0.

а = 2700 => значащие цифры: 2,7,0,0.

Определение. Цифра α i приближенного числа а называется верной значащей цифрой в широком смысле (в строгом смысле), если предельная абсолютная погрешность числа а не превышает единицы (половины единицы) разряда, в котором записана цифра α i: Δ а 10 i (Δ а 0,5∙10 i).

Пример. Определить верные цифры приближенного числа а=0,7264, если абсолютная погрешность Δ а =0,0023.

Решение. Абсолютная погрешность Δ а =0,0023  0,005 = 0,5∙10 -2 . Следовательно, цифры 7 и 2 - верные в строгом смысле, цифры 6 и 4 – неверные (сомнительные). Так как Δ а  = 0,0023 < 0,01 = 10 -2 , то цифры 7 и 2 являются верными в широком смысле.

Замечания. 1. В математических таблицах все значащие цифры являются верными в строгом смысле.

2. В окончательном результате принято оставлять только верные цифры. Тогда предельная абсолютная погрешность числа а определяется по единице младшего разряда. Например, пусть а=127,38, тогда Δ а =0,01, если все цифры являются верными в строгом смысле, и Δ а = 0,5∙ 0,01 = 0,005, если все цифры являются верными в широком смысле.

Пример. Определить, какое равенство точнее 13/19=0,684 или
=7,21?

Решение. Обозначим а =0,684, в =7,21. Найдем абсолютные погрешности этих чисел. Для этого возьмем 13/19 и
с большим числом десятичных знаков: 13/39=0,68421...,
=7,2111...

Тогда Δ а =|0,68421...-0,684| < 0,00022, Δ в = |7,2111...-7,21| < 0,0012.

Найдем относительные погрешности:

или 0,033%.

или 0,017%.

Второе равенство более точное, так как
.

2.3. Округление чисел

В приближенных вычислениях часто приходится округлять числа как приближенные, так и точные, т. е. отбрасывать одну или несколько последних цифр. При округ­лении числа мы заменяем его приближенным числом с меньшим коли­чеством значащих цифр, в результате чего возникает погрешность ок­ругления. Чтобы эта погрешность была минимальной, нужно придер­живаться некоторых правил округления.

Правило I . Если первая слева из отбрасываемых цифр больше 5, то последняя из сохраняемых цифр усиливается, т.е. увеличивается на единицу. Усиление производится и тогда, когда первая слева из от­брасываемых цифр равна 5, а за ней следуют отличные от нуля цифры.

Пример. Округляя до десятых долей число 73,473, получим 73,5. Послед­няя из оставшихся цифр усилена, так как 7 > 5.

Правило II . Если первая из отброшенных цифр меньше 5, то последняя из оставшихся цифр не усиливается, т. е. остается без изменения.

Пример. Округляя до сотых долей число 73,473, получим 73,47.

Правило III . Если первая слева из отброшенных цифр равна 5 и за ней не следуют отличные от нуля цифры, то последняя остав­шаяся цифра усиливается, если она нечетная, и остается без изменения, если она четная (правило четной цифры).

Пример. Округляя число 5,785 до сотых долей, получаем 5,78. Усиления не делаем, так как последняя сохраняемая цифра 8 - четная. Округляя число 5,775 до второго десятичного знака, имеем 5,78. Последняя сохраняемая цифра 7 увеличивается на единицу, поскольку она нечетная.

При применении правила III к округлению одного числа мы фак­тически не увеличиваем точность вычислений, однако при многочис­ленных округлениях избыточные числа встречаются примерно так же часто, как и недостаточные. Происходит взаимная компенсация погреш­ностей, результат оказывается более точным.

Таким образом, при применении выше рассмотренных правил ок­ругления абсолютная погрешность округления не превосходит полови­ны единицы разряда, определяемого последней оставленной значащей цифрой.

Если точное число х округляется до n значащих цифр, то получаемое приближенное число а имеет абсолютную погрешность, равную погрешности округления. В этом случае прибли­женное число а имеет n верных значащих цифр в узком смысле.

Пример. Округляя число х=26,837 до трех значащих цифр, получим а =26,8, откуда Δ а = |х-а | = | 26,837-26,8 |=0,037 < 0,05, т. е. число а имеет три верные значащие цифры в узком смысле.

При округлении приближенного числа a получаем новое прибли­женное число а 1 .

Определение. Число Δ а1 = Δ а +Δ окр называется погрешностью округления.

Абсолютная погрешность числа a 1 складывается из абсолютной погрешности первоначального числа Δ а и погрешности округления Δ окр, т. е.

Δ а1 = Δ а +Δ окр.

Пример. Округлить сомнительные цифры числа х=34,124 ± 0,021. Определить абсолютную погрешность результата.

Решение. Приближенное число a=34,124 имеет три верные цифры в узком смыс­ле: 3, 4, 1, так как Δ а =0,021 < 0,05. Применяя правила округления, найдем приближенное значение а 1 , сохранив десятые доли: а 1 = 34,1. Погрешность округления Δ окр =|34,124-34,1|=0,024. Тогда абсолютная погрешность числа а 1 равна Δ а1 =Δ а +Δ окр =0,021+0,024 = 0,045 < 0,05.

Таким образом, все значащие цифры числа а 2 верные (в узком смысле).

Итак, х=34,1 ±0,045.

Однако при округлении приближенного числа а, имеющего n вер­ных значащих цифр (в узком смысле), до n значащих цифр может ока­заться, что округленное число а 1 будет иметь n верных значащих цифр в широком смысле.

Пример. Приближенное число a=15,3654 (± 0,0018) имеет четыре верные значащие цифры в узком смысле (1, 5, 3, 6), так как Δ а =0,0018 < 0,005. При округлении до четырех значащих цифр получим а 1 = 15,37 и Δ а1 =Δ а +Δ окр =0,0018+|15,3654-15,37|=0,0064.

Очевидно, что 0,005 < 0,0064 < 0,01. Следовательно, число 15,37 (± 0,0064) имеет четыре верные цифры в широком смысле.

Итак, х=15,37 ±0,0064.

Пример. Округлить сомнительные цифры числа а=26,7245 (± 0,0026), оставив верные знаки в узком смысле. Определить абсолютную погрешность ре­зультата.

Решение. По условию Δ а = 0,0026 < 0,005, следовательно, в числе 26,7245 верными в узком смысле являются цифры 2, 6, 7, 2. Используя правила округления, найдем приближенное значение а 1 , сохранив сотые доли:

Полученная погрешность больше 0,005 (0,005 < 0,0071), поэтому уменьшим чис­ло цифр в приближенном числе до трех; а 2 = 26,7. Находим Δ а2 = =Δ а +Δ окр =0,0026+|26,7245-26,7|=0,0271< 0,05. Следовательно, оставшиеся три цифры верны в узком смысле.

Итак, х=26,7 ±0,0271 => х=26,7 ±0,03, округляя погрешность до двух знаков.

Пример. Округлить сомнительные цифры числа а=22,7314, оставив верные знаки в узком смысле. Определить абсолютную погрешность числа, если δ а = 0,2%.

Решение. Запишем δ а в виде десятичной дроби: δа=0,002 и опреде­лим абсолютную погрешность . Так какΔ а = =0,0455 < 0,05, то верными в этом числе будут три цифры: 2, 2, 7. Округлим число 22,7314, сохранив в нем десятые доли: а 1 = 22,73. Тогда Δ а1 = =Δ а +Δ окр =0,0455+|22,7314-22,73|=0,0769>0,05, поэтому уменьшим чис­ло цифр в приближенном числе до двух: а 2 =23. Находим Δ а2 = =Δ а +Δ окр =0,0455+|22,7314-23|=0,3141< 0,05. Следовательно, оставшиеся две цифры верны в узком смысле.

Итак, х=23 ±0,3141 => х=23 ±0,32.

2.3. Правила действий над приближенными числами

Правило 1. Абсолютная погрешность алгебраической суммы нескольких приближенных чисел равна сумме абсолютных погрешностей этих чисел:

Δ а±в =Δ а + Δ в

Правило 2. Относительная погрешность произведения нескольких приближенных чисел равна сумме относительных погрешностей этих чисел:

δ ав = δ а +δ в.

Правило 3. Относительная погрешность частного приближенных чисел равна сумме относительных этих чисел: δ а/в = δ а +δ в.

Правило 4. Относительная погрешность степени приближенного числа а равна: δa n = nδ а.

Правило 5. Относительная погрешность корня из приближенного числа а равна:
.

Правило 6. При вычислениях, если не проводится строгий подсчет погрешностей, рекомендуется пользоваться правилами подсчета цифр. Эти правила указывают, как следует проводить округление результатов, чтобы обеспечить заданную точность результата и при этом не производить вычислений с лишними знаками.

Правила предполагают, что числа, над которыми производятся действия, содержат только верные цифры, и число действий невелико.

I. При сложении и вычитании приближенных чисел в результате следует сохранить столько десятичных знаков, сколько их в числе, имеющем наименьшее число десятичных знаков.

II. При умножении и делении в результате следует сохранить столько значащих цифр, сколько их в числе с наименьшим числом значащих цифр.

III. При возведении приближенного числа в степень в результате следует сохранить столько значащих цифр, сколько их в основании степени.

IV. При извлечении корня из приближенного числа следует сохранить столько значащих цифр, сколько их в подкоренном числе.

V. В промежуточных результатах следует сохранять на 1-2 цифры больше, чем рекомендуют правилах I-IV. В окончательном результате "запасные цифры" отбрасываются с округлением числа.

VI. Если некоторые исходные данные имеют больше десятичных знаков (при сложении и вычитании) или больше значащих цифр (при других действиях), чем другие, то их предварительно следует округлить, сохраняя лишь одну "эапасную цифру".

VII. Для получения результата с N верными цифрами исходные данные следует брать с таким числом цифр, которые согласно предыдущим правилам обеспечивают N+1 цифру в результате.

Пример. Найдем s=2,35+11,8 без учета погрешностей. Применяя правило I, получим s=14,15. Результат округлим по числу 11,8 с наименьшим количеством десятичных знаков. Получим: s =14,2.

Решим задачу с учетом погрешностей. В числе s=14,15 надо оставить только верные цифры. Для этого найдем предельную абсолютную погрешность суммы s, используя правило 1. Учитывая, что все цифры в числах 2,35 и 11,8 являются верными, получим: Δ 14,15 =Δ 2,35 +Δ 11,8 =0,01+0,1=0,11 < 0,5. Последняя верная цифра в числе 14,15 находится в разряде единиц. Поэтому число s=14,15 надо округлить: s=14 и найти абсолютную погрешность округленного числа. Погрешность округления равна: |14,15-14|=0,15. Тогда абсолютная погрешность округленного числа Δ 14 =0,11+0,15=0,26 <0,5. Окончательный результат примет вид: s=14 ± 0,26.

Аналогично решаются задачи при выполнении других действий над приближенными числами.

ГУ « Средняя общеобразовательная школа №5 им. Бауыржана Момышулы»

отдела образования акимата г. Костаная

ПЛАН-КОСПЕКТ УРОКА

ФИО (полностью) Пластун Сергей Владимирович

Предмет алгебра

Класс 8А-8б-1

Дата 23.09.17

Источники Алматы «Мектеп-2016»

Базовый учебник

Дополнительная литература

Нахождение приближенных значений квадратного корня.

1. Цель урока: познакомить учащихся с понятием « приближенное значение квадратного корня» и научить применять это понятие на практике.

Задачи:

Образовательные:

-научить находить приближенные значения квадратного корня;

-выработка умений рассуждать, четко формулировать правила, приводить примеры, применять свои знания и умения на практике.

корень, приводить и находить значения арифметического квадратного корня.

Развивающие:

-развивать у учащихся навык решения заданий на данную тему;

-развивать мыслительную деятельность учащихся.

Воспитательные:

- воспитывать внимательность, активность, ответственность.

2. Тип урока: комбинированный .

3. Формы работы с учащимися: фронтальная, индивидуальная.

4. Необходимое техническое оборудование.

5. Наглядные пособия, дидактические материалы, используемые на уроке.

6. Структура и ход урока.

СТРУКТУРА И ХОД УРОКА

Ход урока

1. Организационный момент .

Проверка готовности класса к уроку. Приветствие.

2. Проверка домашнего задания.

3. Повторение ранее изученного материала.

Начнем с повторения. Устная работа

Давайте вспомним, что такое квадратный корень (Квадратным корнем из неотрицательного числа а называется число, квадрат которого равен а).

(Арифметический квадратный корень) Арифметическим квадратным корнем из неотрицательного числа а называется такое неотрицательное число b , квадрат которого равен а.

Арифметический квадратный корень из числа а обозначается так:. Знак называется знаком арифметического квадратного корня, или радикалом, а –подкоренным выражением. Выражение читается так: «Арифметический квадратный корень из числа а».

По определению арифметического корня равенство
выполняется при условии, когда
.

4. Изучение нового материала.

1. Вычислите: 25 , 16, 9, 81,

Найдите значение выражения √2

- Что вам необходимо было сделать?

Что у вас получилось? (Учащиеся показывают свои варианты:)

В чём возникло затруднение?

Извлекается √2 нацело?

Как будем находить?

Какие знаем способы нахождения корней?

Ребята, видите, не всегда мы имеем дело с числами, легко представимыми в виде квадрата числа, которые извлекаются из- под корня нацело

1 МЕТОД вычислить √2 с точностью до двух знаков после запятой Будем рассуждать следующим образом.

Число √2 больше 1, так как 1 2 < 2. В тоже время, число √2 < 2, так как 2 2 больше 2. Следовательно, десятичная запись числа будет начинаться следующим образом: 1,… То есть корень из двух, это единица с чем-то.

1< √2 < 2.

Теперь попытаемся отыскать цифру десятых.

Для этого будем дроби от единицы до двойки возводить в квадрат, пока не получим число большее двух.

Шаг деления возьмем 0,1, так как мы ищем число десятых.

Другими словами будем возводить в квадрат числа: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

1,1 2 =1,21; 1,2 2 =1,44; 1,3 2 =1,69; 1,4 2 =1,96; 1,5 2 =2,25.

Получили число превышающее двойку, остальные числа уже не надо возводить в квадрат. Число 1,4 2 меньше 2, а 1,5 2 уже больше двух, то число √2 должно принадлежать промежутку от 1,4 до 1,5 . Следовательно, десятичная запись числа √2 в разряде десятых должна содержать 4. √2=1,4… .

1,41 2 =1,9881, 1,42 2 =2,0164.

Уже при 1.42 получаем, что его квадрат больше двух, далее возводить в квадрат числа не имеет смысла.

Из этого получаем, что число √2 будет принадлежать промежутку от 1,41 до 1,42 (1,41< √2<1,42)

Так как нам необходимо записать √2 с точностью до двух знаков после запятой, то мы уже можем остановиться и не продолжать вычисления.

√2 ≈ 1,41. Это и будет ответом. Если бы необходимо было вычислить еще более точное значение, нужно было бы продолжать вычисления, повторяя снова и снова цепочку рассуждений.

Задание

Вычислите с точностью до двух знаков после запятой

√3 = , √5 = , √6 = , √7 =, √8 =

Вывод Данный прием позволяет извлекать корень с любой заданной наперед точностью.

2 МЕТОД Чтобы узнать целую часть квадратного корня числа, можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, посчитать количество выполненных действий.

Например, найдем √16 так:

Выполнено 4 действия, значит, √16 = 4

Задание. Вычислите

√1 √6