Как выглядит периметр. Задачи на нахождение периметра прямоугольника. Что такое периметр

На этом занятии мы познакомимся с новым понятием - периметр прямоугольника. Мы сформулируем определение этого понятия, выведем формулу для его вычисления. Также повторим сочетательный закон сложения и распределительный закон умножения.

На данном уроке мы познакомимся с периметром прямоугольника и его вычислением.

Рассмотрим следующую геометрическую фигуру (рис. 1):

Рис. 1. Прямоугольник

Данная фигура - прямоугольник. Вспомним, какие отличительные особенности прямоугольника мы знаем.

Прямоугольник - это четырехугольник, у которого четыре прямых угла и стороны попарно равны.

Что в нашей жизни может иметь прямоугольную форму? Например, книга, крышка стола или земельный участок.

Рассмотрим следующую задачу:

Задача 1 (рис. 2)

Вокруг земельного участка строителям понадобилось поставить забор. Ширина этого участка - 5 метров, длина - 10 метров. Забор какой длины получится у строителей?

Рис. 2. Иллюстрация к задаче 1

Забор ставят по границам участка, поэтому, чтобы узнать длину забора, нужно знать длину каждой из сторон. У данного прямоугольника стороны равны: 5 метров, 10 метров, 5 метров, 10 метров. Составим выражение для подсчета длины забора: 5+10+5+10. Воспользуемся переместительным законом сложения: 5+10+5+10=5+5+10+10. В данном выражении есть суммы одинаковых слагаемых (5+5 и 10+10). Заменим суммы одинаковых слагаемых произведениями: 5+5+10+10=5·2+10·2. Теперь воспользуемся распределительным законом умножения относительно сложения: 5·2+10·2=(5+10)·2.

Найдем значение выражения (5+10)·2. Сначала выполняем действие в скобках: 5+10=15. А затем повторяем число 15 два раза: 15·2=30.

Ответ: 30 метров.

Периметр прямоугольника - сумма длин всех его сторон. Формула для подсчета периметра прямоугольника : , здесь a - длина прямоугольника, а b - ширина прямоугольника. Сумма длины и ширины называется полупериметром . Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, то есть умножить на 2.

Воспользуемся формулой периметра прямоугольника и найдем периметр прямоугольника со сторонами 7 см и 3 см: (7+3)·2=20 (см).

Периметр любой фигуры измеряется в линейных единицах.

На данном уроке мы познакомились с периметром прямоугольника и формулой его вычисления.

Произведение числа и суммы чисел равно сумме произведений данного числа и каждого из слагаемых.

Если периметр - это сумма длин всех сторон фигуры, то полупериметр - сумма одной длины и одной ширины. Мы находим полупериметр, когда работаем по формуле нахождения периметра прямоугольника (когда мы выполняем первое действие в скобках - (a+b)).

Список литературы

  1. Александрова Э.И. Математика. 2 класс. - М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. - М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. - М.: Просвещение, 2012.
  1. Festival.1september.ru ().
  2. Nsportal.ru ().
  3. Math-prosto.ru ().

Домашнее задание

  1. Найти периметр прямоугольника, у которого длина 13 метров, а ширина - 7 метров.
  2. Найти полупериметр прямоугольника, если его длина - 8 см, а ширина - 4 см.
  3. Найти периметр прямоугольника, если его полупериметр - 21 дм.

В следующих тестовых заданиях требуется найти периметр фигуры, изображенной на рисунке.

Найти периметр фигуры можно разными способами. Можно преобразовать исходную фигуру таким образом, чтобы периметр новой фигуры можно было бы легко вычислить (например, перейти к прямоугольнику).

Другой вариант решения — искать периметр фигуры непосредственно (как сумму длин всех её сторон). Но в этом случае нельзя полагаться только на рисунок, а находить длины отрезков, исходя из данных задачи.

Хочу предупредить: в одном из заданий среди предложенных вариантов ответов я не нашла того, который получился у меня.

C) .

Перенесем стороны маленьких прямоугольников с внутренней области во внешнюю. В результате большой прямоугольник замкнулся. Формула для нахождения периметра прямоугольника

В данном случае, a=9a, b=3a+a=4a. Таким образом, P=2(9a+4a)=26a. К периметру большого прямоугольника прибавляем сумму длин четырех отрезков, каждый из которых равен 3a. В итоге, P=26a+4∙3a=38a .

C) .

После переноса внутренних сторон маленьких прямоугольников во внешнюю область, получаем большой прямоугольник, периметр которого равен P=2(10x+6x)=32x, и четыре отрезка, два — диной по x, два — по 2x.

Итого, P=32x+2∙2x+2∙x=38x .

?) .

Перенесем 6 горизонтальных «ступенек» из внутренней части во внешнюю. Периметр полученного большого прямоугольника равен P=2(6y+8y)=28y. Осталось найти сумму длин отрезков внутри прямоугольника 4y+6∙y=10y. Таким образом, периметр фигуры равен P=28y+10y=38y .

D) .

Перенесем вертикальные отрезки из внутренней области фигуры влево, во внешнюю область. Чтобы получить большой прямоугольник, перенесём одни из отрезков длиной 4x в нижний левый угол.

Периметр исходной фигуры найдём как сумму периметра этого большого прямоугольника и длин оставшихся внутри трёх отрезков P=2(10x+8x)+6x+4x+2x=48x .

E) .

Перенеся внутренние стороны маленьких прямоугольников во внешнюю область, получим большой квадрат. Его периметр равен P=4∙10x=40x. Чтобы получить периметр исходной фигуры, нужно у периметру квадрата прибавить сумму длин восьми отрезков, каждый длиной 3x. Итого, P=40x+8∙3x=64x .

B) .

Перенесём все горизонтальные «ступеньки» и вертикальные верхние отрезки во внешнюю область. Периметр полученного прямоугольника равен P=2(7y+4y)=22y. Чтобы найти периметр исходной фигуры, нужно к периметру прямоугольника прибавить сумму длин четырех отрезков, каждый длиной y: P=22y+4∙y=26y .

D) .

Перенесем из внутренней области во внешнюю все горизонтальные линии и передвинем две вертикальные внешние линии в левом и правом углах, соответственно, на z левее и правее. В результате получим большой прямоугольник, периметр которого равен P=2(11z+3z)=28z.

Периметр исходной фигуры равен сумме периметра большого прямоугольника и длин шести отрезков по z: P=28z+6∙z=34z .

B) .

Решение полностью аналогично решению предыдущего примера. После преобразования фигуры находим периметр большого прямоугольника:

P=2(5z+3z)=16z. К периметру прямоугольника прибавляем сумму длин оставшихся шести отрезков, каждый из которых равен z: P=16z+6∙z=22z .

Очевидно, что границей любого круга является окружность. Поэтому понятие периметра круга совпадает с таким понятием, как длина окружности . Поэтому вначале вспомним, что является окружностью, и какие понятия с ней связаны.

Понятие окружности

Определение 1

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Определение 2

Центром окружности будем называть точку, которая задается в рамках определения 1.

Определение 3

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки (Рис. 1).

В декартовой системе координат $xOy$ мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой $X$, которая будет иметь координаты $(x_0,y_0)$. Пусть радиус этой окружности равняется $τ$. Возьмем произвольную точку $Y$, координаты которой обозначим через $(x,y)$ (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

$|XY|=\sqrt{(x-x_0)^2+(y-y_0)^2}$

С другой стороны, $|XY|$ - это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что $|XY|=τ$, следовательно

$\sqrt{(x-x_0)^2+(y-y_0)^2}=τ$

$(x-x_0)^2+(y-y_0)^2=τ^2$ (1)

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности $C$ с помощью её радиуса, равного $τ$.

Будем рассматривать две произвольные окружности. Обозначим их длины через $C$ и $C"$, у которых радиусы равняются $τ$ и $τ"$. Будем вписывать в эти окружности правильные $n$-угольники, периметры которых равняются $ρ$ и $ρ"$, длины сторон которых равняются $α$ и $α"$, соответственно. Как мы знаем, сторона вписанного в окружность правильного $n$ – угольника равняется

$α=2τsin\frac{180^0}{n}$

Тогда, будем получать, что

$ρ=nα=2nτ\frac{sin180^0}{n}$

$ρ"=nα"=2nτ"\frac{sin180^0}{n}$

$\frac{ρ}{ρ"}=\frac{2nτsin\frac{180^0}{n}}{2nτ"\frac{sin180^0}{n}}=\frac{2τ}{2τ"}$

Получаем, что отношение $\frac{ρ}{ρ"}=\frac{2τ}{2τ"}$ будет верным независимо от значения числа сторон вписанных правильных многоугольников . То есть

$\lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{2τ}{2τ"}$

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть $n→∞$), будем получать равенство:

$lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{C}{C"}$

Из последних двух равенств получим, что

$\frac{C}{C"}=\frac{2τ}{2τ"}$

$\frac{C}{2τ}=\frac{C"}{2τ"}$

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

$\frac{C}{2τ}=const$

Эту постоянную принять называть числом «пи» и обозначать $π$. Приближенно, это число будет равняться $3,14$ (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

$\frac{C}{2τ}=π$

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

Пример задач

Пример 1

Найти периметр круга, который вписан в квадрат со стороной, равной $α$.

Пусть нам дан квадрат $ABCD$, в который вписана окружность с центром $O$. Изобразим рисунок по условию задачи (рис. 3).

Очевидно, что центр окружности будет совпадать с центром квадрата, в которой она вписана. Так как квадрат описан вокруг окружности, то его стороны будут касательными к ней, то есть радиус, проведенный, к примеру, к стороне $AB$ будет перпендикулярен к ней. Значит, диаметр окружности равняется стороне квадрата. То есть

$τ=\frac{α}{2}$

По формуле периметра круга, получим, что

$C=2π\cdot \frac{α}{2}=πα$

Ответ: $πα$.

Пример 2

Найти периметр круга, который описан у прямоугольного треугольника с катетами, равными $α$ и $β$.

Пусть нам дан треугольник $ABC$ с прямым углом $C$, у которой описана окружность с центром $O$. Как мы знаем, диаметром такой окружности является гипотенуза такого треугольника. То есть $|AO|=|OB|=|OC|=τ$ (рис. 4).

По теореме Пифагора, гипотенуза равняется

$|AB|=\sqrt{α^2+β^2}$

$|AO|=τ=\frac{\sqrt{α^2+β^2}}{2}$

Периметр круга, по формуле, равняется

$C=2π\cdot \frac{\sqrt{α^2+β^2}}{2}=π\sqrt{α^2+β^2}$

Ответ: $π\sqrt{α^2+β^2}$.

Одним из базовых понятий математики является периметр прямоугольника. На эту тему существует множество задач, при решении которых не обойтись без формулы периметра и навыков его вычисления.

Основные понятия

Прямоугольник – это четырехугольник, у которого все углы прямые, а противоположные стороны попарно равны и параллельны. В нашей жизни многие фигуры имеют форму прямоугольника, например, поверхность стола, тетрадь и прочее.

Рассмотрим пример: по границам земельного участка необходимо поставить забор. Для того чтобы узнать длину каждой из сторон необходимо их измерить.

Рис. 1. Земельный участок формой прямоугольника.

Земельный участок имеет стороны длиной 2 м., 4 м., 2 м., 4 м. потому чтобы общую узнать длину забора необходимо сложить длины всех сторон:

2+2+4+4= 2·2+4·2 =(2+4)·2 =12 м.

Именно эта величина в общем случае и называется периметром. Таким образом, для нахождения периметра необходимо сложить все стороны фигуры. Для обозначения периметра используют букву P.

Для вычисления периметра прямоугольной фигуры не нужно разделять её на прямоугольники, нужно измерить линейкой (рулеткой) лишь все стороны данной фигуры и найти их сумму.

Периметр прямоугольника измеряется в мм., см., м., км и так далее. При необходимости, данные в задании, переводят в одинаковую систему измерения.

Периметр прямоугольника измеряется в различных единицах: мм., см., м., км и так далее. При необходимости, данные в задании, переводят в одну систему измерения.

Формула периметра фигуры

Если принять к вниманию тот факт, что противоположные стороны прямоугольника равны, то можно вывести формула периметра прямоугольника:

$P = (a+b) * 2$, где а, b – стороны фигуры.

Рис. 2. Прямоугольник, с обозначенными противоположными сторонами.

Существует и другой способ найти периметр. Если в задание дано лишь одну сторону и площадь фигуры, можно использовать выразить другую сторону через площадь. Тогда формула будет выглядеть следующим образом:

$P = {{2S + 2a2}\over{a}}$, где S – площадь прямоугольника.

Рис. 3. Прямоугольник с сторонами a, b .

Задание : Вычислить периметр прямоугольника, если его стороны равны 4 см. и 6 см.

Решение:

Используем формулу $P = (a+b)*2$

$P = (4+6)*2=20 см$

Таким образом, периметр фигуры $P = 20 см$.

Так как периметр – это сумма все сторон фигуры, то полупериметр это сумма только одной длины и ширины. Чтобы получить периметр необходимо полупериметр умножить на 2.

Площадь и периметр – это два основных понятия измерения любой фигуры. Их нельзя путать, хоть они и связаны между собой. Если увеличить, либо уменьшить площадь, то, соответственно, увеличится либо уменьшится его периметр.

Наверняка каждый из нас учил в школе такую важную составляющую геометрии, как периметр. Нахождение периметра просто необходимо для решения множества задач. О том, как найти периметр, расскажет наша статья.

Стоит помнить, что периметр любой фигуры это почти всегда сумма ее сторон. Давайте рассмотрим несколько разных геометрических фигур.

  1. Прямоугольник - это такой четырехугольник, у которого параллельные стороны равны попарно между собой. Если одна сторона X, а другая Y, то мы получим такую формулу для нахождения периметра этой фигуры:

    P = 2(X+Y) = X+Y+X+Y = 2X+2Y.

    Пример решения задачи:

    Допустим, что сторона X = 5 см, сторона Y = 10 см. Значит, подставив эти значения в нашу формулу, мы получим - P = 2*5 см + 2* 10см = 30 см.

  2. Трапеция - это четырехугольник, у которого две противоположные стороны параллельны, но не равны между собой. Периметр трапеции - это сумма всех четырех её сторон:

    P = X+Y+Z+W, где X, Y, Z, W - стороны фигуры.

    Пример решения задачи:

    Допустим, что сторона X = 5 см, сторона Y = 10 см, сторона Z = 8 см, сторона W = 20 см. Значит, подставив эти значения в нашу формулу, мы получим - P = 5 см + 10 см + 8 см + 20 см = 43 см.

  3. Периметр круга (длину окружности) можно вычислить по формуле:

    P = 2rπ = dπ, где r - это радиус круга, d - диаметр круга.

    Пример решения задачи:

    Допустим, что радиус r нашего круга равен 5 см, тогда диаметр d будет равен 2*5 см = 10 см. Известно, что π = 3,14. Значит, подставив эти значения в нашу формулу, мы получим - P = 2*5 см*3,14 = 31,4 см.

  4. Если Вам необходимо найти периметр треугольника, то Вы можете столкнуться с рядом проблем при этом, поскольку треугольники могут иметь очень разные формы. Например, есть острый, тупой, равнобедренный, прямоугольный или равносторонний треугольники. Хотя формула для всех видов треугольников такая:

    P = X+Y+Z, где X, Y, Z - стороны фигуры.

    Проблема в том, что при решении многих задач на нахождение периметра этой фигуры Вам не всегда будут известны длины всех сторон. Например, вместо информации о длине одной из сторон Вы можете иметь градус угла или длину высоты конкретного треугольника. Это существенно осложнит задачу, но не сделает ее решение нереальным. О том, как найти периметр треугольника, какой формы бы он не был можно прочитать " ".

  5. Периметр такой фигуры, как ромб находят также как и периметр квадрата, ведь ромб - это параллелограмм, который имеет равные стороны. Узнать, как найти периметр квадрата можно прочитав статью на нашем сайте " ".

    Теперь Вы знаете, как найти сторону периметра той геометрической фигуры, какой Вам нужно!