Научно технические изобретения 20 века. Важные изобретения XX века

Величайшие завоевания технической мысли, которые могли и должны были облегчить положение широких народных масс, получили наиболее быстрое применение в военной технике, предназначенной для уничтожения людей и материальных ценностей.

Военная промышленность в период империализма получила чрезвычайно широкое развитие, и успехи военной техники были очень значительны.

Одной из характерных черт военной техники этого периода явилась автоматизация стрелкового оружия. Были значительно усовершенствованы конструкции станковых пулеметов, впервые изобретенных американским инженером X. Максимом в 1883 г.; появились тяжелые пулеметы Максима и Гочкиса, легкие пулеметы Льюиса, Виккерса и др.

Широкое применение пулеметов в европейских армиях началось после русско-японской войны.

К началу мировой войны было создано также несколько типов автоматических винтовок. Тенденция к автоматизации наблюдалась и в артиллерии. Перед мировой войной и в ходе ее были сконструированы новые скорострельные орудия - полуавтоматические и автоматические. Наибольшая дальность артиллерийской стрельбы к началу войны составляла 16-18 км, а в 1917 г. уникальная немецкая пушка «Колоссаль» («Большая Берта») вела обстрел Парижа с дистанции до 120 км.

Массовое применение тяжелой артиллерии потребовало развития механической тяги для передвижения орудий. Был введен ряд типов тягачей с двигателями внутреннего сгорания. Борьба с налетами авиации противника вызвала появление зенитных пулеметов и артиллерии.

В огромных размерах возросло производство взрывчатых веществ. В этой области были осуществлены новые изобретения и введены важные технические усовершенствования. В частности, в 1884 г. был изобретен бездымный порох. Главным сырьем в производстве взрывчатых веществ стали азотистые соединения (нитраты). До мировой войны нитраты добывались в европейских странах из привозной чилийской селитры или из побочных продуктов коксогазовых заводов.

Блокада германского побережья с начала войны побудила германскую промышленность наладить производство связанного азота из воздуха (по способу Габера-Боша). Если в 1913 г. предприятия мощного химического объединения «Баденские анилино-содовые заводы» вырабатывали всего 3 тыс. т связанного азота, то в 1918 г. выработка его достигла 270 тыс. т.

В 1915 г. германские войска впервые применили боевые отравляющие вещества. Страны Антанты также развернули производство удушливых, слезоточивых, нарывных и других ядовитых газов. Изготовлялись химические артиллерийские снаряды, специальные аппараты-газометы.

С целью защиты от газов во всех армиях были введены противогазы. Началось также строительство газоубежищ. В России работу по изготовлению противогазов возглавили видные ученые. Угольный противогаз, отличавшийся универсальностью и вместе с тем простотой изготовления, был разработан в 1915 г. Н. Д. Зелинским.

Первая мировая война была в известной мере первой «войной моторов». Для снабжения фронта широко использовался автотранспорт; появились новые боевые средства - танки и бронеавтомобили.

Идея применения танков возникла в ряде стран еще до начала войны. Левассер во Франции (1903 г.), В. Д. Менделеев - сын великого химика - в России (1911 г.) и Бурштын в Австрии (1912 г.) выдвинули проекты бронированных вездеходных машин с гусеничным ходом. После начала мировой войны новые конструкции танков предложили английские изобретатели Триттон и Уилсон.

Впервые использованные в бою 15 сентября 1916 г. на Сомме танки вскоре стали мощным средством прорыва оборонительных линий, представлявшихся еще в 1914-1915 гг. неприступными. Большое развитие во всех воюющих странах получили броневые автомобили, вооруженные пулеметами и орудиями небольшого калибра.

В военном деле были широко использованы средства воздухоплавания и авиации. Германия энергично готовила для военных целей эскадрильи жестких дирижаблей системы Цеппелина и Шютте-Ланца и мягких дирижаблей системы Парсеваля. За время мировой войны немецкое командование ввело в действие 123 дирижабля, совершивших около 800 вылетов. Объем крупнейших дирижаблей доходил до 68,5 тыс. м.

Однако опыт применения дирижаблей не был успешным: значительная часть их была сбита зенитной артиллерией и авиацией союзников или уничтожена в эллингах бомбардировками с воздуха. Гораздо большее значение приобрела военная авиация.

До войны предполагалось, что самолеты будут выполнять главным образом функции воздушной разведки. Но с лета 1915 г. самолеты стали снабжаться пулеметами, и на них начали возлагать функции истребителей. К концу войны истребители развивали скорость до 190-220 км в час, что прежде представлялось рекордом даже для специальных гоночных самолетов.

Авиация применялась и для бомбометания. Еще в 1913 г. конструктор И. Сикорский построил в России первый четырехмоторный самолет «Русский витязь». В следующем году он закончил постройку другого большого четырехмоторного самолета- «Илья Муромец» с общей мощностью двигателей в 400 л. с. и грузоподъемностью в 1,3т. К началу войны появился второй самолет того же типа и в 1916 г.- двухмоторный самолет В. А. Слесарева «Святогор».

В дальнейшем воюющие страны усовершенствовали бомбардировочную авиацию. Так, немецкий бомбардировщик «R-43-48» развивал скорость до 105 км в час и имел грузоподъемность 4,2 т. Началось также развитие военно-морской авиации. Один из первых гидросамолетов («летающая лодка») был сооружен русским конструктором Д. П. Григоровичем в 1913 г.

Для проведения боевых операций на море усиленно строились во многих странах (еще с предвоенных лет) крупные надводные корабли-броненосцы обычного типа и так называемые дредноуты, которые обладали большей мощностью вооружения и брони.

Применение двигателя внутреннего сгорания и электродвигателей сделало реальностью давнишнюю мечту человечества - подводное плавание. Однако подводные лодки были также использованы исключительно как средство войны. Сооружение подводных лодок началось в различных странах в последние годы XIX в.

Они приводились в движение в надводном положении двигателями внутреннего сгорания, а в подводном - электродвигателями, получавшими энергию от аккумуляторных батарей.

Особое внимание строительству подводных лодок уделяла Германия, вступившая в мировую войну с хорошо налаженным их производством. Действия германских подводных лодок нанесли большой ущерб торговому флоту противника и нейтральных стран.

Из средств связи широко использовались в военном деле телеграф, телефон, оптические средства связи и радио.

Радиоустановками стали снабжаться войсковые соединения и отдельные части во всех армиях, морские надводные и подводные корабли, самолеты, танки и т. д.

Тогда же были предприняты первые опыты управления подводными лодками, торпедами и брандерами (зажигательными судами) на расстоянии по радио. Аналогичные опыты производились и в авиации.

Мировая война вызвала огромное развитие военной техники, использовавшей все многообразие научных и технических знаний. «...Первый раз в истории,-отмечал В. И. Ленин,- самые могучие завоевания техники применяются в таком масштабе, так разрушительно и с такой энергией к массовому истреблению миллионов человеческих жизней».

Дмитрий Румянцев

Много лет назад создатели антиутопии “Матрица” поведали зрителям о мире, в котором доведены до абсурда (или до своего логического конца) идеи ведущего роботехника из Меллоунского университета имени Карнеги Ханса Моравека.

Это имя стало известным за пределами научного мира после опубликованной им в 1988 году книги “Дети Разума”, посвященной умным машинам, способным на такие свершения, которые человек не может себе даже и представить. В своей книге Моравек рассуждал о целых корпорациях роботов (хотел написать – “монстров”), которые постепенно возьмут на себя все рутинные операции, оставляя человеку чистое искусство: разные там стишки, охи-вздохи, картины и прочее.

Несколько наивными сейчас кажутся такие, например, его сентенции: “Люди смогут бойкотировать корпорации роботов, чья продукция или политика покажутся враждебной людям”. По мысли Моравека, в конечном итоге, в поисках сырья машины отправятся в открытый космос, где развернут бурную деятельность по превращению материи в разные устройства, обрабатывающие информацию. А тут уж и рукой подать до так называемого киберпространства, которое “считает и моделирует со все большей и большей эффективностью”. Киберпространство Моравека, в конечном итоге, будет в некотором смысле более интересным, чем физическая Вселенная. А большинство людей с радостью (как утверждал Моравек) откажутся от своих смертных оболочек из плоти и крови с тем, чтобы обрести большую свободу и бессмертие киберпространства. Однако Моравек не исключал возможность того, что всегда останутся “агрессивные примитивные люди, которые будут говорить: “Мы не хотим присоединяться к машинам”. Но, заключал Моравек, “в конце концов, Земля – это просто частичка грязи в системе, и она не имеет огромной исторической важности”, но машины, которые в Земле будут видеть только сырье, всегда смогут заставить ее последних жителей принять новый дом в киберпространстве.

Бр-р-р… Мороз по коже… В общем, на мой взгляд, создатели Матрицы” зря выдумывали свой сценарий, а не следовали точно идеям Моравека. Мрачноватым идеям, надо отметить. Сам Ханс Моравек, со смехом обронивший однажды фразу: ‘Занятия, подобные искусству, которым люди иногда увлекаются, не кажутся очень глубокими в том смысле, что являются первичными видами моделирования”, – был последователем английского химика Дж. Д. Бернала. Бернал выпустил в 1929 году (а ему шел тогда 28-й год) эссе под названием Мир, плоть и дьявол”, в котором доказывал, что наука вскоре даст силы человечеству управлять собственной эволюцией. Сначала, рассуждал Бернал (кстати, он не упускал случая отметить, что является марксистом), человечество попытается улучшить себя через генную инженерию (это, напомню, было написано в 1929 году), но в конечном итоге оставит свои бренные тела, унаследованные путем естественного отбора, для более действенных проектов. “Понемногу наследование по прямой линии человечества сократится, затем совершенно исчезнет, сохраняясь, возможно, как какая-то любопытная реликвия, в то время как новая жизнь, которая не сохранит ни одну из сущностей, но весь дух, займет ее место и продолжит свое развитие. В конце концов, само сознание может закончиться или исчезнуть в человечестве, которое стало полностью бесплотным, став массой атомов в космосе, обменивающихся информацией при помощи радиации, и, в конечном счете, возможно, полностью превратится в свет. Это может быть конец и начало, но отсюда все уже неисповедимо”. Круто! (ага, это сингулярность. – прим. Remo).

Впрочем, нет ничего удивительного, что такие мысли посещали кого-то в начале XX века. В самом деле, уж больно мрачным был фон, на котором приходилось творить ученым того времени. Мне вообще кажется, что не может существовать “чистой” науки и техники, которую можно рассматривать в отрыве от общей истории цивилизации. А уж XX век предоставил пищу для размышлений тем, кто хотел думать. Сразу же, не дав опомниться разомлевшему от череды открытий века европейскому человеку, ХХ век вывалил на него такие понятия, как пулемет, цвет хаки, тактика выжженной земли и концлагерь. Конечно, Европу уже трудно было смутить большими потерями в войне, но вот так просто уничтожить в концлагерях 20 тысяч женщин и детей, вся вина которых заключалась лишь в том, что они являлись членами семей буров, восставших против произвола английских чиновников, – это уже было слишком. Короче, Европа была в столбняке. Вообще, надо заметить, что к XX веку человечество (вернее, его европейская часть) сильно политизировалось и обросло разными жуткими идеями, среди которых идея контроля над информацией и – шире – проблема информации стала играть все большую и большую роль. Правда, до 30-х годов XX века никаких новых изобретений на ниве вычислительной техники не появилось. С точки зрения компьютерных технологий, первая треть XX века была, так сказать, застойной.

Кто сегодня не знает эту аббревиатуру? Это название – International Business Machines – появилось в 1924 году как наименование новой корпорации, созданной в результате слияния трех фирм. Но если первая – Tabulating Machine Company – имела отношение к вычислительным системам (ибо, как помнят уважаемые читатели, занималась выпуском табуляторов), о чем позаботился создавший ее Герман Холлерит, то две другие, мягко говоря, имели к компьютерам очень отдаленное отношение. Второе подразделение будущей IBM было создано Чарльзом Флинтом в 1900 году (в самый разгар кипучей деятельности Китченера Хартумского по созданию концлагерей). Эта фирма называлась International Time Recording и занималась производством часов (внимательные читатели могут усмотреть здесь некую преемственность эпохи Ренессанса, ибо в то время вычислительные устройства изготавливались по образу и подобию часовых механизмов. Что касается третьей составляющей будущей IBM, то она занималась… производством весов и машинок для чистки овощей. В результате слияния этих разнообразных ингредиентов в 1911 году появилась Computing Tabulating and Recording Company (CTR).

Название International Business Machines было придумано в 1917-м году для канадского филиала CTR, в 1924 году Томас Уотсон (с 1914 года он работал главным управляющим CTR) принял решение назвать всю корпорацию именем канадского филиала.

Вплоть до начала Второй Мировой войны основной сферой деятельности IBM было производство табуляторов, работающих с перфокартами. Тогда это была очень прогрессивная компания с динамично растущим уровнем доходов (сильно возросшими во время Второй Мировой войны). И никто не мог подумать, что в 70-х годах Стив Джобс и Билл Гейтс будут называть IBM не иначе, как Большим братом”, намекая на книгу “1984” – мрачную антиутопию Оруэлла. Впрочем, это мы уж слишком забежали вперед…

Прочие прибамбасы

Ну и что, неужели в первой трети XX века не появилось чего-нибудь еще, кроме компании по производству табуляторов и технологий массового истребления населения Земли? По большому счету, лучшие умы того времени работали над чисто практическими вещами для военной промышленности или же над глобальными проектами (вроде теории относительности). Поэтому достойны упоминания лишь два изобретения, без которых невозможно представить современные компьютеры (что, разумеется, не делает все прочие изобретения XX века менее значимыми).

Сегодня вряд ли кого-нибудь соблазнила бы мысль поработать на компьютере без дисплея. А вот будущий творец Microsoft в детском возрасте писал свою первую программу (это были крестики- нолики, понятное дело, Билл Гейтс писал их на своем любимом “Бейсике”) на машине, оборудованной только печатающим устройством (на школьной мини-ЭВМ PDP-11)! И тогда это никого не тревожило. Подумаешь, всего и делов-то: ввести данные и немного подождать, пока программа напечатает результат своей работы. А между тем, электронно-лучевая трубка (ЭЛТ) – основа большинства дисплеев прошлого поколения – была изобретена более, чем за полвека до начала промышленной эксплуатации ЭВМ.

Произошло это в 1907 году. Изобретателем был наш соотечественник, потомок обрусевших немцев – профессор физики Петербургского технологического института Борис Львович Розинг. 11 мая 1907 года Розинг продемонстрировал своим коллегам первый сеанс передачи изображения на расстояние с помощью пока еще совмещенной электронно-механической системы телевидения. Из одной комнаты

в другую, всего лишь на расстояние нескольких метров, транслировалось изображение пересечения двух горизонтальных и двух вертикальных полос.

Дело Бориса Розинга продолжил его ассистент Владимир Козмович Зворыкин. В 1919 году адмирал Колчак отправил его по какому-то поручению в Северо-Американские Соединенные Штаты (так в ту пору назывались США). В САСШ Владимир Зворыкин вплотную занялся телевидением и сегодня известен как отец телевидения (сам Зворыкин, правда, от этого титула отнекивался, повторяя, что “всего лишь изобрел кинескоп” – это название также придумал он).

Другое изобретение, без которого не было бы современных компьютеров, также совершил русский ученый – Михаил Александрович Бонч-Бруевич. В 1918 году он создал электронное реле. Годом позже англичане В. Икклз и Ф. Джордан, независимо от Бонч- Бруевича, изобрели такое же устройство и назвали его “триггер”.

Вообще-то, английское слово trigger обозначает “спусковой крючок”, и механизм, который обозначался этим словом, известен с незапамятных времен – уж со времен арбалетов точно. Какое же отношение триггер имеет к вычислительной технике? Самое прямое. Достоинство электронного (как, впрочем, и любого другого) триггера заключается в том, что он всегда находится в одном из двух состояний, что удобно использовать для обозначения нуля и единицы. Если, скажем, соединить восемь триггеров в единый пакет так, чтобы каким-то образом изменять состояние каждого из них и, что еще более важно, иметь возможность определить, в каком состоянии находится каждый из восьми триггеров, то мы получим однобайтовую ячейку памяти! А если взять этак несколько тысяч 8-триггерных пакетов и соединить их вместе, то мы получим оперативную память на электронном ходу.

Основу современных триггеров составляют два транзистора, которые, собственно, и обеспечивают пребывание в одном из двух состояний. Ну, а на одной пластинке кремния 1,5 см х 1,5 см современная технология позволяет уместить не один десяток миллионов транзисторов. А остальное вам известно: разные там памяти и прочее – это “всего лишь” много- много миллионов триггеров на одном квадратном сантиметре.

Но подробнее об этом как-нибудь в другой раз.

Страшилка

Сомнительная пальма первенства в изобретении концлагерей принадлежит соотечественнику Чарльза Бэббиджа. Имя этого изувера с нечеловеческим лицом и искаженным разумом – лорд Китченер Хартумский и Брумский Гораций Герберт.

Во вторую англо-бурскую войну (1899-1902 г.г.), в которую и были опробованы страшные изобретения “прогрессивного” не в ту сторону человечества, он командовал английскими войсками.

Вот вам и англичане – проигнорировали аналитическую машину Чарльза Бэббиджа, но сделали Китченера Хартумского военным министром за его героические подвиги в Трансваале. Кстати, если кто интересуется проблемой переселения душ и прочими околомистическими вещами, то Китченер Хартумский отбыл в мир иной в 1916-м году – корабль, на котором он плыл в Россию, подорвался на мине и затонул. Самое известное его изображение сохранилось на английском военном плакате “Your country needs You!” –

прообразе нашего известного “Ты записался добровольцем?”.

Так вот, на этом самом плакате Китченер как две капли воды похож на ефрейтора Адольфа Гитлера с его фронтового фото 1916 же года. Как сказал Шерлок Холмс после памятного ужина в поместье Баскервиллей: “Вот так начнешь изучать фамильные портреты и уверуешь в переселение душ”… В общем, ужасная история

Цветное TV

Основателем современного цветного телевидения считается еще один русский изобретатель инженер-технолог Александр Апполонович Полумордвинов, который предложил оригинальную цветную телевизионную систему, основанную на аддитивной трехкомпонентной цветовой модели (система и поныне остается таковой).

В 1900-м году он подал заявку в Департамент торговли и мануфактур Министерства финансов России на свое изобретение. В то время этот департамент включал в себя патентные органы и занимался выдачей патентов. Изобретение было юридически оформлено выдачей изобретателю привилегии на “Светораспределитель для аппарата, служащего для передачи изображений на расстояние со всеми цветами и их оттенками и всеми тенями”. Система передачи цветного изображения на расстояние, предложенная Полумордвиновым, была воплощена в жизнь созданием прибора “Телефот”, который представлял важнейшее конструктивное и технологическое открытие.

О своем чудесном изобретении Полумордвинов доложил на Первом электротехническом съезде, проходившем в конце декабря 1899 г. в Петербурге.

Естественные науки в конце XIX начале XX в. вступили в качественно новый этап своего развития, ибо во всех областях знания были сделаны открытия, способствовавшие колоссальному научному и техническому прогрессу. Происшедшая в XX веке революция в области физики неизбежно вызвала интеграцию науки и техники при ведущей роли естествознания. Хотя основные сравнительно новые продукты техники, даже автомобиль и самолет, а также методы их строительства, в частности метод массового производства, вначале все еще базируются на науке скорее XIX, чем XX столетия. С течением времени интеграция науки и техники происходит все быстрее и быстрее, или, вернее, она обходит весь круг промышленных процессов по мере того, как технические приемы, основанные на новых физических знаниях - сначала в области электроники, а позднее ядерной физики, - проникают в старые отрасли промышленности и создают новые, такие, как производство телевизионного оборудования и атомной энергии. Именно в XX веке «отношения между наукой и техникой быстро меняются местами» (Дж. Бернал), так как техника все больше развивается на основе научных исследований.

Машиной, которой больше чем какой-либо иной суждено было преобразовать как промышленность, так и условия жизни в XX веке, явился двигатель внутреннего сгорания. Он, хотя и более косвенно, чем первоначальная паровая машина, явился плодом применения науки, в данном случае термодинамики. Основная идея взрыва предварительно сжатой смеси воздуха и горючего газа для осуществления термодинамического эффекта принадлежала французскому инженеру де Роша (1815 -1891), который выдвинул ее еще в 1862 году, однако от идеи до работоспособной машины был еще далекий путь и необходимо было разработать еще много существенных деталей методы зажигания, функционирования клапанов, - которые не требовались в паровых машинах.

Пионеры-практики Ленуар (1822-1900) и Отто (1832-1891), изобретшие все еще почти универсальный четырехтактный цикл, и Дизель (1858 1913), дополнивший его компрессорным зажиганием, сумели создать мощные двигатели, однако применение их ограничивалось на протяжении XIX века сравнительно небольшим числом стационарных газовых и нефтяных двигателей. Эти двигатели и автомобили производились главным образом как предмет роскоши или для спортивных целей.

Генри Форд (1863-1947) начал как конструктор-любитель в мастерской на заднем дворе и быстро превратился в самого преуспевающего фабриканта нового автомобиля, потому что он понимал, что то, что было действительно нужно, это дешевый автомобиль в огромных количествах. Осуществление этой идеи потребовало в некоторой степени массовости производства и в то же самое время дало мощный толчок его дальнейшему развитию. Начиная с этого момента все классические методы машиностроения должны были подвергнуться перестройке с тем, чтобы оно было способно производить идентичные детали в большом количестве.

Летать как птица было извечной мечтой человечества, как об этом свидетельствуют широко распространенные легенды о летающих людях или летающих машинах, а также издревле делавшиеся во всех странах мира попытки подражать птицам. Проблемы полета столь сложны, что не могли быть разрешены наукой прошлого века; в осуществлении длительного полета все зависело от наличия достаточно легкого двигателя, а такой источник энергии мог быть получен только в XX веке в результате усовершенствования двигателя внутреннего сгорания. Братья Райт, механики-велосипедисты по профессии и аэронавты по призванию, смонтировали ими самими сделанный двигатель на самолет и работали над его усовершенствованием до тех пор, пока он в первый раз не полетел в 1903 году. Труден только первый шаг. Стоило Орвилю Райту поднять свой аэроплан в воздух и заставить его пролететь несколько футов, как будущее авиации было обеспечено.

В основном именно в связи со своим эмпирическим происхождением аэроплан должен был в первые десятилетия своего существования больше давать науке, замечает Дж. Бернал, чем извлекать из нее. Это обстоятельство послужило причиной для начала серьезного изучения аэродинамики, что должно было получить широкий отклик в машиностроении и даже в метеорологии и астрофизике. Усилия, относящиеся к более раннему периоду, такие, как работа Магнуса (1802 1870), сосредоточивались на полете снарядов. Изучение обтекаемого движения и турбулентности, предпринятое в связи с работой над первыми аэропланами, нашло себе непосредственное применение в конструкции судов и во всех проблемах, связанных с воздушным течением, начиная с доменных печей и кончая вентиляцией жилищ. Результаты исследований в области аэродинамики затем нашли свое эффективное применение в авиации XX века и, прежде всего в военной авиации.

Эволюция аэроплана с пропеллерным двигателем шла по прямой линии от биплана Райтов до летающей «сверхкрепости»; однако требование все больших скоростей для военных целей пробило, наконец, типичный консерватизм конструкторов и породило газовую турбину, обусловившую возможность создания реактивного самолета. Во второй мировой войне самолет этот появился слишком поздно, чтобы иметь какую-либо ценность в военном отношении. Из тех же потребностей войны возник и самый старый из снарядов с огневым двигателем - ракета. К настоящему времени различие между самолетом и ракетой постепенно стирается и, по-видимому, исчезнет совсем, как только удастся заставить атомную энергию служить в качестве движущей силы. Реактивный самолет и ракета эксплуатируются только в верхних слоях атмосферы; при этом ракета выгодна как транспортное средство только для межконтинентальных путешествий.

Немалую роль в развитии техники XX столетия сыграло изобретение радио и телевидения, причем здесь следует иметь в виду следующие обстоятельства. Если мы раскроем энциклопедическую книгу «Изобретения, которые изменили мир» (о ней уже шла речь выше) или хронологический обзор «История естествознания в датах» словацких ученых Я. Фолгы и Л. Новы, то обнаружим, что изобретение радио приписывается итальянскому физику Г. Маркони и ни слова не упоминается о нашем соотечественнике А. Попове. Перед нами типичный западоцентризм, когда сознательно умалчивается о достижениях российских ученых и техников. В данной лекции мы не будем подробно описывать значимость радио, несколько подробнее рассмотрим вопрос об изобретении телевидения.

Развитие идей телевидения с самого своего рождения носило интернациональный характер. Как отмечает в своей статье «Творцы голубого экрана» В. Урвалов, в период с 1878 г. до конца XIX века в одиннадцати странах в патентные бюро и редакции журналов было представлено более 25 проектов прообраза телевизионных устройств, из них пять - в России. В 1880 г. наш соотечественник П.И. Бахметьев, будучи студентом Цюрихского университета, разработал проект устройства под названием «телефотограф», одного из первых предшественников телевизора. Цветную телевизионную систему с последовательной передачей сигналов трех цветов в конце 1899г. патентует инженер-технолог из Казани А.А. Полу мордвинов, вскоре переехавший в Петербург и занявший место помощника столоначальника в телеграфном департаменте. Он впервые вводит в научный оборот понятие «триада цветов», практическое значение которого сохранилось и в наше время. Несколько обзоров по электровидению в те годы сделал военный инженер К.Д. Перский. Именно он впервые ввел в оборот термин «телевидение» в обзорном докладе, прочитанном им на Международном конгрессе в Париже (1900г.). Двухцветную телевизионную систему с одновременной передачей белого и красного цветов предложил в 1907г. сын бакинского купца И.А. Адамян, работавший в собственной лаборатории под Берлином.

К началу XX в. сложились предпосылки для зарождения катодного, или - по современной терминологии - электронного телевидения. Еще в 1858г. боннский профессор Ю. Плюккер открыл катодные лучи, в 1871 г. англичанин У. Крукс изготовил специальные трубки ^ля исследования свечения различных веществ, облучаемых катодным пучком в вакууме, а в 1897 г. немецкий профессор К.Ф. Браун применил катодную трубку для наблюдения быстропротекающих электрических процессов. В 1907 г. преподаватель петербургского Технологического института Б.Л. Розинг запрашивает патенты в России, Англии и Германии на изобретенный им «Способ электрической передачи изображений», отличающийся применением катодной трубки для воспроизведения изображения в приемном устройстве. Он впервые вводит модуляцию плотности катодного пучка и равноскоростную развертку по двум координатам для образования прямоугольного растра.

Передающее устройство у Розинга остается оптико-механическим, но в нем применен безынерционный калиевый фотоэлемент с внешним фотоэффектом.

Через год английский инженер А.А. Кемпбелл-Суинтон выдвигает идею, а в 1911 г. предлагает грубую схему полностью электронного телевизионного устройства, включая передающую трубку. Однако его попытки практически доказать работоспособность предложенной схемы успеха не принесли. Более успешно шла работа у россиянина Розинга, который смог завершить постройку лабораторного образца своей аппаратуры смешанного типа. В своей записной книжке Б.Л. Розинг оставил такую запись: «9 мая 1911 г. в первый раз было видно отчетливое изображение, состоящее из четырех светлых полос». Это было первое в мире телевизионное изображение, переданное и в тот же миг принятое с помощью аппаратуры, разработанной и изготовленной в России. В последующие дни Б.Л. Розинг демонстрировал передачу простых геометрических фигур и движение кисти руки. Отмечая заслуги Б.Л. Розинга в развитии идей телевидения, Русское техническое общество в 1912г. присудило ему Золотую медаль. И затем началось бурное развитие телевидения в Германии, Англии, США и Советском Союзе.

Ученые Советского Союза внесли существенный вклад и в создание лазеров («усилителей света в результате вынужденного излучения», аббревиатура этих слов на английском языке и дает слово лазер). Лазеры получили широкое применение в техника (в обработке металлов, в частности в их сварке, резке, сверлении), в медицине (в хирургии, офтальмологии), в различных научных исследованиях. Перечисленное применение лазеров является, несомненно, только началом. Известные советские ученые Н.Г. Басов и А.М. Прохоров являются одними из основоположников теории и создания квантовых генераторов.

«Создание квантовых генераторов стало началом развития нового направления электроники, отмечает В.А. Кириллин, квантовой электроники науки, которая занимается теорией и техникой различных устройств, действие которых основано на вынужденном излучении и на нелинейном взаимодействии излучения с веществом». К числу таких устройств, кроме квантовых генераторов (в том числе лазеров), относятся усилители и преобразователи частоты электромагнитного излучения, а также квантовые усилители СВЧ (сверхвысокой частоты), квантовые магнитометры и стандарты частоты, лазерные гироскопы (лазерные приборы, свойство которых - неизменное сохранение оси вращения в пространстве позволяет использовать их для управления самолетами, ракетами, морскими судами и т.д.) и некоторые другие.

Электронные приборы и устройства нашли широкое применение, стали незаменимыми в аппаратуре связи, автоматике, измерительной технике, электронных вычислительных машинах и во многих других очень важных областях. Радиоэлектроника, широко вошедшая в производство, науку, быт людей, является одним из самых главных направлений технического прогресса, мощным средством повышения производительности труда. Детищем радиоэлектроники являются и электронно-вычислительные машины (ЭВМ), чье развитие привело к компьютерной революции.

Именно ЭВМ (компьютеры) дают возможность хранения, быстрого поиска и передачи информации, что означает революцию в системах накопления и доступа к освоенным знаниям. Наступает очень важный в жизни человечества этап «безбумажной информатики»: информация поступает к специалистам прямо на рабочее место на соответствующие устройства отображения (дисплеи), расположенные в удобных и легкодоступных для потребителя местах. Не менее, а, может быть, даже более важное значение приобретает все более широкое внедрение такого рода средств и в быт, что и наблюдается сейчас.

Более того, информационная инфраструктура, основанная на слиянии ЭВМ, систем связи (в том числе космической) и баз знаний, становится важнейшим фактором в дальнейшем развитии электронной и вычислительной техники и информационных технологий.

В статье поговорим о великих открытиях 20 века. Неудивительно, что с древних времен люди пытались воплотить в реальность свои самые смелые мечты. На рубеже прошлого века были изобретены невероятные вещи, которые перевернули жизнь всего мира.

Рентгеновские лучи

Список великих открытий 20 века начнём с рассмотрения электромагнитного излучения, которое на самом деле открыли в конце XIX века. Автором изобретения стал немецкий физик Вильгельм Рентген. Ученый заметил, что при включении тока в катодной трубке, покрытой кристаллами бария, начинает появляться небольшое свечение. Есть и другая версия, согласно которой жена приносила мужу ужин, и он заметил, что видит её кости, просвечивающиеся сквозь кожу. Это всё версии, но есть и факты. Например, Вильгельм Рентген отказывался получить патент за свое изобретение, так как считал, что эта деятельность не может приносить реальный доход. Таким образом, мы причисляем рентгеновские лучи к великим открытиям 20 века, которые оказали влияние на развитие научно-технического потенциала.

Телевидение

Совсем недавно телевизор был вещью, свидетельствующей о состоятельности своего хозяина, однако в современном мире телевидение отошло на второй план. При этом сама идея изобретения зародилась еще в 19 веке одновременно у русского изобретателя Порфирия Гусева и профессора из Португалии Адриано де Пайва. Они первые сказали о том, что скоро будет изобретено устройство, позволяющее передавать изображение при помощи провода. Первый приемник, размер экрана которого был всего лишь 3 на 3 см, продемонстрировал миру Макс Дикманн. При этом Борис Розинг доказал, что можно применять катодно-лучевую трубку для того, чтобы была возможность преобразовывать электрический сигнал в изображение. В 1908 году физик Ованес Адамян из Армении запатентовал аппарат для передачи сигналов, состоящий из двух цветов. Считается, что первый телевизор был разработан в начале XX веке в Америке. Собрал его русский эмигрант Владимир Зворыкин. Именно он разбил световой луч на зелёный, красный и синий, таким образом получив цветное изображение. Такое изобретение он назвал иконоскопом. На западе изобретателем телевидения считают Джона Берда, который первым запатентовал устройство, создающее картинку из 8 линий.

Мобильные телефоны

Первый мобильный телефон появился в 70-х годах прошлого столетия. Однажды сотрудник известной компании Motorola, которая занималась разработкой портативных устройств, Мартин Купер, показал своим друзьям огромную трубку. Тогда они не поверили, что нечто подобное можно было изобрести. Позже, гуляя по Манхэттену, Мартин позвонил начальнику из компании конкурента. Таким образом, он впервые на практике показал действенность своей огромной телефонной трубки. Советский учёный Леонид Куприянович ещё за 15 лет до этого проводил похожие эксперименты. Именно поэтому определенно говорить о том, кто на самом деле является открывателем портативных устройств, довольно трудно. В любом случае мобильные телефоны - это достойное открытие 20 века, без которого представить современную жизнь просто невозможно.

Компьютер

Одно из самых великих научных открытий XX века - это изобретение компьютера. Согласитесь, что сегодня без этого устройства невозможно ни работать, ни отдыхать. Еще несколько лет назад компьютеры использовались только в специальных лабораториях и организациях, но уже сегодня это обычная вещь в каждой семье. Как же была изобретена эта супермашина?

Немец Конрад Цузе в 1941 году создал вычислительную машину, которая, по сути, могла производить те же операции, что и современный компьютер. Отличие было в том, что машина работала при помощи телефонных реле. Спустя год физик из Америки Джон Атанасов и его аспирант Клиффорд Берри совместно разработали электронный компьютер. Однако этот проект не был завершён, поэтому нельзя говорить о том, что они являются реальными создателями такого устройства. В 1946 году Джон Мокли продемонстрировал, по его заявлению, первый электронный компьютер ЭНИАК. Прошло еще много времени, и огромные коробки заменили маленькие и тонкие устройства. Кстати, персональные компьютеры появились только в конце прошлого века.

Интернет

Великое технологическое открытие 20 века - это интернет. Согласитесь, что без него даже самый мощный компьютер не так уж и полезен, особенно в современном мире. Многие люди не любят смотреть телевизор, но они забывают о том, что власть над человеческим сознанием давно захватил интернет. У кого же возникла идея такой глобальной международной сети? Она появилась в группе ученых в 50-х годах прошлого века. Они хотели создать качественную сеть, которую было бы сложно взломать или прослушать. Причиной возникновения такой мысли послужила Холодная война.

Власти США во время Холодной войны использовали определенное устройство, которое позволяло передавать данные на расстоянии, не прибегая к помощи почты или телефона. Это устройство называлось APRA. Позже ученые исследовательских центров разных штатов занялись созданием сети APRANET. Уже в 1969 году благодаря этому изобретению получилось связать все компьютеры университетов, представленных данной группой ученых. Спустя 4 года к этой сети присоединились другие исследовательские центры. После того как появился e-mail, количество людей, желающих проникнуть во Всемирную паутину начало быстро расти в геометрической прогрессии. Что касается современного состояния, то на данный момент более 3 млрд человек пользуются интернетом каждый день.

Парашют

Несмотря на то что идея парашюта пришла в голову Леонардо да Винчи, всё же это изобретение в современном виде относят к великим открытиям 20 века. С появлением воздухоплавания начались регулярные прыжки с больших воздушных шаров, к которым крепили полураскрытые парашюты. Уже в 1912 году один американец решил прыгнуть с таким устройством из самолёта. Он удачно приземлился на землю и стал самым смелым жителем Америки. Позже инженер Глеб Котельников изобрел парашют исключительно из шелка. Также он сумел упаковать его в небольшой ранец. Проверка изобретения происходила на движущемся автомобиле. Таким образом придумали тормозной парашют, который бы позволял задействовать систему аварийного торможения. Так, перед началом Первой мировой войны ученый получил патент на свое изобретение во Франции, и таким образом стал первооткрывателем парашюта в 20 веке.

Физики

Теперь поговорим о великих физиках 20 века и их открытиях. Всем известно, что физика является основой, без которой представить комплексное развитие какой-либо другой науки в принципе невозможно.

Отметим квантовую теорию Планка. В 1900 году немецкий профессор Макс Планк стал открывателем формулы, которая описывала распределение энергии в спектре черного тела. Заметим, что до этого считалось, что энергия всегда распределяется равномерно, но изобретатель доказал, что распределение происходит пропорционально благодаря квантам. Ученый составил доклад, которому на то время никто не поверил. Однако уже через 5 лет благодаря выводам Планка великий ученый Эйнштейн смог создать квантовую теорию фотоэффекта. Благодаря квантовой теории Нильс Бор сумел построить модель атома. Таким образом, Планк создал мощную базу для дальнейших открытий.

Нельзя забывать о самом великом открытии 20 века - открытии теории относительности Альберта Эйнштейна. Ученому удалось доказать, что гравитация представляет собой следствие искривления четырехмерного пространства, а именно времени. Также он объяснил эффект замедления времени. Благодаря открытиям Эйнштейна удалось рассчитать многие астрофизические величины и расстояния.

К величайшим открытиям 19-20 века можно отнести изобретение транзистора. Первое рабочее устройство было создано в 1947 году исследователями из Америки. Учёные экспериментально подтвердили верность своих идей. В 1956 году они уже получили Нобелевскую премию за открытия. Благодаря им в электронике началась новая эра.

Медицина

Рассмотрение великих открытий в медицине 20-21 века начнём с изобретения пенициллина Александром Флемингом. Известно, что это ценное вещество было обнаружено в результате небрежности. Благодаря открытию Флеминга люди перестали бояться опаснейших болезней. В этом же столетии была открыта структура ДНК. Её открывателями считаются Фрэнсис Крик и Джеймс Уотсон, которые при помощи картона и металла создали первую модель молекулы ДНК. Невероятную шумиху подняла информация о том, что у всех живых организмов принцип строения ДНК одинаков. За это революционное открытие ученые были награждены Нобелевской премией.

Великие открытия 20-21 века продолжаются нахождением возможности пересаживать органы. Такие действия довольно долго воспринимались как нечто нереальное, но уже в прошлом веке ученые поняли, что добиться безопасной качественной пересадки можно. Официальное открытие этого факта состоялось в 1954 году. Тогда врач из Америки Джозеф Мюррей пересадил почку одному из своих пациентов от брата-близнеца. Таким образом он показал, что можно пересадить человеку чужой орган, и он будет еще долго жить.

В 1990 году врач был награжден Нобелевской премией. Однако еще длительное время специалисты пересаживали всё, кроме сердца. Наконец, в 1967 году мужчине в пожилом возрасте пересадили сердце молодой женщины. Тогда пациенту удалось прожить всего 18 дней, но уже сегодня люди с донорскими органами и сердцами живут многие годы.

УЗИ

Также к важным изобретениям прошлого века в области медицины стоит отнести УЗИ, без которого лечение представить очень трудно. В современном мире сложно найти человека, который бы не проходил ультразвуковое сканирование. Изобретение датируют 1955 годом. Невероятнейшим открытием прошлого века считают оплодотворение в пробирке. Британским ученым удалось в лабораторных условиях оплодотворить яйцеклетку, а после поместить ее в матку женщины. В итоге на свет появилась всемирно известная "девочка из пробирки" Луиза Браун.

Великие географические открытия 20 века

В прошлом веке была подробно исследована Антарктида. Благодаря этому ученые получили точнейшие данные о климатических условиях и фауне Антарктики. Российский академик Константин Марков создал первый в мире атлас Антарктиды. Великие открытия начала 20 века в области географии продолжим экспедицией, которая отправилась в Тихий океан. Советскими исследователями была измерена глубочайшая океаническая впадина, которая получила название Марианской.

Морской атлас

Позже был создан морской атлас, который позволял изучать направление течения, ветра, определять глубину и распределение температуры. Одним из самых громких открытий прошлого века стало обнаружение озера Восток под огромным слоем льда в Антарктиде.

Как мы уже знаем, прошлый век был очень насыщен различного рода открытиями. Можно сказать, что произошел настоящий прорыв практически во всех сферах. Потенциальные возможности ученых со всего мира достигли своего максимума, благодаря чему в настоящее время мир развивается семимильными шагами. Многие открытия стали поворотным моментом в истории всего человечества, особенно это касается исследований в области медицины.

Взаимосвязь науки и техники в XX веке. Машиностроение. Двигатель внутреннего сгорания и автомобиль. Авиация и аэродинамика. Реактивные самолеты и ракеты. Радио и телевидение. Лазеры. Электронно-вычислительные машины. Наука и военная техника. Атомная и водородная бомбы. Новые виды оружия. Космическое оружие. Стратегическая оборонная инициатива. Пучковое оружие. Истребитель Су-35. Противозенитный ракетный комплекс «Игла». Динамическая защита отечественных танков. Стратегическая система ракетно-ядерных сил морского базирования «Тайфун». Подводная лодка «Черная дыра в океане». Психотронное оружие

Естественные науки в конце XIX начале XX в. вступили в качественно новый этап своего развития, ибо во всех областях знания были сделаны открытия, способствовавшие колоссальному научном} 7 и техническому прогрессу. Происшедшая в XX веке революция в области физики неизбежно вызва­ла интеграцию науки и техники при ведущей роли естествознания. Хотя основные сравнительно новые продукты техники, даже автомобиль и самолет, а также методы их строительства, в частности метод массового производства, вначале все еще базируются на науке скорее XIX, чем XX столетия. С течением времени интеграция науки и техники происходит все быстрее и быстрее, или, вернее, она обходит весь круг промышленныхпроцессов по мере того, как технические приемы, осно­ванные на новых физических знаниях - сначала в об­ласти электроники, а позднее ядерной физики, - прони­кают в старые отрасли промышленности и создают но­вые, такие, как производство телевизионного оборудо­вания и атомной энергии. Именно в XX веке «отношения между наукой и техникой быстро меняются местами» (Дж.Бернал), так как техника все больше раз­вивается на основе научных исследований.

Машиной, которой больше чем какой-либо иной су­ждено было преобразовать как промышленность, так и условия жизни в XX веке, явился двигатель внутреннего сгорания. Он, хотя и более косвенно, чем первоначаль­ная паровая машина, явился плодом применения науки, в данном случае термодинамики. Основная идея взрыва предварительно сжатой смеси воздуха и горючего газа для осуществления термодинамического эффекта при­надлежала французскому инженеру де Роша (1815 -1891), который выдвинул ее еще в 1862 году, однако от идеи до работоспособной машины был еще далекий путь и необходимо было разработать еще много суще­ственных деталей методы зажигания, функционирова­ния клапанов, - которые не требовались в паровых ма­шинах.

Пионеры-практики Ленуар (1822-1900) и Отто (1832-1891), изобретшие все еще почти универсальный четырехтактный цикл, и Дизель (1858 1913), допол­нивший его компрессорным зажиганием, сумели соз­дать мощные двигатели, однако применение их ограни­чивалось на протяжении XIX века сравнительно не­большим числом стационарных газовых и нефтяных двигателей. Эти двигатели и автомобили производи­лись главным образом как предмет роскоши или для спортивных целей.


Генри Форд (1863-1947) начал как конструктор-любитель в мастерской на заднем дворе и быстро пре­вратился в самого преуспевающего фабриканта нового автомобиля, потому что он понимал, что то, что было действительно нужно, это дешевый автомобиль в ог­ромных количествах. Осуществление этой идеи потребовало в некоторой степени массовости производства и в то же самое время дало мощный толчок его дальней­шему развитию. Начиная с этого момента все классиче­ские методы машиностроения должны были подверг­нуться перестройке с тем, чтобы оно было способно производить идентичные детали в большом количестве.

Летать как птица было извечной мечтой человечест­ва, как об этом свидетельствуют широко распростра­ненные легенды о летающих людях или летающих ма­шинах, а также издревле делавшиеся во всех странах мира попытки подражать птицам. Проблемы полета столь сложны, что не могли быть разрешены наукой прошлого века; в осуществлении длительного полета все зависело от наличия достаточно легкого двигателя, а такой источник энергии мог быть получен только в XX веке в результате усовершенствования двигателя внутреннего сгорания. Братья Райт, механики-велосипе­дисты по профессии и аэронавты по призванию, смон­тировали ими самими сделанный двигатель на самолет и работали над его усовершенствованием до тех пор, пока он в первый раз не полетел в 1903 году. Труден только первый шаг. Стоило Орвилю Райту поднять свой аэроплан в воздух и заставить его пролететь не­сколько футов, как будущее авиации было обеспечено.

В основном именно в связи со своим эмпирическим происхождением аэроплан должен был в первые деся­тилетия своего существования больше давать науке, замечает Дж.Бернал, чем извлекать из нее. Это обстоя­тельство послужило причиной для начала серьезного изучения аэродинамики, что должно было получить широкий отклик в машиностроении и даже в метеоро­логии и астрофизике. Усилия, относящиеся к более ран­нему периоду, такие, как работа Магнуса (1802 1870), сосредоточивались на полете снарядов. Изучение обте­каемого движения и турбулентности, предпринятое в связи с работой над первыми аэропланами, нашло себе непосредственное применение в конструкции судов и во всех проблемах, связанных с воздушным течением, на­чиная с доменных печей и кончая вентиляцией жилищ. Результаты исследований в области аэродинамики затем нашли свое эффективное применение в авиации XX века и прежде всего в военной авиации.

Эволюция аэроплана с пропеллерным двигателем шла по прямой линии от биплана Райтов до летающей «сверхкрепости»; однако требование все больших ско­ростей для военных целей пробило, наконец, типичный консерватизм конструкторов и породило газовую тур­бину, обусловившую возможность создания реактивно­го самолета. Во второй мировой войне самолет этот появился слишком поздно, чтобы иметь какую-либо ценность в военном отношении. Из тех же потребностей войны возник и самый старый из снарядов с огневым двигателем - ракета. К настоящему времени различие между самолетом и ракетой постепенно стирается и, по-видимому, исчезнет совсем, как только удастся заста­вить атомную энергию служить в качестве движущей силы. Реактивный самолет и ракета эксплуатируются только в верхних слоях атмосферы; при этом ракета выгодна как транспортное средство только для межкон­тинентальных путешествий.

Немалую роль в развитии техники XX столетия сыг­рало изобретение радио и телевидения, причем здесь следует иметь в виду следующие обстоятельства. Если мы раскроем энциклопедическую книгу «Изобретения, которые изменили мир» (о ней уже шла речь выше) или хронологический обзор «История естествознания в да­тах» словацких ученых Я.Фолгы и Л.Новы, то обнару­жим, что изобретение радио приписывается итальян­скому физику Г.Маркони и ни слова не упоминается о нашем соотечественнике А.Попове. Перед нами типич­ный западоцентризм, когда сознательно умалчивается о достижениях российских ученых и техников. В данной лекции мы не будем подробно описывать значимость радио, несколько подробнее рассмотрим вопрос об изо­бретении телевидения.

Развитие идей телевидения с самого своего рождения носило интернациональный характер. Как отмечает в своей статье «Творцы голубого экрана» В.Урвалов, в период с 1878 г. до конца XIX века в одиннадцати стра­нах в патентные бюро и редакции журналов было пред ставлено более 25 проектов прообраза телевизионных устройств, из них пять - в России. В 1880 г. наш сооте­чественник П.И. Бахметьев, будучи студентом Цю­рихского университета, разработал проект устройства под названием «телефотограф», одного из первых предшественников телевизора. Цветную телевизионную систему с последовательной передачей сигналов трех цветов в конце 1899г. патентует инженер-технолог из Казани А.А. Полу мордвинов, вскоре переехавший в Петербург и занявший место помощника столона­чальника в телеграфном департаменте. Он впервые вво­дит в научный оборот понятие «триада цветов», прак­тическое значение которого сохранилось и в наше вре­мя. Несколько обзоров по электровидению в те годы сделал военный инженер К.Д. Перский. Именно он впервые ввел в оборот термин «телевидение» в обзор­ном докладе, прочитанном им на Международном кон­грессе в Париже (1900г.). Двухцветную телевизионную систему с одновременной передачей белого и красного цветов предложил в 1907г. сын бакинского купца И.А. Адамян, работавший в собственной лаборатории под Берлином.

К началу XX в. сложились предпосылки для зарож­дения катодного, или - по современной терминологии - электронного телевидения. Еще в 1858г. боннский профессор Ю. Плюккер открыл катодные лучи, в 1871 г. англичанин У. Крукс изготовил специальные трубки ^ля исследования свечения различных веществ, облу­чаемых катодным пучком в вакууме, а в 1897 г. немец­кий профессор К.Ф. Браун применил катодную трубку для наблюдения быстропротекающих электрических процессов. В 1907 г. преподаватель петербургского Тех­нологического института Б.Л. Розинг запрашивает па­тенты в Россш!, Англии и Германии на изобретенный им «Способ электрической передачи изображений», от­личающийся применением катодной трубки для вос­произведения изображения в приемном устройстве. Он впервые вводит модуляцию плотности катодного пучка и разноскоростную развертку по двум координатам для образования прямоугольного растра. Передающее устройство у Розинга остается оптико-механическим, но в нем применен безынерционный калиевый фотоэлемент с внешним фотоэффектом.

Через год английский инженер А.А. Кемпбелл-Суинтон выдвигает идею, а в 1911 г. предлагает грубую схему полностью электронного телевизионного устрой­ства, включая передающую трубку. Однако его попыт­ки практически доказать работоспособность предло­женной схемы успеха не принесли. Более успешно шла работа у россиянина Розинга, который смог завершить постройку лабораторного образца своей аппаратуры смешанного типа. В своей записной книжке Б.Л. Розинг оставил такую запись: «9 мая 1911 г. в первый раз было видно отчетливое изображение, состоящее из четырех светлых полос». Это было первое в мире телевизионное изображение, переданное и в тот же миг принятое с по­мощью аппаратуры, разработанной и изготовленной в России. В последующие дни Б.Л. Розинг демонстриро­вал передачу простых геометрических фигур и движение кисти руки. Отмечая заслуги Б.Л. Розинга в развитии идей телевидения, Русское техническое общество в 1912г. присудило ему Золотую медаль. И затем нача­лось бурное развитие телевидения в Германии, Англии, США и Советском Союзе.

Ученые Советского Союза внесли существенный вклад и в создание лазеров («усилителей света в резуль­тате вынужденного излучения», аббревиатура этих слов на английском языке и дает слово лазер). Лазеры полу­чили широкое применение в техника (в обработке ме­таллов, в частности в их сварке, резке, сверлении), в медицине (в хирургии, офтальмологии), в различных научных исследованиях. Перечисленное применение лазеров является, несомненно, только началом. Извест­ные советские ученые Н.Г. Басов и А.М. Прохоров яв­ляются одними из основоположников теории и созда­ния квантовых генераторов.

«Создание квантовых генераторов стало началом развития нового направления электроники, отмечает В.А. Кириллин, квантовой электроники науки, ко­торая занимается теорией и техникой различных устройств, действие которых основано на вынужденном излучении и на нелинейном взаимодействии излучения с веществом». К числу таких устройств, кроме квантовых генераторов (в том числе лазеров), относятся усилители и преобразователи частоты электромагнитного излуче­ния, а также квантовые усилители СВЧ (сверхвысокой частоты), квантовые магнитометры и стандарты часто­ты, лазерные гироскопы (лазерные приборы, свойство которых - неизменное сохранение оси вращения в про­странстве позволяет использовать их для управления самолетами, ракетами, морскими судами и т.д.) и неко­торые другие.

Электронные приборы и устройства нашли широкое применение, стали незаменимыми в аппаратуре связи, автоматике, измерительной технике, электронных вы­числительных машинах и во многих других очень важ­ных областях. Радиоэлектроника, широко вошедшая в производство, науку, быт людей, является одним из самых главных направлений технического прогресса, мощным средством повышения производительности труда. Детищем радиоэлектроники являются и элек­тронно-вычислительные машины (ЭВМ), чье развитие привело к компьютерной революции.

Именно ЭВМ (компьютеры) дают возможность хра­нения, быстрого поиска и передачи информации, что означает революцию в системах накопления и доступа к освоенным знаниям. Наступает очень важный в жизни человечества этап «безбумажной информатики»: ин­формация поступает к специалистам прямо на рабочее место на соответствующие устройства отображения (дисплеи), расположенные в удобных и легкодоступных для потребителя местах. Не менее, а, может быть, даже более важное значение приобретает все более широкое внедрение такого рода средств и в быт, что и наблюда­ется сейчас.

Более того, информационная инфраструктура, ос­нованная на слиянии ЭВМ, систем связи (в том числе космической) и баз знаний, становится важнейшим фак­тором в дальнейшем развитии электронной и вычисли­тельной техники и информационных технологий.Наибольшее влияние современная наука оказала на развитие военной техники, с одновременным стимули­рующим воздействием на функционирование науки потребностей военного производства, в которое вкла­дываются громадные финансовые средства. Нельзя не согласиться с утверждением Дж.Бернала, согласно ко­торому, «даже еще до изобретения атомной бомбы пра­вительства привлекали тысячи ученых и расходовали десятки миллионов фунтов стерлингов на совершенст­вование самолетов, бомб и навигации с помощью ра­диолокации, не говоря уже о смертоносных «улучшени­ях» более старого оружия». Сейчас вполне очевидно, что использование науки в военных целях уже принесло достаточно вреда для того, чтобы на целые десятилетия задерживать развитие цивилизации, и способно при дальнейшем настойчивом продвижении его ускоренными темпами, как это фактически имеет место сег ас, уничтожить всякую жизнь на значительной части умного шара. Угроза ядерного, нейтронного, биологиче­ского и иных видов оружия массового поражения сделала ясным всему миру негативную и одновременно в определенном смысле позитивную роль науки в ее при­кладных военных аспектах.

Атомная бомба являет наглядный пример практического претворения научного открытия исключительно для военных целей в невероятно короткий, доселе не виданный срок - три года. «Как научное и промышлен­ное предприятие атомная бомба, подчеркивает Дж.Бернал, - представляет собой самое концентриро­ванное и, в абсолютных цифрах, величайшее научно-техническое усилие во всей истории человечества. Фак­тически сумма, затраченная на атомный проект-примерно 500 млн ф. ст.,- значительно превышает то, что было израсходовано на всю работу по научному исследованию и усовершенствованию с начала данного периода».

С другой стороны, при всякой рациональной системе использования науки расщепление атома явилось бы центральным моментом самой интенсивной разработки, ведущей к применению его для производства энер гии и для других целей, на которые могли бы быть на­правлены продукты атомного реактора. Фактически, как мы знаем, оно было разработано для иной, цели -цели производства бомбы и бессмысленного убийства в Хиросиме 60 000 и в Нагасаки 39 000 человек. Этот акт, как и любые другие массовые убийства в ходе военных действий, не может быть оправдан никакой военной необходимостью.

Атомная бомба - это пример самого разрушитель­ного применения науки на службе войне, которая использовала также самые радикально новые достижения науки, однако это было не единственное событие ре­шающего значения. Не менее важными по сравнению с ней являются такие продукты применения науки в об­ласти радиационной физики и информационной тео­рии, как телесвязь, радиолокация, сервоуправляемая артиллерия, радиовзрыватели, управляемые и возвращающиеся снаряды, введенные в действие к концу войны и с тех пор интенсивно развивавшиеся. Все новейшие разработки в области военной техники фактически породили свою собственную Немезиду, воплотившуюся в создании водородной бомбы. Стоило только начать гонку производства бомб, как стало казаться, что та сторона, которая первой придет к водородной бомбе с ее разрушительной силой, в тысячу или более раз пре­вышающей разрушительную силу «обычной» атомной бомбы, приобретет решающее преимущество и, как открыто хвастали некоторые американцы, замечает Дж.Бернал, займет непоколебимую «позицию силы», чтобы именно с этой позиции вести переговоры. Как оказалось, Советский Союз шел в отношении создания новых типов ядерного оружия, по-видимому, несколько впереди, и в 1954 году всем заинтересованным сторонам стало очевидно, что и «атомная», и «водородная» про­блемы зашли в тупик. Это помогло достичь ослабления международной напряженности.

Немалую угрозу безопасности человека и общества несут новые виды оружия массового поражения. Кроме химического, биологического, ядерного, нейтронного и высокоточного оружия, современный научно-технический прогресс делает возможным создание и производст­во новых видов оружия массового поражения, основан­ных на качественно новых принципах действия. Такими видами оружия массового поражения могут стать: оружие, поражающее ионизирующими излучениями, инфразвуко-вое, радиочастотное, генетическое, оружие на топливно-воздушных смесях и другие.

К одному из возможных видов будущего оружия массового поражения можно отнести инфразвуковое оружие, основанное на использовании мощных инфра-звуковых колебаний с частотой ниже 16 герц. Их звуковые пучки способны оказывать сильное воздействие на состояние и поведение индивидов, разрушать промышленные и гражданские объекты. «Инфразвук вследствие огромной длины волны, - пишет Г. Чедд, - невозможно остановить обычными строительными сооружениями, с помощью которых человек часто защищается от всевозможных вредных воздействий. Большая длина волны позволяет инфразвуку распространяться в атмосфере на значительные расстояния, достигающие десятков тысяч километров». Интенсивные низкочастотные колебания могут воздействовать на центральную нерв­ную систему и пищеварительные органы, приводить к общему недомоганию, головной боли и болевым ощущениям во внутренних органах. При более высоких уровнях сигнала на частотах в несколько герц к головокружению, тошноте, потере сознания, а иногда к слепоте. Это оружие может также вызывать у людей паническое состояние, потерю контроля над собой и непреодолимое стремление уйти от источника поражения. Акустическое оружие вынуждает солдат противника к самоубийству, превращает целые воинские соеди­нения в толпу идиотов, причем возможно полное и не­обратимое разрушение психики индивидов. Оно актив­но разрабатывается в военных лабораториях, в которых одновременно испытываются и системы защиты от ин­тенсивных низкочастотных звуковых пучков.

Действие радиологического оружия основано на использовании радиоактивных веществ для поражения живой силы ионизирующими излучениями, зараженияместности, акватории, воздуха, военной техники и дру­гих объектов. Радиоактивные вещества для этих целей могут быть выделены из продуктов, образующихся при нормальной деятельности ядерных реакторов при элек­трических станциях, или получены специально путем воздействия потока нейтронов на различные химиче­ские элементы для образования изотопов, обладающих наведенной радиоактивностью. В боевых целях можно использовать эти ионизирующие излучения, поэтому сейчас в ряде стран мира идет работа над созданием технологии применения радиационного оружия. Его эффект можно представить достаточно наглядно: если открыть закрытый контур ускорителя в Дубне, по ко­торому движутся электроны и позитроны, то от живого в окрестности ничего не останется.

Возможной разновидностью химического или био­логического оружия является этническое оружие, прин­цип действия которого состоит в широкой вариабель­ности нормальных метаболических процессов в орга­низме человека от нации к нации, от расы к расе. Оно может быть использовано для поражения отдельных этнических и расовых групп людей путем целенапра­вленного химического или биологического воздействия на клетки, ткани, органы и системы организма челове­ка, выражающие внутривидовые, групповые наследст­венные особенности (действие одного из видов этничес­кого оружия, например, основано на химическом воз­действии, которому подвергаются пигменты в организ­ме человека, в разных количествах присущие различ­ным этническим и расовым типам). Действие радиоло­гического и этнического оружия на человека может вы­звать такие нарушения в человеческом организме, кото­рые, передаваясь по наследству, отрицательно скажутся на полноценности потомства. В частности, они могут привести к стерильности потомства, склонности к пси­хическим заболеваниям, пониженной сопротивляемости организма к инфекциям и т.п.

В середине 70-х годов XX столетия появились публи­кации, раскрывающие понятие геофизической войны преднамеренное использование сил природы в военныхцелях путем активного воздействия на окружающую среду и на физические процессы, протекающие в твер­дой, жидкой и газовой оболочках Земли. Принципиаль­но возможно создание искусственных землетрясений, мощных приливных волн типа цунами, ливней, магнитных бурь, изменение температурного режима определенных районов планеты, использование ультрафиолетового излучения Солнца и космических лучей, образование горных обвалов, снежных лавин, оползней, селей и заторов на реках. Изучается возможность с по­мощью ракет или специальных средств изменять физиче­ский состав слоев атмосферы, в том числе озонного, чтобы создавать над определенными территориями противника «окна», через которые смогут проникать сильнодействующие ультрафиолетовые и космические лучи.

В 1980-х годах появилось такое понятие, как средст­ва воздушно-космического нападения (СВКН). Оно не просто объединило носителей оружия, а явилось определенным классом средств вооруженной борьбы, действующих в воздухе и из космоса и характеризуемых только им присущими свойствами и возможностями. «Средства воздушно-космического нападения отлича­ются универсальностью, - отмечается в изданной не­давно «Энциклопедии современного оружия и боевой техники». - Они могут быть направлены на любые выбранные объекты, в том числе находящиеся вне рай­онов соприкосновения группировок вооруженных сил. Кроме объектов военного характера, целями для них выступают важнейшие элементы инфраструктуры про­тивоборствующей стороны, в особенности те, разруше­ние которых обусловливает химическое и радиационное заражение среды обитания, наводнения и др.» Данное обстоятельство побуждает государства уже в мирное время принимать меры по снижению уязвимости выше­названных объектов.

Поэтому в последние полтора - два десятилетия ис­пользование космоса в качестве потенциального поля боя вышло на первый план в подготовке к будущим войнам. Для этого велась разработка супермощных «противоспутниковых систем», предусматривалось многократное использование в военных целях космиче­ского челнока «Шаттл». В 1983 году президентом США Р. Рейганом была провозглашена долгосрочная про­грамма создания широкомасштабной системы противо­ракетной обороны (ПРО) с элементами космического базирования, известная как стратегическая оборонная инициатива (СОИ). Советские публицисты назвали СОИ планом подготовки «звездных войн», т. е. военных действий с помощью нового класса стратегических воо­ружений - ударных космических. По их мнению США рассчитывали, прикрыв космическим противоракетным «щитом» свою территорию от ответного удара, получить превосходство в применении ядерного и космического оружия против СССР и его союзников.

Разрабатываемые в рамках СОИ новейшие тех­нологии позволяли создать принципиально новые виды наступательных вооружений - ударные космические вооружения. Они представляют собой лазерное, пучко­вое, а также кинетическое (электромагнитные пушки, самонаводящиеся ракеты, снаряды) оружие, обладаю­щее высокой поражающей мощью и способностью в кратчайшие сроки избирательно уничтожать многочис­ленные удаленные на тысячи километров объекты как в космосе, так и на Земле. По дальности действия такое оружие является глобальным: размещенное на околоземных орбитах и обладающее способностью маневрировать, оно практически в любой момент способно создать реальную угрозу безопасности любого государства.

И все же основной потенциал этого оружия оборонительный. США опасаются ракетно-ядерного удара по своей территории со стороны государств типа Ирака, и поэтому разработали пучковое оружие. В речи 23 марта 1983 г., президент США Р.Рейган призвал американское научное сообщество создать такую систему, которая «...могла бы перехватить и уничтожить стратегические баллистические ракеты прежде, чем они достигнут на­шей территории...». Американское физическое общество (АФО) создало экспертную группу с целью оценить научные и технологические аспекты состояния дел всоздании пучкового оружия. Оценки сосредоточивались на различных аспектах технологии лазеров (однора­зовых, элементом «накачки» энергии в ситему в кото­рых служит атомный взрыв) и пучков частиц высокой энергии как потенциальных средств для защиты от ата­ки баллистических ракет. Предполагалось, что пучко­вое оружие будет играть определяющую роль в защите от баллистических ракет; именно по этому, прямому назначению, оно может быть использовано сегодня.

Военный потенциал России заметно меньше по срав­нению с ушедшим в прошлое Советским Союзом, одна­ко у нее имеются самые лучшие разработки в области боевой техники. Одним из достижений отечественного ВПК является семейство истребителей серии Су Су-21, Су-30, Су-35 и другие модификации, которым нет аналога в мировом авиастроении. Американский журнал «Уорлд эйр паупер джорнал» писал в 1993 году: «Даже сегодня самолет Су-21является загадкой. Ослепительные аэрошоу и завоевание мировых рекордов, вырванных у его конкурента Р-15, говорят об исключительном уровне характеристик маневренности, тогда как огромное количество топлива во внутренних топливных баках обеспечивает этому самолету громадный радиус действия. Этот тип самолета, заслоняя всех конкурентов, выбран в качестве многоцелевого станового хребта российских Военно-Воздушных Сил в следующем столетии».

Создание в 1977 году в Опытно-конструкторском бюро имени Павла Сухого истребителя Су-27 явилось первой реализацией обширного многопланового сценария разработки нового - четвертого поколения тактического авиационного вооружения Военно-Воздушных Сил Советского Союза, а в дальнейшем - Российской Федерации. В ее основу были положены новейшие достижения конструкторов КБ и ученых из научно-исследовательских институтов оборонных отраслей промышленности. «Сегодня, по прошествии 17 лет, отмечает В.Петров, - видны контуры грандиозной программы, может быть, самой захватывающей в истории развития боевой авиации». Истребитель Су-35, выполненный по так называемой схеме «триплан», которая позволила значительно увеличить устойчивость и простоту пилотирования на та­ких сложных режимах ближнего боя, как «кобра» на горизонталях и вертикалях и «хук» на виражах. В обоих случаях реализуются углы атаки до 120° без всяких тенденций к сваливанию или входу в штопор. Указанные выше маневры «кобра», «хук», а также «колокол» позволяют истребителю Су-35 принципиально по-новому вести ближний маневренный бой. Вместо того, чтобы крутить длительную карусель виток за витком на горизонталях и вертикалях, пытаясь войти в заднюю полусферу противника и наложить на него прицельную марку, в случае с Су-35 все может быть реализовано значительно быстрее: на первом же витке можно применить маневр «кобра» или «хук», при которых машина за 1,5 секунды разворачивается на 120°, при этом автоматически радиолокационная и оптико-электронная обзорно-прицельные системы мгновенно захватывают цель и выдают команду на пуск 2 ракет.

В свою очередь, маневр «колокол» позволит сорвать захват РЛС, пропустить вперед за счет энергичного торможения атакующий самолет и в следующее мгнове­ние атаковать его в заднюю полусферу. Но особенно интересным выглядит комплекс нового вооружения истребителя Су-35: ракета «воздух-воздух», способная поражать цель на дальностях, превышающих аналоги, корректируемые авиационные бомбы с лазерными и телевизионными системами наведения, - крылатая так­тическая ракета с телевизионным штурманским или автоматическим методами наведения и высокой точно­стью попадания.

Много интересных особенностей имеет самолетСу-35. Его силовая установка оснащается двигателем большой мощности с управляемыми автоматическими векторами тяги. Это позволяет реализовать высокую маневренность на предельно малых практически нулевых скоростях полета, что без управления векторами тяги двигателя реализовать просто невозможно. Кабина самолета оснащена гензометрическими боковыми ручками управления самолетом и двигателями и че­тырьмя резервированными жидкокристаллическими цветными дисплеями, которые не могут быть засвечены солнцем, в отличие от электронно-лучевых. Дальней­шая модификация Су-35 привела к созданию Су-37, который также находится вне конкуренции со стороны лучших западных авиастроительных фирм и который начинает завоевывать позиции на мировом рынке воо­ружений.

В начале 1991 года в западной печати (1апе"$ ОеГепсе \Уеек1у, 1991, Уо1. 16, N 3, р. 88) «появилось» сообщение о том, что самолет морской пехоты США «Нагпег II» в ходе боевых действий в районе Персидского залива предположительно был сбит ракетой переносного зе­нитного ракетного комплекса ЗА-16 О1т1е1 советского производства. Этот комплекс, имеющий российское название «Игла-1», был принят на вооружение Совет­ской Армии в 1981 году и действительно поставлялся в ряд стран Африки и Ближнего Востока.

Комплекс «Игла», принятый на вооружение в 1983 году, максимально унифицирован с ПЗРК «Игла-1» и имеет единую с ним двигательную установку, боевую часть, пусковой механизм, источник питания, учебно-тренировочные средства и подвижный контрольный пункт. В то же время в «Игле» применена принципиально новая оптическая головка самонаведения с логическим блоком селекции, которая придала ей способность борьбы с авиацией противника в условиях постановки им искусственных помех в инфракрасном диапазоне применения тепловых ловушек. Кроме того, была суще­ственно увеличена дальность стрельбы по реактивным целям на встречных курсах за счет значительного по­вышения чувствительности головки.

Характеризуя ПЗРК «Игла», С.Веденов пишет: «Таким образом, на переносном зенитном ракетном комплексе «Игла» реализован целый ряд оригинальных технических решений. Среди них: применение детопа-ционноспособного топлива двигательной установки, газодинамический разворот ракеты на начальном уча­стке полета, селекция цели на фоне тепловых помех, смещение точек попадания ракет в наиболее уязвимые места цели, заглубленный подрыв боевой части совме­стно с остатками топлива и некоторые другие. Благода­ря этому по своим основным характеристикам зоне поражения и скоростям поражаемых целей он ни в чем не уступает, а по вероятности поражения превосходит последний зарубежный аналог - американский ПЗРК «51тёег-1ШР»».

Не менее успешны разработки наших конструкторов в области создания так называемой «активной брони» для защиты танков. Работы в области «активной брони» в России начались в конце 40-х - начале 50-х годов. Они были инициированы резким скачком в способности бронепробития кумулятивных средств по­ражения и, в первую очередь, появлением противотанковых управляемых реактивных снарядов, уровень бронепробития которых был более не ограничен диаметром канала ствола.

В результате кропотливых многолетних исследовании была создана активная броня, получившая название «динамической защиты» (ДЗ), хотя и здесь не обошлось без волевых решений. «Руководители армии и промышленности, - отмечает Д. Ротатаев, - узнав, что на американских танках М-48АЗ, М-60, «Центурион» установлена ДЗ, которая позволила израильской армии преодолеть насыщенную советскими противотанковыми средствами оборону палестинцев, решили, что пора и нам принять на вооружение систему, создаваемую в стране более двадцати лет».

Начались работы по комплексу «Контакт», и специалисты института вместе с многочисленными контраген­тами совершили практически невозможное: 15 января 1983 года был подписан «Акт государственной комиссии о принятии танков с противокумулятивной динамической защитой», а в сентябре 1983 года первые ганки с ДЗ стали выходить из ворот заводов. Однако этим дело не закончилось, ибо исследователи решили улучшить характеристики ДЗ для отечественных танков. Их интенсивная работа, открытие новых явлений и более детальное изучение, казалось бы, уже известного позволило к 1985 году создать для танков ДЗ, которая не только не уступала ранее принятому комплексу «Контакт», но и превосходила его примерно на 20° о по противокумулятивной защите и давала ему совершенно новое качество - противоснарядную стойкость. Одновременно был решен целый ряд эксплуатационных и других вопросов. И с 1985 года танки с комплексом «Контакт-5» стали пополнять ряды бронетанковых сил нашей страны.

Не забывали наши конструкторы и военно-морские силы, благодаря чему в Советском Союзе в 80-е годы была создана стратегическая система ракетно-ядерных сил морского базирования «Тайфун», что сопоставимо, по утверждению военных специалистов, с запуском пер­вого спутника и является одной из интереснейших стра­ниц в новейшей истории вооружений. Главным звеном этой системы являются самые большие атомные субма­рины в мире - тяжелые ракетные подводные крейсера стратегического назначения.

Проекты современных подводных лодок вобрали в себя обширный опыт в области подводного корабле­строения. При этом используются последние научно-технические достижения. В этом плане представляет значительный интерес проект 877ЭКМ («Кило»), кото­рый выполнен в экспортном исполнении. Архитектура носовой оконечности подводной лодки (ПЛ) позволила вписать в ее размеры гидроакустическую антенну со­вершенно новой конструкции, что помогло значительно увеличить дальность действия гидроакустического ком­плекса (ГАК). Он спроектирован для нового поколения дизель-электрической подводной лодки с учетом дли­тельной эксплуатации в различных районах Мирового океана и возможностей модернизации по мере освоения новых технологий. Средства гидроакустики обеспечи­вают значительное увеличение дальности обнаружения целей и упреждения в дуэльной ситуации с вероятным противником.

«Преимущество в упреждении обнаружения противника, пишет Ю.Кормилицын, достигается надеж­ной гидроакустической защитой корпуса лодки. На базе многолетних научных изысканий, морских испытаний в бассейнах и в натурных условиях, применяя специальное покрытие, удалось решить задачу создания системы противогидроакустической защиты ПЛ». Лодка оснащена системой вентиляции и кондиционирования воз­духа. Для борьбы с пожарами установлены системы воздушно-пенного и объемного химического пожаро­тушения. Состав технических средств лодки обеспечи­вает возможность ее эксплуатации в любых климатиче­ских условиях.

Специалисты ведущих стран мира, в тоа* числе США, сразу оценили достоинства нашей подводной лодки. Они обратили внимание на то, что с появлением новой советской ПЛ американские субмарины потеряли преимущество в бесшумности, которым они обладали в течение многих лет. Один из американских журналов назвал ПЛ класса «Кило» «черной дырой в океане» из-за сложности ее обнаружения средствами гидроакусти­ки, поскольку ее «шумовой портрет» схож с естествен­ными шумами моря. Эта оценка полностью подтверди­ла прогнозы проектантов и флота о высокой степени скрытности ПЛ класса «Кило».

И наконец, остановимся весьма кратко на разработке психотронного оружия, вокруг которого так много споров и дискуссий. В январе 1991 года Американское физическое общество приступило к исследованию, что­бы определить, в каком состоянии находится разработка психотронных систем вооружений в США. Результа­ты исследований, опубликованные лишь в конце февраля 1993 года, представляют собой всестороннюю оценку возможностей использования психотронных систем для задач, связанных с вопросами обороны страны. Комиссия из 21 человека ставила своей целью подготовить отчет, который послужил бы техническим основанием для создания развернутой сети психофизического ору­жия в соответствии с замыслами сторонников использования психотронных систем для решения прикладных проблем обороны.

В состав комиссии вошли специалисты из различных областей науки и техники, играющие важную роль вразработке психотронного оружия. Они представляют широкий спектр научных и промышленных лаборато­рий, многие из которых непосредственно связаны с соз­данием психотронного оружия и вспомо! ательной тех­ники. Комиссия пришла к следующим выводам: «В по­следние пять лет сделаны гигантские шаги в разработке психогронных систем вооружений.

Открываются новые заманчивые возможности по­лучения недоступной информации посредством исполь­зования психотронных устройств, а также способы те­лекинетического воздействия на технические системы с целью их дистанционного разрушения.

Очерчивается рассчитанная на 3-4 года программа военно-прикладных исследований, разрабатываемых организациями-соисполнителями по заказу МО США. Конечной целью данной программы будет уверенное использование РАЗ для решения прикладных проблем обороны государства и нации. В то же время исследова­тельская группа видит еще значительные проблемы в научном и техническом понимании многих вопросов в этой области. Успешное разрешение этих проблем игра­ет ключевую роль в достижении технических показате­лей, необходимых для создания эффективной системы психотехнологического оружия.

Характеристики наиболее важных компонентов РАЗ должны быть улучшены на несколько порядков. По­скольку эти компоненты связаны между собой, усовер­шенствования должны быть взаимно согласованы. Ре­шение важных вопросов, связанных с интеграцией РАЗ с существующими системами вооружения в целом, так­же зависит существенным образом от информации, ко­торая, как нам известно, пока отсутствует».

В своей статье «Мозговая машина» сходит с конвей­ера?» Р.Оверкиллер показывает возможность примене­ния РАЗ с целью разрушения живых организмов или электронных физических объектов. Для военных сил США, без сомнения, очень важно знать, могут ли по­добные устройства влиять на расстоянии тысячи кило­метров на людей, также выводить из строя технику и вооружения. Из всех типов устройств, которые предположительно могут служить указанным целям и сейчас находятся в стадии разработки, наибольший интерес, по мнению Р.Оверютллера, может представлять низкочастотный квантово-резонансный излучатель (эксимер) Брауна, который относится к наиболее апробированным системам. Эксперименты с излучателем Брауна подтвердили возможность дистанционного влияния на сложные электронные устройства и высшие психиче­ские функции живых организмов. При этом излучатель и объект воздействия разделяло расстояние от полутора до тридцати миль.

Высокое качество пучка излучения, который свободен от искажений, имеет практически нулевой угол рас­хождения, не поглощается и не рассеивается атмосферой, предоставляет возможность разместить излучатель Брауна на космической платформе. Несмотря на столь высокие характеристики его пучка, возможность использования излучателя Брауна в качестве эффективного оружия для вывода из строя техники и вооружений и прямого поражения войск зависит в первую очередь от экспериментальной проверки нескольких физических идей, которые до сих пор рассматривались только теоретически. С точки зрения технического воплощения данная проблема может натолкнуться на непреодолимый характер этих преград. События, которые могут в ближайшие годы развернуться вокруг этих эксперимен­тов, будут иметь прямое отношение к вопросам создания стратегического оружия нового типа. Таким обра­зом, военная техника (и гражданская тоже) в наше время зависит от научных разработок и выдвижения но­вых, поистине фантастических идей.