По графику линейной функции 3y kx 2b. Линейная функция, её свойства и график

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

«Критические точки функции» - Критические точки. Среди критических точек есть точки экстремума. Необходимое условие экстремума. Ответ: 2. Определение. Но, если f" (х0) = 0, то необязательно, что точка х0 будет точкой экстремума. Точки экстремума (повторение). Критические точки функции Точки экстремумов.

«Координатная плоскость 6 класс» - Математика 6 класс. 1. Х. 1.Найдите и запишите координаты точек A,B, C,D: -6. Координатная плоскость. О. -3. 7. У.

«Функции и их графики» - Непрерывность. Наибольшее и наименьшее значение функции. Понятие обратной функции. Линейная. Логарифмическая. Монотонность. Если k > 0, то образованный угол острый, если k < 0, то угол тупой. В самой точке x = a функция может существовать, а может и не существовать. Х1, х2, х3 – нули функции у = f(x).

«Функции 9 класс» - Допустимые арифметические действия над функциями. [+] – сложение, [-] – вычитание, [*] – умножение, [:] – деление. В таких случаях говорят о графическом задании функции. Образование класса элементарных функций. Степенная функция у=х0,5. Иовлева Максима Николаевича, учащегося 9 класса РМОУ Радужская ООШ.

«Урок Уравнение касательной» - 1. Уточнить понятие касательной к графику функции. Лейбниц рассматривал задачу о проведении касательной к произвольной кривой. АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у=f(x). Тема урока: Тест: найти производную функции. Уравнение касательной. Флюксия. 10 класс. Расшифруйте, как исаак ньютон назвал производную функцию.

«Построить график функции» - Дана функция y=3cosx. График функции y=m*sin x. Постройте график функции. Содержание: Дана функция: y=sin (x+?/2). Растяжение графика y=cosx по оси y. Чтобы продолжить нажмите на л. Кнопку мыши. Дана функция y=cosx+1. Смещения графика y=sinx по вертикали. Дана функция y=3sinx. Смещение графика y=cosx по горизонтали.

Всего в теме 25 презентаций

Рассмотрим функцию y=k/y. Графиком этой функции является линия, называемая в математике гиперболой. Общий вид гиперболы, представлен на рисунке ниже. (На графике представлена функция y равно k разделить на x, у которой k равно единице.)

Видно, что график состоит из двух частей. Эти части называют ветвями гиперболы. Стоит отметить также, что каждая ветвь гиперболы подходит в одном из направлений все ближе и ближе к осям координат. Оси координат в таком случае называют асимптотами.

Вообще любые прямые линии, к которым бесконечно приближается график функции, но не достигает их, называются асимптотами. У гиперболы, как и у параболы, есть оси симметрии. Для гиперболы, представленной на рисунке выше, это прямая y=x.

Теперь разберемся с двумя общими случаями гипербол. Графиком функции y = k/x, при k ≠0, будет являться гипербола, ветви которой расположены либо в первом и третьем координатных углах, при k>0, либо во втором и четвертом координатных углах, при k<0.

Основные свойства функции y = k/x, при k>0

График функции y = k/x, при k>0

5. y>0 при x>0; y6. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Основные свойства функции y = k/x, при k<0

График функции y = k/x, при k<0

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат - асимптоты гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x0.

6. Функция возрастает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 3 Линейные функции и их графики

Рассмотрим равенство

у = 2х + 1. (1)

Каждому значению буквы х это равенство ставит в соответствие вполне определенное значение буквы у . Если, например, x = 0, то у = 2 0 + 1 = 1; если х = 10, то у = 2 10 + 1 = 21; при х = - 1 / 2 имеем у = 2 (- 1 / 2) + 1= 0 и т. д. Обратимся к еще к одному равенству:

у = х 2 (2)

Каждому значению х это равенство, как и равенство (1), ставит в соответствие вполне определенное значение у . Если, например, х = 2, то у = 4; при х = - 3 получаем у = 9 и т. д. Равенства (1) и (2) связывают между собой две величины х и у так, что каждому значению одной из них (х ) ставится в соответствие вполне определенное значение другой величины (у ).

Если каждому значению величины х соответствует вполне определенное значение величины у , то эта величина у называется функцией от х . Величина х при этом называется аргументом функции у .

Таким образом, формулы (1) и (2) определяют две различные функции аргумента х .

Функция аргумента х , имеющая вид

у = ах + b , (3)

где а и b - некоторые заданные числа, называется линейной . Примером линейной функции может служить любая из функций:

у = х + 2 (а = 1, b = 2);
у = - 10 (а = 0, b = - 10);
у = - 3х (а = - 3, b = 0);
у = 0 (а = b = 0).

Как известно из курса VIII класса, графиком функции у = ах + b является прямая линия . Поэтому-то данная функция и называется линейной.

Напомним, как строится график линейной функции у = ах + b .

1. График функции у = b . При a = 0 линейная функция у = ах + b имеет вид у = b . Ее графиком служит прямая, параллельная оси х и пересекающая ось у в точке с ординатой b . На рисунке 1 вы видите график функции у = 2 (b > 0), а на рисунке 2- график функции у = - 1 (b < 0).

Если не только а , но и b равно нулю, то функция у= ах+ b имеет вид у = 0. В этом случае ее график совпадает с осью х (рис. 3.)

2. График функции у = ах . При b = 0 линейная функция у = ах + b имеет вид у = ах .

Если а =/= 0, то графиком ее является прямая, проходящая через начало координат и наклоненная к оси х под углом φ , тангенс которого равен а (рис. 4). Для построения прямой у = ах достаточно найти какую-нибудь одну ее точку, отличную от начала координат. Полагая, например, в равенстве у = ах х = 1, получим у = а . Следовательно, точка М с координатами (1; а ) лежит на нашей прямой (рис. 4). Проводя теперь прямую через начало координат и точку М, получаем искомую прямую у = аx .

На рисунке 5 для примера начерчена прямая у = 2х (а > 0), а на рисунке 6 - прямая у = - х (а < 0).

3. График функции у = ах + b .

Пусть b > 0. Тогда прямая у = ах + b у = ах на b единиц вверх. В качестве примера на рисунке 7 показано построение прямой у = x / 2 + 3.

Если b < 0, то прямая у = ах + b получается посредством параллельного сдвига прямой у = ах на - b единиц вниз. В качестве примера на рисунке 8 показано построение прямой у = x / 2 - 3

Прямую у = ах + b можно построить и другим способом.

Любая прямая полностью определяется двумя своими точками. Поэтому для построения графика функции у = ах + b достаточно найти какие-нибудь две его точки, а затем провести через них прямую линию. Поясним это на примере функции у = - 2х + 3.

При х = 0 у = 3, а при х = 1 у = 1. Поэтому две точки: М с координатами (0; 3) и N с координатами (1;1) - лежат на нашей прямой. Отметив эти точки на плоскости координат и соединив их прямой линией (рис. 9), получим график функции у = - 2х + 3.

Вместо точек М и N можно было бы взять, конечно, и другие две точки. Например, в качестве значений х мы могли бы выбрать не 0 и 1, как выше, а - 1 и 2,5. Тогда для у мы получили бы соответственно значения 5 и - 2. Вместо точек М и N мы имели бы точки Р с координатами (- 1; 5) и Q с координатами (2,5; - 2). Эти две точки, так же как и точки М и N, полностью определяют искомую прямую у = - 2х + 3.

Упражнения

15. На одном и том же рисунке построить графики функций:

а) у = - 4; б) у = -2; в) у = 0; г) у = 2; д) у = 4.

Пересекаются ли эти графики с осями координат? Если пересекаются, то укажите координаты точек пересечения.

16. На одном и томже рисунке построить графики функций:

а) у = x / 4 ; б) у = x / 2 ; в) у = х ; г) у = 2х ; д) у = 4х .

17. На одном и том же рисунке построить графики функций:

а) у = - x / 4 ; б) у = - x / 2 ; в) у = - х ; г) у = - 2х ; д) у = - 4х .

Построить графики данных функций (№ 18-21) и определить координаты точек пересечения этих графиков с осями координат.

18. у = 3+ х . 20. у = - 4 - х .

19. у = 2х - 2. 21. у = 0,5(1 - 3х ).

22. Построить график функции

у = 2x - 4;

используя этот график, выяснить: а) при каких значениях х y = 0;

б) при каких значениях х значения у отрицательны и при каких - положительны;

в) при каких значениях х величины х и у имеют одинаковые знаки;

г) при каких значениях х величины х и у имеют разные знаки.

23. Написать уравнения прямых, представленных на рисунках 10 и 11.

24. Какие из известных вам физических законов описываются с помощью линейных функций?

25. Как построить график функции у = - (ах + b ), если задан график функции у = ах + b ?