Русские физики 20 века и их открытия. Создание научно-технических обществ. Зелинский Николай Дмитриевич

Какие достижения русских ученых XX (20) века являются наиболее важными для общества. Запиши свое мнение.

Ответы:

Уже в середине пятидесятых возрастает интерес к космонавтике. В этой сфере растет число ученых. Появляются специальные учебники и факультеты в вузах. Все это делается целенаправленно для воспитания молодых ученых. 1957 г. принес настоящий фурор в мире науки. Это был год запуска первого искусственного спутника Земли. Страна, сравнительно недавно пострадавшая в страшной войне, не только восстановила свой научный потенциал, но и стала лидером в научном прогрессе. Это событие открыло новую эру человечества и одновременно стало началом «космической гонки» с Америкой, которая не желала терять свой мировой авторитет. В 1959 г. советский спутник достиг Луны. Это вновь повысило авторитет России в мирового сообществе. Уже в начале шестидесятых Советский Союз стал второй после США супердержавой в мире. Америка обгоняла нашу страну только по экономическому потенциалу. 12 апреля 1961 года произошло еще одно невероятное событие, которое ранее описывали в своих произведениях фантасты. В этот день человек впервые в истории полетел в космос и вернулся на землю. В 80-х годах в нашей стране начали разработку и производство современных электронно-вычислительных машин - компьютеров. Данная техника была компактна и не занимала целые здания и комнаты. Это были годы, когда Советский Союз тратил на научную сферу огромные ресурсы, составлявшие десятую часть бюджета государства. Такого не могла себе позволить ни одна страна в мире.

1 В области физики был выполнен синтез шести самых тяжелых элементов таблицы Менделеева. В этом участвовали ученые из лаборатории им. Флерова. Она находится в Объединенном институте ядерных исследований в г. Дубна под Москвой. Эти новые вещества получили официальное признание со стороны Международного союза чистой и прикладной химии.

2 Создание технологий для получения светового излучения высочайшей мощности. Эта мощность основана на параметрическом усилении света, которое происходит в нелинейно-оптических кристаллах. Данную установку построили в Институте прикладной физики РАН в Нижнем Новгороде.

Она выдает мощный импульс, которые больше по своей мощности всех электростанций планеты.

Создание мощных лазерных систем позволяет проводить исследование экстремальных физических процессов. Также стало возможным получать лазерные источники нейтронов с уникальными свойствами.

3 Мощные магнитные поля удалось получить физикам российского ядерного центра в городе Саров. Полученное в результате научного эксперимента магнитное поле в миллионы раз превышает силу земного магнитного поля. Эти магнитные поля позволяют проводить исследование поведения сверхпроводников и других веществ в экстремальных условиях.

4 Ученые из университета им. Губкина нашли доказательства небиологического происхождения нефти и газа. Эти полезные ископаемые могут также возникать в результате сложных процессов, происходящих в верхней мантии Земли.

таким образом, нефть и газ не закончатся никогда, как это было принято считать раньше.

5 Не менее крупным географическим открытием на Земле стало обнаружение российскими учеными в Антарктиде озера подо льдом, которое получило название «Восток». Открытие было сделано благодаря радарным наблюдениям и сейсмическому зондированию. В результате бурения скважины на станции Восток ученые получили данные о том, каким был климате на Земле в далеком прошлом. Также стало возможным сделать вывод об изменении температуры и концентрации СО2. Это озеро находилось в изоляции от всего мира примерно 1 млн. лет. Ученые предполагают, что данное открытие поможет понять, на какой планете во Вселенной возможно существование жизни.

Озеро «Восток»

6 Останки карликовых мамонтов были обнаружены российскими учеными на . Ранее считалось, что мамонты вымерли еще в историческое время. Благодаря использованию метода радиоуглеродной датировки выяснилось, что последние мамонты жили на этом острове около 2000 года до нашей эры.

7 Сибирские археологи обнаружили третий вид человеческих существ, которые получили название «денисовцы» . Ранее науке были известны только два вида древних людей: неандертальцы и кроманьонцы. Кости новых людей были найдены в Денисовой пещере, которая была обнаружена на Алтае. Этот народ жил в Евразии 40 тысяч лет назад.

  • Читайте также:

8 Информация о воде на Марсе. По данным наземных наблюдений и наблюдений, полученных с научных приборов на американских и европейских зондах, подтвердились предположения о наличии водяного льда на Марсе. Они были обнаружены российским прибором ХЕНД. Он был создан в Институте космических исследований РАН. Лед удалось найти в средних широтах и у самих полюсов Марса. Также на этой планете наши ученые обнаружили линии поглощения метана. Для исследований использовался инфракрасный спектрометр на гавайском телескопе CFHT. Метан на земле выделяется в результате жизнедеятельности живых существ. Измерения с европейского зонда «Марс-Экспресс» подтвердили эти сенсационные данные.

Фоторепортаж: Российский прибор ХЕНД на борту американского космического аппарата «2001 Mars Odyssey»

9 Новые гипотезы о миграции людей на Земле. Российские антропологи по результатам изучения фольклора и мифов народов Сибири и Америки доказали возможность определения направлений перемещений первобытных племен. Эти данные подтверждаются археологическими раскопками и наукой генетикой.

10 За доказательство одной из семи задач тысячелетия («Гипотеза Пуанкаре́» ) математику из России Г. Перельману в 2002 году была назначена премия в 2 млн. рублей. Но он отказался от нее, чем привлек внимание всех СМИ мира. Свое решение математик объяснил тем, что его успехи не больше других известных ученых мира, которые также очень близко подходили к данному результату. Также математик отказался и от премии в 1 млн $ от Американского математического института Клэя и Института Анри Пуанкаре в Париже.


Григорий Перельман

11 Изучение Челябинского метеорита размером в 20 метров также стало важным событием в российской науке. Благодаря проведенным в Институте геохимии и аналитической химии имени Вернадского РАН анализам его определили в класс обыкновенных хондритов.

Возраст астероида, по мнению специалистов, составил 4,56 млрд. лет, то есть столько же, сколько сейчас лет всей Солнечной системе.

Во время движения земле астероид пролетал на небольшом расстоянии от солнца. Этот вывод ученые сделали на основании наличия следов процессов плавления и кристаллизации, которые были обнаружены на фрагментах метеорита.

  • Читайте также:

Еще достижения

Российская академия наук за последние 20 лет продемонстрировала много достижений в разных научных областях. Например, был разработан новый метод исследования квантовых интегрируемых моделей. Также были построены модели на основе гидротермодинамики для анализа глобальных изменений окружающей среды. Большое значение для мировой науки имеет создание многопроцессорной вычислительной системы МВС-1000/М.

Она отличается производительностью 1 триллион операций в секунду и является самым мощным суперкомпьютером в России.

Институт ядерных исследований РАН предоставил результаты многолетних измерений потока нейтрино от Солнца. Для этого использовался галлий-германиевый нейтринный телескоп Баксанской обсерватории. Благодаря этим результатам появилась возможность пересмотреть представления о роли нейтрино в эволюции Вселенной и строении элементарных частиц. Успешный запуск космического аппарата КОРОНАС-Ф позволит лучше изучать процессы на Солнце и их влияние на нашу планету.


КОРОНАС Ф

В Физико-техническом институте им. А.Ф. Иоффе была разработана новая конструкция лазеров и лазерные диоды, которые даже при комнатной температуре могут работать в непрерывном режиме. Использование технологии гетероструктур с предельным размерным квантованием сделало Россию лидером в данной области. Нобелевскую премию по физике получил академик Ж. И. Алферов за исследования полупроводниковых гетероструктур.


Жорес Иванович Алферов

В институтах Теоретической и прикладной механики и Гидродинамики СО РАН была разработана концепция аэродинамических труб нового поколения. Это позволило создавать сложные газодинамические процессы при гиперзвуковом диапазоне скоростей. Институт органической химии создал оксиднометаллическую систему с высоким содержанием решеточного кислорода. При реакции с метаном стало возможным получать газ с селективностью 95%.

Кризис науки

В то же время многие ученые считают, что российская наука находится в состоянии кризиса. Например, вице-президент РАН С. Алдошин на Уральском научном форуме, который прошел в Екатеринбурге, высказал мнение об уничтожении отраслевой науки в стране. В советское время она связывала научное сообщество и промышленные предприятия. В 90-е годы ее просто не стало, по мнению Алдошина. Финансирование отрасли значительно ухудшилось. Вложение средств коммерческих предприятий в науку стало невыгодным, так как конкретные научные решения от ученых перестали поступать. Таким образом, отраслевая наука осталась на государственном обеспечении, которое не отличается большими размерами финансовых вливаний. Это отражается на количестве публикаций и открытий российских ученых. Многие ученые и аналитики считают, что исчезновение наукоемкой промышленности привело к настоящему краху русской науки. Именно она была главным заказчиком научных разработок.

Главной причиной упадка стало слабое финансирование науки, которое до сих пор в несколько раз меньше по сравнению с США и Китаем. В 90-е годы сократилось количество научных и проектных организаций, конструкторских бюро. В эти годы резко увеличилась эмиграция из страны научных сотрудников и выпускников вузов, что нанесло огромный урон бюджету страны. В эти годы были утеряны многие наработанные научные технологии, которые так и не были внедрены в производство.

Россия потеряла свои научные позиции почти во всех отраслях. Пострадала не только фундаментальная наука, но и ее практические отрасли. Среди них можно особенно отметить упадок в ядерной энергетике. По сравнению с мировыми научными исследованиями на долю России приходится только 2,6%.

По «индексу технологий» Россия находится на последнем месте в мире. Страна ушла назад по уровню развития высоких технологий примерно на 15 лет. В биотехнологии и по другим направлениям на порядок не менее 20 лет. Чтобы исправить данную ситуацию в науке, необходимо привлечь около 500 тысяч специалистов. В то же время научная эмиграция не прекращается и из страны каждый год уезжают молодые ученые в количестве около 15 тысяч. Причем, скорее всего, они никогда не вернутся назад, так как многие аналитики не уверены в скором изменении обстановки для нормальной работы и жизни российских ученых.

Также пока не прослеживается комплексных государственных мер по стимулированию инноваций в науке. Сближения отечественного частного сектора с наукой, который является главным потенциальным потребителем инноваций, также не происходит. Со стороны государства нет попыток поощрения частного бизнеса по заказу и внедрению инноваций, а также по продвижению инновационных изделий на рынки. Чтобы исправить ситуацию, необходимо всему обществу осознать ответственность за свою страну и ее будущее.

Нашли ошибку? Выделите ее и нажмите левый Ctrl+Enter .

МОСКВА, 8 фев — РИА Новости. Постсоветскую эпоху принято считать временем глубокого кризиса в отечественной науке, однако и в 1990-е годы, и позже российским ученым удавалось получать научные результаты мирового уровня.

Агентство РИА Новости в честь Дня российской науки провело широкомасштабный опрос экспертов и составило список наиболее важных и наиболее ярких открытий, сделанных российскими учеными за последние 20 лет. Этот список не претендует на полноту и объективность, в него не вошли многие открытия, однако он дает представление о масштабах сделанного в постсоветской науке.

Синтез сверхтяжелых элементов поможет открыть новые элементы - ученые Эксперименты по синтезу сверхтяжелых элементов открывают человечеству новые "неизведанные земли" и, в конечном итоге, могут привести к получению долгоживущих сверхтяжелых элементов, сказал РИА Новости научный руководитель Лаборатории ядерных реакций имени Флерова Объединенного института ядерных исследований, академик Юрий Оганесян.

Сверхтяжелые элементы

Российские ученые именно в постсоветскую эпоху вырвались вперед в гонке за сверхтяжелыми элементами таблицы Менделеева. С 2000 по 2010 год физики из лаборатории имени Флерова в Объединенном институте ядерных исследований в подмосковной Дубне впервые синтезировали шесть самых тяжелых элементов с атомными номерами со 113 по 118.

Два из них уже официально признаны Международным союзом чистой и прикладной химии (ИЮПАК) и . Заявка на открытие элементов 113, 115, 117 и сейчас рассматривается в ИЮПАК.

"Возможно, что одному из новых элементов будет присвоено наименование "московий", — сказал РИА Новости замдиректора лаборатории Флерова Андрей Попеко.

Экзаваттные лазеры

В России создана технология, которая позволяет получить самое мощное световое излучение на Земле. В 2006 году в нижегородском Институте прикладной физики РАН была построена установка PEARL (PEtawatt pARametric Laser), основанная на технологии параметрического усиления света в нелинейно-оптических кристаллах. Эта установка выдала импульс мощностью 0,56 петаватта, что в сотни раз превосходит мощность всех электростанций Земли.

Сейчас в ИПФ планируют увеличить мощность PEARL до 10 петаватт. Кроме того, планируется , который предполагает создание лазера мощностью до 200 петаватт, а в перспективе — до 1 экзаватта.

Такие лазерные системы позволят исследовать экстремальные физические процессы. Помимо этого, с их помощью можно инициировать термоядерные реакции в мишенях, на их основе можно создавать лазерные источники нейтронов с уникальными свойствами.

Семь главных открытий 2013 года в астрофизике Европейский телескоп "Планк" уточнил наши представления об устройстве Вселенной, нейтринная обсерватория IceCube в Антарктиде принесла первый "урожай", а "Кеплер" продолжает удивлять ученых экзотическими планетами.

Сверхмощные магнитные поля

Физики из российского ядерного центра в Сарове под руководством Александра Павловского в начале 1990-х годов разработали метод получения рекордно мощных магнитных полей.

С помощью взрывных магнитокумулятивных генераторов, где взрывная волна "сжимала" магнитное поле, им удалось получить величину поля в 28 мегагаусс. Эта величина — абсолютный рекорд для искусственно полученного магнитного поля, она в сотни миллионов раз выше силы магнитного поля Земли.

С помощью таких магнитных полей можно исследовать поведение вещества в экстремальных условиях, в частности, поведение сверхпроводников.

Нефть и газ не закончатся

Пресса и экологи регулярно напоминают нам, что запасы нефти и газа вскоре — через 70-100 лет — подойдут к концу, это может привести к коллапсу современной цивилизации. Однако ученые из российского университета нефти и газа имени Губкина утверждают, что это не так.

Путем экспериментов и теоретических расчетов они доказали, что нефть и газ могут формироваться не в результате разложения органических веществ, как гласит общепринятая теория, а абиогенным (небиологическим) путем. Они установили, что в верхней мантии Земли, на глубинах 100-150 километров, существуют условия для синтеза сложных углеводородных систем .

"Этот факт позволяет говорить о природном газе (по крайней мере) как о возобновляемом и неиссякаемом источнике энергии", — сказал РИА Новости профессор Владимир Кучеров из университета имени Губкина.

Озеро Восток в Антарктиде. Справка Российские ученые после более 30 лет бурения проникли в подледниковое озеро Восток в Антарктиде. Озеро Восток в Антарктиде является уникальной водной экосистемой, изолированной от земной атмосферы и поверхностной биосферы на протяжении миллионов лет.

Озеро Восток

Российским ученым принадлежит, возможно, последнее крупное географическое открытие на Земле — обнаружение подледного озера Восток в Антарктиде. В 1996 году совместно с британскими коллегами они открыли его с помощью сейсмического зондирования и радарных наблюдений.

Бурение скважины на станции Восток позволило российским ученым получить уникальные данные о климате на Земле за последние полмиллиона лет. Они смогли определить, как менялась температура и концентрация СО2 в далеком прошлом.

В 2012 году российским полярником удалось впервые проникнуть в это реликтовое озеро, которое было изолировано от внешнего мира около миллиона лет. Исследование образцов воды из него, возможно, приведет к и позволит сделать выводы о возможности существования жизни за пределами Земли — например, на спутнике Юпитера Европе.

Мамонты — современники древних греков

Мамонты были современниками критской цивилизации и вымерли уже в историческое время, а не в эпоху каменного века, как считалось ранее.

В 1993 году Сергей Вартанян и его коллеги обнаружили останки карликовых мамонтов, рост которых не превышал 1,8 метра, на острове Врангеля, который, по всей видимости, был последним убежищем этого вида.

Радиоуглеродная датировка, проведенная с участием специалистов географического факультета Петербургского университета, показала, что мамонты обитали на этом острове до 2000 года до нашей эры. До того момента считалось, что последние мамонты жили на Таймыре 10 тысяч лет назад, однако новые данные показали, что мамонты существовали еще во времена минойской культуры на Крите, постройки Стоунхенджа и 11-й династии египетских фараонов.

Третий вид людей

Работа сибирских археологов под руководством академика Анатолия Деревянко позволила обнаружить новый, третий по счету вид человеческих существ.

До сих пор ученым было известно о двух высших видах древних людей — кроманьонцах и неандертальцах. Однако в 2010 году исследование ДНК из костей, показало, что 40 тысяч лет назад в Евразии вместе с ними жил третий вид, получивший имя денисовцев.

Метан и вода на Марсе

Хотя в постсоветский период России не удалось осуществить успешных самостоятельных межпланетных миссий, российские научные приборы на американских и европейских зондах и наземные наблюдения принесли уникальные данные о других планетах.

В частности, в 1999 году Владимир Краснопольский из МФТИ и его коллеги с помощью инфракрасного спектрометра на гавайском телескопе CFHT впервые зарегистрировали линии поглощения метана на Марсе. Это открытие стало сенсацией, поскольку на Земле основным источником метана в атмосфере являются живые существа. Эти данные затем были подтверждены измерениями с европейского зонда "Марс-Экспресс". Хотя марсоход Curiosity на данный момент не подтвердил присутствие метана в марсианской атмосфере, в этих поисках.

Российский прибор ХЕНД на борту аппарата "Марс-Одиссей", созданный под руководством Игоря Митрофанова из Института космических исследований РАН, впервые показал, что у полюсов Марса и даже в средних широтах существуют огромные запасы подповерхностного водяного льда.

© Государственный астрономический институт им. П.К. Штернберга МГУ им. М.В. Ломоносова/ Жанна Родионова


10 февраля 2014, 14:29 В Египте обнаружена еще одна пирамида и другие научные открытия недели Каждый понедельник редакция сайт выбирает самые неожиданные научные новости за прошедшую неделю. В этом выпуске: почему дети забывают, что произошло с ними до 7 лет, кто построил обнаруженную в Египте пирамиду, как рождаемость зависит от уровня образования женщин и многое другое.

Он начал свою работу со сравнения мифологических мотивов у аборигенов Сибири и Америки, а затем включил в свои исследования данные о культурах едва ли не всех народов мира , что позволило нарисовать впечатляющую картину первичного расселения людей по земному шару.

Он доказал, что существуют устойчивые совпадения определенных мифологических мотивов в отдельных регионах, которые коррелируют с древнейшими перемещениями первобытных племен, что подтверждается данными археологии и генетики.

"Тем самым у нас появляется — впервые в истории науки — способ относительно точной оценки времени существования компонентов устной традиции, что решает целый ряд центральных проблем фольклористики или, по крайней мере, дает в руки исследователей ориентир для последующих разысканий", — сказал РИА Новости профессор Сергей Неклюдов из РГГУ.

Задача тысячелетия

Российский математик Григорий Перельман в 2002 году доказал гипотезу Пуанкаре — одну из семи "задач тысячелетия" из списка Математического института Клэя. Сама гипотеза была сформулирована еще в 1904 году, и ее суть сводится к тому, что трехмерный объект без сквозных отверстий топологически эквивалентен сфере.

Перельман смог доказать эту гипотезу, однако небывалую популярность в СМИ он получил тогда, когда в 1 миллион долларов от Института Клэя за это доказательство.

Наука в начале 20 века

НАУКА – сфера человеческой деятельности, включающая как выработку нового знания, так и ее результат – описание, объяснение и предсказание процессов и явлений действительности на основе открываемых ею законов. Система наук условно делится на естественные, общественные и технические.

В развитии науки чередуются экстенсивные и революционные периоды – научные революции, приводящие к изменению ее структуры, принципов познания, категорий и методов, а также форм ее организации.

В нач. 20 в. русская наука и техника дали в различных отраслях знаний ряд крупных имен и внесли важный вклад в сокровищницу мировой культуры. Русские ученые и изобретатели активно работали в области геологии, металлургии, переработки нефти, теории сопротивления материалов, почвоведения, электротехники, радиосвязи и на других важных направлениях научно-технической деятельности. Крупные успехи были достигнуты в математике, физике, механике.

В Петербурге вокруг великого русского математика и механика академика П. Л. Чебышева сложилась математическая школа. Профессор Московского Высшего технического училища H. Е. Жуковский открыл к этому времени метод вычисления подъемной силы крыла самолета, за что заслуженно получил звание «отца русской авиации». Более 30 лет возглавлял в Московском университете кафедру физики А. Г. Столетов. Им были успешно разработаны проблемы магнетизма и фотоэлектрических явлений. Эффективно вел свои исследования и физик П. Н. Лебедев.

На рубеже нового века был изобретен русским ученым А. С. Поповым радиоприемник. Выдающиеся физики П. Н. Яблочков и А. Н. Лодыгин создали электрическую лампочку. Больших успехов добилась и отечественная химическая наука. Великий ученый, профессор Петербургского университета Д. И. Менделеев сделал мировое открытие, создав периодическую таблицу химических элементов. Профессора Казанского университета H. Н. Зинин и А. М. Бутлеров активно разрабатывали проблемы органической химии. Больших технических достижений в русском кораблестроении добились механик и математик А. Н. Крылов и океанограф адмирал С. О. Макаров. Большие достижения в работе были и у многих других исследователей и естествоиспытателей.

Мирового значения удостоил ась наша географическая наука (П. П. Семенов-Тян-Шанский, H. М. Пржевальский, H. Н. Миклухо-Маклай, П. К. Козлов, В. К. Арсеньев и др.). Получили дальнейшее развитие геолого-стратиграфические исследования (А. П. Карпинский, В. О. Ковалевский, А. П. Павлов, Ф. Н. Чернышев и др.).

В области биологии значительных результатов с позиции естественно-научного материализма добились И. М. Сеченов, И. И. Мечников, А. О. Ковалевский, К. А. Тимирязев. И. И. Мечникову – лауреату Нобелевской премии принадлежат открытия мирового уровня по проблемам бактериологии, А. О. Ковалевскому – по сравнительной эмбриологии, К. А. Тимирязеву – в области фотосинтеза. И. П. Павлову в 1904 г. за его исследования в области физиологии (учение о высшей нервной деятельности человека и животных) была присуждена Нобелевская премия.

Н. Г. Славянов разработал способ горячей сварки металлическим электродом, он получил патенты на изобретение не только в России, но и во Франции, Германии, Великобритании и ряде других стран. К. Э. Циолковский сделал ряд крупнейших открытий в аэродинамике и ракетной технике, им была разработана и теория движения ракет. Впоследствии мир назовет его основоположником теории межпланетных сообщений.

Многие ученые России были участниками международных научных программ, прославив отечественную науку. В плеяде выдающихся русских ученых по праву стоят и имена С. А. Чаплыгина – основоположника теории гидро– и аэродинамики, А. Ф. Можайского – одного из первых авиастроителей, В. И. Вернадского – основателя геохимии и биогеохимии и радиогеологии и др. Наряду с техническими науками активно развивалась и общественная мысль. Русская историография выдвинула в эту пору видных ученых-историков В. О. Ключевского, М. Н. Покровского, Е. В. Тарле.

После Октябрьской революции и Гражданской войны в СССР начался новый этап развития науки и техники. Особенно активно развивались научные направления, связанные с экономическими потребностями страны, – металлургия, авиастроение, физика и др.

ВЕРНАДСКИЙ Владимир Иванович (28.02(12.03).1863–06.01.1945 гг.) – один из основоположников геохимии, радиогеологии, создатель биогеохимии и учения о ноосфере.

Родился в Петербурге в семье профессора-экономиста И. В. Вернадского. В 1885 г. окончил естественное отделение физико-математического факультета Петербургского университета. Под влиянием работ В. В. Докучаева увлекся динамической минералогией и кристаллографией. Путешествовал по Западной Европе, участвовал в Международном геологическом конгрессе. С 1890 г. преподавал на кафедре минералогии в Московском университете, где впоследствии сложилась его научная школа (среди учеников А. Ферсман, Я. Самойлов).

В 1891 г. стал магистром геологии и геогнозии, в 1897 г. защитил докторскую диссертацию. В 1911 г. после избрания его экстраординарным академиком переехал в Петербург. Был участником земского движения в защиту высшей школы. Дважды избирался в Государственный совет от университета. В 1911 г. в знак протеста против мер министра народного просвещения Л. А. Кассо среди других 100 профессоров и преподавателей университета вышел в отставку.

В годы 1-й мировой войны возглавлял постоянную Комиссию по изучению естественных производительных сил России (КЕПС) при АН, которая вела поиски новых месторождений полезных ископаемых, изучала энергоресурсы и т. д. В 1917–1920 гг. стал первым президентом созданной им Украинской АН. В 1920-е гг. был директором Геологического и Минералогического музеев, организовал и возглавил Радиевый институт. В 1922–1926 гг. читал курс геохимии в Сорбонне, проводил эксперименты в институте М. Склодовской-Кюри.

Развивая учение о биосфере, ввел понятие «ноосфера» (сфера разума). При АН им были основаны Комитет по метеоритам и Комиссия по истории знаний, которую Вернадский возглавлял до 1930 г. В 1928 г. им была создана Биогеохимическая лаборатория АН СССР. Влияние его геохимической школы испытали ученые Франции, Чехословакии, США. В 1943 г. получил Государственную премию СССР. Умер и похоронен в Москве. Т. О.

ЖУКОВСКИЙ Николай Егорович (17(29).01.1847–17.03.1921 гг.) – основоположник аэродинамики, член-корреспондент РАН (1917 г.).

Родился в Москве, происходил из старинного дворянского рода. Окончил математический факультет Московского университета. В 1870 г. стал преподавателем математики в Московском высшем техническом училище (МВТУ). Защитил магистерскую диссертацию по гидродинамике, стажировался за границей – в Берлине и Сорбонне, где занимался исследованием движения воздушных потоков. В 1888 г. защитил докторскую диссертацию по прикладной механике, возглавил кафедру Московского университета. В 1902 г. в Московском университете построил аэродинамическую трубу.

В 1904 г. на базе его лаборатории в Кучино был создан первый в мире институт аэродинамических исследований, где он разработал теорию подъемной силы крыла летательного аппарата, методы расчета воздушных винтов и динамики полета. В 1910 г. в МВТУ создал лабораторию, ставшую расчетно-испытательным центром проверки аэродинамических свойств самолетов. Автор трудов по теории авиации, механике твердого тела, астрономии, математике, гидродинамике, гидравлике, прикладной механике.

По инициативе Жуковского были созданы Московский авиационный институт и Военно-воздушная академия. В его квартире в 1918 г. была организована лаборатория, впоследствии ставшая Центральным институтом аэро– и гидродинамики (ЦАГИ). В 1920 г. Жуковский был арестован и сослан в спецчасть НКВД. Т. О.

ПАВЛОВ Иван Петрович (14(26). 19-1849-27.02.1936 гг.) – физиолог, создатель учения о высшей нервной деятельности животных и человека, лауреат Нобелевской премии.

Родился в Рязани в семье священника. Обучался в духовном училище. С 1870 г. учился на естественном отделении Петербургского университета. За свое первое научное исследование (о секреторной иннервации поджелудочной железы) был награжден золотой медалью университета. Два года работал в Ветеринарном институте. В 1877 г. уехал в Бреслау, потом по приглашению С. П. Боткина работал в его клинике. В 1883 г. Павлову было присвоено звание доктора медицинских наук.

Ок. 20 лет занимался исследованиями по физиологии пищеварения. В 1891 г. Павлов стал заведующим физиологическим отделом Института экспериментальной медицины, в 1895–1925 гг. руководил исследованиями в Военно-медицинской академии. За работу по физиологии пищеварения в 1904 г. ему была присуждена Нобелевская премия.

После Октябрьской революции остался в России (был издан декрет о создании благоприятных условий для его работы). Несмотря на это, Павлов полагал, что революцию нужно было пресечь. Павлов сравнивал существующий режим с фашизмом, о чем открыто написал в 1934 г. в ЦИК СССР.

Умер в Ленинграде от пневмонии. Похоронен на Волковой кладбище. Т. О.

ЦИОЛКОВСКИЙ Константин Эдуардович (05(17).09.1857–19.09.1935 гг.) – ученый в области воздухоплавания и ракетной техники.

Родился в селе Ижевском Рязанской губернии в семье лесничего. В десятилетнем возрасте из-за осложнений после скарлатины потерял слух и школу не посещал. В 1873 г. по настоянию отца поселился в Москве у знакомого семьи – философа Н. Федорова, космогоническое учение которого оказало на него большое влияние и подтолкнуло к мысли о расселении человечества на других планетах. В 1879 г., сдав экзамен, получил звание учителя народных училищ и назначение в Боровск. Там он проработал до 1892 г., затем был переведен в Калугу, где до конца дней преподавал физику и математику в епархиальном училище и гимназии. Одновременно вел научную работу.

За работу «Механика животного организма» по предложению Д. Менделеева и А. Столетова был избран действительным членом Русского физико-химического общества. Ему принадлежит проект дирижабля (управляемого аэростата). Он также исследовал механику управляемого полета. Н. Жуковский использовал результаты его работы при создании теории расчета крыла. В 1903 г. опубликовал книгу «Исследования мировых пространств реактивными приборами», которая была замечена лишь в 1912 г.

В нач. 1910-х гг. в журнале «Вестник воздухоплавания» публиковал статьи по теории ракет и жидкостного ракетного двигателя, им была впервые решена задача посадки на поверхность безатмосферных планет. В 1920-е гг. вывел формулу, которая получила его имя, используемую при исчислении количества топлива для космического корабля, рассчитал оптимальную высоту для спутника (300–800 км), сделал ряд практических изобретений. Т. О.

Из книги От Бисмарка до Маргарет Тэтчер. История Европы и Америки в вопросах и ответах автора Вяземский Юрий Павлович

В начале XX века Вопрос 4.1В 1901 году американский миллиардер Эндрю Карнеги продал свои заводы и стал заниматься исключительно благотворительностью.Кому предназначался первый дар Карнеги?Вопрос 4.2В 1902 году будущему родоначальнику фашизма Бенито Муссолини было 19 лет. Он

Из книги Кто есть кто в истории России автора Ситников Виталий Павлович

автора

§ 24. Образование и наука в средние века Школьное образованиеСкладывание централизованных государств в Европе потребовало бо?льшего количества образованных людей. Королям нужны были грамотные чиновники, опытные юристы. Церкви требовались знатоки христианского

Из книги Расцвет и падение древних цивилизаций [Далекое прошлое человечества] автора Чайлд Гордон

Из книги Всемирная история: в 6 томах. Том 4: Мир в XVIII веке автора Коллектив авторов

НАУКА В ЗЕРКАЛЕ ИДЕЙНЫХ КОЛЛИЗИЙ ВЕКА ПРОСВЕЩЕНИЯ В культуре XVIII столетия Природа становится первичной реальностью. Критика традиционных общественных институтов и религиозных догм, мистических грез и темных суеверий, схоластической лжеучености и традиционных

Из книги История Кореи: с древности до начала XXI в. автора Курбанов Сергей Олегович

§ 1. Корея в начале X VII века Выше уже говорилось о тех огромных материальных и людских потерях, которые Корея понесла в годы Имчжинской войны. Поэтому король Сончжо, на время правления которого пришлись все тяготы войны с Японией, попытался начать некоторые реформы,

Из книги Отечественная история: конспект лекций автора Кулагина Галина Михайловна

Тема 14. Россия в начале XX века 14.1. Экономическое и социально-политическое развитие К началу XX в. окончательно складывается система российского капитализма. Россия благодаря индустриализации и промышленному подъему 1890-х гг. из отсталой аграрной страны становится

Из книги Тайны русских волхвов [Чудеса и загадки языческой Руси] автора Асов Александр Игоревич

Истинное ведославие в XIX и начале XX века В те же годы сама традиция жила не в секте Кондратия-Петра и потом Распутина. Это только трагедия традиции. Носителями истинного духа ведославия, его философии, высокой поэзии являлись иные люди.Их мысли, образы тогда, в начале XIX

Из книги Александр III – Миротворец. 1881-1894 гг. автора Коллектив авторов

Культура и наука в конце 19 века Пореформенная эпоха стала временем высоких культурных достижений. Этот этап обусловил наступление «серебряного века» русской культуры. Российские ученые добивались блестящих результатов в точных и естественных науках. Благодаря трудам

Из книги Русская Япония автора Хисамутдинов Амир Александрович

Из книги Разные человечества автора Буровский Андрей Михайлович

Идеология и наука XIX века – основы современного знания Ученые часто и по разным поводам наивно говорят, что наука изменила мир. Верно! Но чтобы это произошло, мир должен был поручить науке изменять самое себя. Хотя бы тем, что общество и государство должны были дать науке

Из книги 50 великих дат мировой истории автора Шулер Жюль

Латинская Америка в начале XIX века Начиная с XVI в., испанские владения занимали большую часть американского континента. С севера, от Калифорнии, Новой Мексики, Техаса и Флориды они протянулись далеко на юг, до мыса Горн. Что касается Луизианы, то Франция вернула ее себе в

Из книги Всеобщая история. История средних веков. 6 класс автора Абрамов Андрей Вячеславович

§ 27. Образование и наука в средние века Школьное образованиеСкладывание централизованных государств в Европе потребовало большего количества образованных людей. Королям нужны были грамотные чиновники, опытные юристы. Церкви требовались знатоки христианского

Из книги Всеобщая история. История Нового времени. 8 класс автора Бурин Сергей Николаевич

Глава 5 Мир в конце XIX – начале XX века «Если суждена ещё когда-либо война в Европе, она начнётся из-за какого-нибудь ужасно несуразного случая на Балканах». Германский политик О. фон Бисмарк Союз России и Франции. Иллюстрация из французского

Из книги От древнего Валаама до Нового Света. Русская Православная Миссия в Северной Америке автора Григорьев Протоиерей Дмитрий

Из книги Последний император Николай Романов. 1894–1917 гг. автора Коллектив авторов

Россия в начале 20 века Царствование Николая II стало временем самых высоких в истории России темпов экономического роста. За 1880–1910 темпы роста промышленного производства превышали 9 % в год. По этому показателю Россия вышла на первое место в мире, опередив даже

(1885-1962)
Физик, лауреат Нобелевской премии за 1922 год
В МИКРОМИРЕ ИНЫЕ ЗАКОНЫ

Нильс Бор родился 7 ноября 1885 года в семье известного датского физиолога. Еще ребенком, наблюдая за многочисленными физическими экспериментами, проводимыми отцом, Нильс увлекся естественными науками. С 1903 по 1908 год Нильс Бор учится в Копенгагенском университете. Выдающиеся способности юноши замечены преподавателями, так что вскоре Нильс становится помощником ассистента на кафедре физики. В 1911 году молодой ученый защищает докторскую диссертацию, посвященную электронной теории металла. Уже в этой ранней работе Нильса Бора содержится вывод о том, что представления классической физики недостаточны для объяснения электронных и атомных процессов, как и явлений электромагнитного излучения.

После защиты диссертации Нильс Бор едет на стажировку в Англию, где работает сначала в Кембриджском университете, а затем Манчестере - в лаборатории Эрнеста Резерфорда, к тому времени уже знаменитого физика. Именно в те годы Резерфорд экспериментально доказал, что внутри атома находится некое массивное тело. Экспериментатор назвал его «ядром». В опубликованной в 1912 году статье «Рассеяние альфа- и бета-частиц в веществе и структура атома» Резерфорд уподобил атом миниатюрной солнечной системе, в которой вокруг положительно заряженной «звезды»-ядра вращаются отрицательно заряженные «планеты» - электроны.

Поначалу ядерно-электронная модель атома не была принята всерьез научным миром. Ведь она шла вразрез с классическими канонами физики! Однако двадцатипятилетний Нильс Бор сразу поверил в атомную модель Резерфорда. Он понял, что исходя из этой «химерической» планетарной системы можно построить новую физику. Впоследствие она получила название «квантовая физика атома». Вот что писал Нильс Бор в своих Мемуарах: «Весной 1912 года я пришел к убеждению, что электронное строение атома Резерфорда управляется с помощью кванта действия». Рассуждал он примерно так: атом ничтожно мал, его диаметр не превышает стомиллионной доли сантиметра. При этом его частипы обладают электрическими зарядами строго определенной величины, а также определенной массой. Как, исходя из этих данных, «вывести» размер атома? Массы и заряды не позволяют получить величину, имеющую размерность длины. Значит, либо должны существовать некие, доселе неизвестные силы, действующие на расстояниях, соизмеримых с атомным радиусом, либо в расчеты должны быть введены некие константы, которые позволят вместе с зарядом и массой получить величину размерности длины. Такой константой могла стать только постоянная Планка.

1913 год. Именно в том году он опубликовал три фундаментальные работы, введя в науку свои знаменитые квантовые постулаты, определявшие строение атома, а также испускания и поглощения им электромагнитного излучения. На примере атома водорода ученый констатировал, что излучение электрона, который движется вокруг ядра, не представляет собой непрерывного спектра, а значит, не может быть описано законами классической электродинамики, согласно которым электроны вследствие своего ускорения должны были бы постепенно терять энергию и в конце концов упасть на ядро. Чтобы устранить возникшее противоречие, Бор предложил опереться на данные эксперимента, а не на классические постулаты, абсолютно бессильные, коль скоро речь заходит о столь малых заряженных объектах. Он выдвинул свои постулаты, в основе которых лежала, как уже говорилось, квантовая теория Макса Планка.

В соответствие с постулатами Бора, электрон в свободном атоме водорода вращается вокруг ядра не по произвольной орбите, а по такой траектории, прохождение которой не связано с излучением энергии. Образование линейчатого спектра, непонятного с точки зрения классической физики, объяснялось тем, что электрон, поглощая фотон, переходит на более высокую орбиту. Соответственно, при потере энергии, электрон переходит на более низкую орбиту.

Теория объясняла также потерю атомом электронов при образовании положительных ионов. Основные постулаты теории Бора были изложены в статье «О строении атомов и молекул», опубликованной 5 апреля 1913 года. Согласно этой теории:

а) электроны могут перемещаться только по строго определенным орбитам. Чем дальше находится электрон от ядра, тем слабее притяжение,
которое он испытывает, и тем проще его вырвать из атома;

б) при перемещении по одной и той же орбите электрон не излучает энергии;

в) при перескакивании с одной орбиты на другую электрон поглощает или излучает энергию: при переходе с более близкой на более дольнюю
орбиту - поглощает, так как при этом он преодолевает силу притяжения ядра, в случае обратного перехода - излучает.

Переход с одной орбиты на другую соответствует излучениям со строго определенными частотами, которые вычисляются с помощью постоянной Планка. Фотоны переносят энергию не непрерывно, а в виде квантов. Каждое тело, которому сообщается энергия (например, при нагреве), возвращает ее затем в виде излучения со строго определенной частотой, специфичной для данного вещества. Теория Бора стала подлинной революцией в физике. Она показала, что в микромире действуют законы, абсолютно непохожие на те, которыми описывается мир макрообъектов. Однако достаточно стройная модель атома Резерфорда-Бора не лишена была противоречий. Ведь новое представление о стационарных электронных орбитах опиралось на теорию Планка, тогда как расчет этих «планетарных» орбит производился по методам классической механики. Физик Генри Брэгг иронизировал на сей счет: «Мы как бы должны по понедельникам, средам и пятницам пользоваться классическими законами, а по вторникам, четвергам и субботам - квантовыми». Со временем наука пришла к выводу, что резерфордовско-боровская модель атома - лишь удобное приближение, тогда как реальный атом намного сложнее. Однако постулаты Бора не только устояли, но и легли в основу современной теоретической физики.

В 1920 году Нильс Бор становится во главе созданного им Института теоретической физики в Копенгагене, в 20-30-е годы по праву считающегося международным центром науки. Здесь ученый продолжает работу по изучению строения атома и атомного ядра. На заседании Физического общества 18 октября 1921 года он выступает с докладом «Строение атома и физические и химические свойства элементов», в котором объясняет глубинные причины периодического изменения свойств элементов. Бор связывает Периодическую систему Д. Менделеева с изменениями в строении электронных оболочек элементов. Вот как это формулируется в докладе: «Последовательность элементов распадается на различные периоды, внутри которых их химические свойства изменяются известным характерным образом. Для истолкования этой закономерности естественно предположить отчетливое распределение электронов в атоме таким образом, что расположение групп элементов в системе следует приписать постепенному образованию электронных групп в атоме по мере увеличения атомного ядра». Плодотворность предложенного датским физиком подхода вскоре была доказана фактом открытия гафния. Бор предположил, что неизвестный элемент с порядковым номером 72, хотя он и расположен в Периодической системе рядом с лантаноидами, может быть обнаружен не среди них, а вблизи циркония. Это предположение он сделал на основании того, что ряд лантаноидов заканчивается на элементе 71, электронная оболочка которого содержит максимальное число электронов - то есть полностью заполнена, из чего следует, что элемент с порядковым номером 72 относится уже к другой группе. В 1922 году Нильсу Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атомов и испускаемого ими излучения»: В своей нобелевской лекции Бор сообщил о том, что двое его сотрудников обнаружили элемент с порядковым номером 72 именно в циркониевых минералах. Так блестяще подтвердилось предсказание великого ученого. В 30-е годы областью научных интересов датского естествоиспытателя становится ядерная физика. В 1936 году он предлагает свой механизм протекания ядерных реакций, согласно которому бомбардирующая частица и ядро «простреленного» атома образуют составное ядро, в котором мгновенно перераспределяется энергия. Через ничтожно малый промежуток времени один или несколько нуклонов приобретают энергию, достаточную для того, чтобы покинуть ядро. В 1939 году Бор выдвигает капельную модель ядра. Совместно с Д. Уилером он разрабатывает количественную теорию деления урана под действием нейтронов и, благодаря своей блестящей научной интуиции, предсказывает вероятность спонтанного деления ядер.

Во время Второй мировой войны Данию оккупируют немецкие войска. Утром 29 сентября 1943 года Бор получает секретное сообщение о том, что фашисты собираются насильственно вывезти его в Германию, поскольку руководство «Третьего рейха» решило привлечь великого датчанина к реализации гитлеровского атомного проекта. Благодаря связям с движением Сопротивления, Бору и его жене удается в последнюю минуту ускользнуть от германских спецслужб. Под покровом ночи тайно они покидают родину на рыбацком судне и переправляются в Швецию. Оттуда они вскоре летят в Англию на переполненном бомбардировщике. Место для ученого нашлось только в бомбовом отсеке. Кислородный шлем оказался Бору слишком мал, и, пока самолет шел на большой высоте, физик едва не погиб от удушья. Кроме того, как впоследствии выяснилось, летчики имели приказ в «крайнем» случае открыть бомбометательный люк: ученый ни в коем случае не должен был попасть в руки врага. К счастью, все обошлось. Из Англии Бор перебирается в США, где принимает участие в работах по созданию атомной бомбы. Одним из первых великий датчанин понял, какая опасность таится в открытиях физиков-ядерщиков. В июле 1944 года он обратился к президенту США Ф. Рузвельту с меморандумом, в котором высказался за полное запрещение производства и применения атомного оружия. Сын Нильса Бора продолжил дело отца. В 1975 году Оге Бор получил Нобелевскую премию по физике «за развитие теории структуры атомного ядра».

Тим Бернерс-Ли

(р. 1955)
¶Создатель глобальной компьютерной сети
¶ВСЕМИРНЫЙ ПАУК

Он родился в Англии в семье с крепкими патриархальными традициями. Читать полностью »

(р. 1922)¶Физик, лауреат Нобелевской премии по физике за 1964 год
¶МАЗЕР И ЛАЗЕР

Среди его научных трудов есть посвященные оптическим свойствам полупроводников и сверхпроводимости,
молекулярной плазме и синхротронному излучению, космическим лучам, пульсирующим нейтронам и даже проблемам общей теории относительности. Читать полностью »

(р. 1908)¶Физик, лауреат Нобелевских премий за 1956 и 1972 гг.
¶В ПОИСКАХ ТРАНЗИСТОРНОГО ЭФФЕКТА

Будущий дважды Нобелевский лауреат родился 23 мая 1908 года в городе Мэдисон, штат Висконсин, в семье профессора анатомии. Читать полностью »

Лев Андреевич Арцимович

(1909-1973)¶Физик
¶ВСЕ ОТРИЦАЮЩИЙ ДУХ

Академик Арцимович родился 25 февраля 1909 года в Москве. Читать полностью

Николай Николаевич Андреев

(1880-1970)¶Физик¶
ЧИСТОТА ЗВУКА

Основоположник российской акустической школы родился 15 июля 1880 года. Читать полностью »

Луис Альварес

(1911-1988)¶Физик, лауреат Нобелевской премии за 1968 год¶
И САМОЛЕТЫ, И ДИНОЗАВРЫ

Луис Уолтер Альварес родился 13 июня 1911 года в Сан-Франциско в семье университетского профессора. Читать полностью »

Анатолий Петрович Александров

(1903-1994)¶Физик¶
ОТ КИЕВА ДО ЧЕРНОБЫЛЯ

Академик Александров прожил долгую, интересную жизнь. Его творческую судьбу можно было бы назвать счастливой, если бы не авария, случившаяся в 1986 году на Чернобыльской АЭС на созданном им реакторе. Читать полностью »

Макс Фон Лауэ

(1879-1960)
Физик, лауреат Нобелевской премии по физике за 1914 год
ЛУЧИ В ПЛЕНУ У КРИСТАЛЛА

Макс Теодор Феликс фон Лауэ родился 9 сентября 1879 года в Германии. Его отец в 1913 году получил потомственное дворянство и престижную приставку «фон» к фамилии. Читать полностью »

Лев Давидович Ландау

(1908-1968)
Физик, лауреат Нобелевской премии по физике за 1962 год
ВЕЛИКИЙ УПРОСТИТЕЛЬ

Его называли лучшим физиком-теоретиком своего времени, а главным его качеством коллеги считали умение предельно ясно показывать фундаментальную простоту, присущую основным явлениям природы. Читать полностью »

Мария Кюри-Склодовская

(1867-1934)
Физик, химик, лауреат Нобелевских премий за 1903 и 1911 годы
ДОБЫЧА РАДИЯ - ТА ЖЕ ПОЭЗИЯ

Одна из самых великих женщин и ученых всех времен и народов, Мария Склодовская родилась 7 ноября 1867 года в Варшаве. Читать полностью »

Пьер Кюри

(1859-1906)
Физик, лауреат Нобелевской премии за 1903 год
СВЕТ БУДУЩЕГО

Пьер Кюри родился 15 мая 1859 года. Его отец Эжен Кюри был врачом, причем хорошим, однако после разгрома Парижской коммуны, участником которой был, он не имел богатых пациентов, а потому нуждался. Читать полностью »

Игорь Васильевич Курчатов

(1903-1960)
Физик
ВОИНСТВЕННЫЙ ATOM

Выдающийся физик Игорь Курчатов родился 12 января 1903 года в небольшом поселке Сим неподалеку от Уфы. Отец его, по образованию землемер, был в то время помощником лесничего. Читать полностью »

Вильгельм Рентген

(1845-1923)
Физик, лауреат Нобелевской премии по физике за 1901 год
В СВЕТЕ ИКС-ЛУЧЕЙ

На фотопластинке проявляется контур изящной дамской руки с длинными пальцами. Снимок похож на негатив: отчетливо видны белые кости и более темные ткани вокруг них. Читать полностью »

Эрнест Резерфорд

(1871-1937)
Физик, лауреат Нобелевской премии по физике за 1908 год
ПЛАНЕТА ПО ИМЕНИ АТОМ

Эрнест Резерфорд родился 30 августа 1871 года в Новой Зеландии в семье шотландского переселенца. Отец Эрнеста был не только хозяином деревообрабатывающего предприятия, но и мастером на все руки. Читать полностью »

Александр Михайлович Прохоров

(р. 1916)
Физик, лауреат Нобелевской премии по физике за 1964 год
НА РАДИОВОЛНЕ

Русский ученый Александр Прохоров родился в Австралии. Туда забросила судьба его родителей, беглых ссыльных Михаила и Марию. Читать полностью »

Макс Планк

(1858-1947)
Физик, лауреат Нобелевской премии по физике за 1918 год
ЛЕГКИЕ ШАГИ ЭНЕРГИИ

Биографы Макса Карла Эрнста Людвига Планка утверждают, что великий физик состоял в родстве разной степени близости с философами Шеллингом и Гегелем, поэтами Шиллером и Гельдерлином. Читать полностью »

Вольфганг Паули

(1900-1958)
Физик, лауреат Нобелевской премии по физике за 1945 год
ЧЕЛОВЕК, КОТОРЫЙ НАЛАГАЛ ЗАПРЕТЫ

Биограф австро-швейцарского физика Вольфганга Эрнста Паули, автор книги «В поисках. Физики и квантовая теория» Барбара Клайн писала: «Внешне он очень напоминал Будду, но Будду, в глазах которого светился ум. В научных спорах Паули был бесподобен. Читать полностью »

Энрико Ферми

(1901-1954)

АТОМЫ У НЕГО ДОМА

Читать полностью »

Ричард Филлипс Фейнман

(1918-1988)

ВАЛЬС ЛЕТАЮЩИХ ТАРЕЛОК

Читать полностью »

Джозеф Джон Томсон

(1856-1940)

ОТЦЫ И ДЕТИ

Читать полностью »

Игорь Евгеньевич Тамм

(1895-1971)

«УРОВНИ ТАММА»

Он родился 8 июля 1895 года на самом краю России - во Владивостоке. Вскоре семья переехала на Украину, в Елисаветград (позже Кировоград), где отец Игоря Евгеньевича Читать полностью »

Энрико Ферми

(1901-1954)
Физик, лауреат Нобелевской премии по физике за 1938 год
АТОМЫ У НЕГО ДОМА

Как любой художник без запинки перечислит шедевры Рембрандта, так и рядовой физик с удовольствием расскажет о «шедеврах», автором которых является Энрико Ферми. Читать полностью »

Ричард Филлипс Фейнман

(1918-1988)
Физик, лауреат Нобелевской премии по физике за 1965 год
ВАЛЬС ЛЕТАЮЩИХ ТАРЕЛОК

Он умел заставлять время течь вспять, разделял изотопы урана, описывал сверхтекучий газ и вычислял силы, с которыми взаимодействуют элементарные частицы. Читать полностью »

Джозеф Джон Томсон

(1856-1940)
Физик, лауреат Нобелевской премии по физике за 1906 год
ОТЦЫ И ДЕТИ

Он подписывался Дж. Дж. Томсон, из-за чего коллеги дали ему прозвище Джи-Джи. Физику Джи-Джи выпало жить на водоразделе столетий. На склоне лет он так описывал начало своего пути: Читать полностью »

Игорь Евгеньевич Тамм

(1895-1971)
Физик, лауреат Нобелевской премии по физике за 1958 год
«УРОВНИ ТАММА»