Состав и свойства технической системы. Понятие технических систем, законы строения и развития технических систем. Общее определение тс

В природе и обществе вес системно. Любая машина, живой организм, общество в целом или его отдельная часть — предприятие. фирма, офис, учреждение — представляют собой различные системы: технические, биологические, социальные, в том числе социально-экономические. Под системой обычно понимают комплекс взаимосвязанных элементов, образующих определенную целостность. Комплекс этот составляет особое единство со средой и является элементом системы более высокого порядка. Элементы любой системы, в свою очередь, выступают как системы более низкого порядка. Элементы в реальных системах — это фактические объекты, части, элементы и компоненты.

Многообразие технических, биологических, социальных, в том числе социально-экономических, систем может быть упорядочено, если их классифицировать, т е. разделить, а затем объединить по определенным признакам. Из множества способов классификации наиболее распространенной считают классификацию, приведенную на рис. 1.1.

По происхождению различают системы: а) естественные (природные), например: звездные образования, солнечная система, планеты, материки, океаны; б) искусственные, т е. созданные трудом человека (предприятия, фирмы, города, машины).

Искусственные системы могут быть, в свою очередь, по специфике содержания разделены на системы: технические, технологические, информационные, социальные, экономические, иные. Из числа последних выделяются такие системы, как отрасль, регион, предприятие, цех. участок и т.п.

По объективности существования системы могут быть: а) материальными (существуют объективно, т.е. независимо от сознания человека): б) идеальными («сконструированными» в сознании человека в виде гипотез, образов, представлений).

По степени связи с окружающей средой системы могут быть: а) открытыми: б) относительно обособленными: в) закрытыми: г) изолированными.

По зависимости от времени различают системы: а) статистические, параметры которых нс зависят от времени; б) динамические, параметры которых являются функцией времени.

По обусловленности действия системы бывают: а) детерминированными; б) вероятностными. В первых системах одной и той же причине всегда соответствует четкий, строгий, однозначный результат. В системах вероятностного типа одной и той же причине в одних и тех условиях может соответствовать один из нескольких возможных результатов. Пример вероятностной системы — цеховой персонал, который является на работу каждый раз в различном составе.

По месту в иерархии систем принято различать: а) суперсистемы; б) большие системы; в) подсистемы; г) элементы.

Среди систем, созданных природой, также выделяют: а) неживые; б) живые, в том числе человек. Системы, созданные человеком (антропогенные), могут быть подразделены на технические. человеко-машинные, социально-экономические.

К техническим системам относят системы, которые созданы человеком и наделены определенной функций или целью (например. здания, машины); к человеко-машинным — системы, в которых одним из элементов является человек, причем цель человек}’ ставит техническая система. Человека в технических системах называют оператором, так как он выполняет операции, которые требует от него обслуживание машины. Летчик в самолете, оператор за пультом ЭВМ. водитель в машине — вес это человеко-машинные системы. Социально-экономическими считаются системы, где человек ставит задачи (выдвигает цели) не только перед техническими системами, но и перед людьми, входящими в эти системы в качестве элементов. Отметим, что социально-экономические системы, могут содержать и технические, и человеко-машинные элементы.

С точки зрения науки об управлении социально-экономические системы (СЭС) представляют собой наиболее сложные объекты. Несмотря на богатый практический опыт управления такими системами, их теоретический аппарат находится на этапе становления и часто просто заимствуется из теории управления техническими системами.

Разнообразие форм не препятствует техническим, биологическим и социально-экономическим системам иметь ряд общих черт и закономерностей: они динамичны, характеризуются причинной связью отдельных элементов, наличием управляющей и управляемой подсистем и управляющего параметра, усилительной способностью (способностью существенно изменяться под влиянием самых малых воздействий), способностью хранить, передавать п преобразовывать информацию, обратной связью элементов, общей системой процессов управления и др.

Всем классам систем характерно наличие целого ряда общих свойств, среди которых уместно выделить следующие.

Свойство целостности . Все системы, будучи как обособленным целым делятся на элементы, существующие лишь в силу существования целого. В целостной системе элементы функционируют совместно, в совокупности обеспечивая процесс функционирования системы как целого. Первичность целого — основной постулат теории систем.

Свойство неаддитивности . Означает принципиальную не-сводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость свойств целого из свойств компонентов. Совокупное функционирование разнородных взаимосвязанных элементов порождает качественно новые функциональные свойства целого, не имеющего аналогов в свойствах его элементов.

Свойство синергичности . Предполагает, что однонаправленность действий элементов усиливает эффективность функционирования системы, и наоборот. Другими словами, для любой системы имеется такой набор элементов, при котором ее потенциал всегда будет.либо существенно больше простой суммы потенциалов входящих в нее элементов (люди, техника, технология, структура и т.д.). либо значительно меньше. Эффект синергии элементов получается при отлаженном взаимодействии системы с внешней средой и элементов внутри системы.

Свойство эмерджентности . Означает, что цели элементов системы не всегда совпадают с целями системы. Например, отмечается различная ориентация деятельности работников инновационных служб предприятия и специалистов маркетинга.

Свойство взаимозависимости и взаимодействия системы и внешней среды . Система реагирует на воздействие последней, развивается под этим воздействием, сохраняя качественную определенность и свойства, которые обеспечивают ее относительную устойчивость и адаптивность функционирования.

Свойства непрерывности функционирования и эволюции . Система существует, пока функционируют все процессы. Взаимодействие элементов определяет характер функционирования системы как целого, и наоборот. Одновременно система обладает способностью к развитию (саморазвитию).

Свойство приоритета интересов системы более высокого уровня перед интересами ее элементов . Отдельный работник социально-экономической системы не может ставить свои интересы выше интересов данной системы.

Техническая система – это искусственно созданные объекты, предназначенные для удовлетворения определенной потребности, которым присущи возможность выполнения не менее одной функции, многоэлементность, иерархичность строения, множественность связей между элементами, многократность изменения состояний и многообразие потребительских качеств. К техническим системам относятся отдельные машины, аппараты, приборы, сооружения, ручные орудия, их элементы в виде узлов, блоков, агрегатов и др. сборочных единиц, а также сложные комплексы взаимосвязанных машин, аппаратов, сооружений и т.п.

Техническая система относятся к самому большому классу технических объектов. Техническая система существует в трех модусах (проявлениях): 1) как изделие производства; 2) как устройство, потенциально готовое совершить полезный эффект; 3) как процесс взаимодействия с компонентами окружающей среды (источником внешней энергии, потребителем и т.д.), в результате которого и происходит эксплуатация (функционирование) технической системы и образуется полезный эффект. 1-й модус раскрывается в предметной декомпозиции технической системы, в выявлении всех ее неделимых, условно монолитных деталей и сборочных единиц; 2-й - в функциональной декомпозиции, в выявлении одно- и многофункциональных элементов; 3-е, рабочее состояние технической системы раскрывается в генерируемых процессах (сменах состояний) и рабочих циклах, включающих взаимосвязанные процессы. Ни один из функциональных элементов не может быть воспроизведен непосредственно, а существует благодаря деталям и сборочным единицам, которые по отношению к ним выступают в качестве предметов-носителей. Устройства, непосредственно участвующие в создании полезного эффекта технической системы, ответственны за степень совершенства рабочего процесса и ресурс работы. Для обеспечения ресурса часто используются спец. элементы, демпфирующие колебания, устройства охлаждения, разъемы, причем последние, повышая технологичность конструкции технической системы, требуют устройства крепления деталей, состояние которого во время эксплуатации технической системы сказывается на ее надежности.

При всем разнообразии технической системы смысловая нагрузка любого функционального элемента состоит в том, чтобы изменять или сохранять движение связанного с элементом объекта; изменять пространственные характеристики и время существования технической системы, а также изменять энергию как меру той или иной формы движения. Строение технической системы и параметры среды, с которой она взаимодействует, предопределяют все параметры и показатели функционирования технической системы, проявления ее состояния, характеристики и качества.

Функционирование технической системы раскрывается через средства (процессы) достижения полезного эффекта и управления этими процессами. Создание полезного эффекта обусловлено составом и порядком действия основных функциональных элементов, от которых зависит рабочий цикл технической системы; на фактический результат влияют затраты энергии от внешнего источника и свойства др. компонентов среды. Под управлением происходящими в технической системе процессами подразумевается преднамеренное изменение или сохранение характера и интенсивности с компонентами среды и поддержание параметров внешнего состояния всех элементов технической системы в пределах, обеспечивающих безопасность людей и сохранение материальных ценностей. При полном раскрытии характеристик технической системы речь идет как о связях между входными и выходными параметрами функционирования (напр., связь тяги и расхода топлива авиационного двигателя и условий полета самолета), так и о показателях, позволяющих отличить анализируемую техническую систему от других, о признаках принадлежности технической системы к определенному типу как категории, объединяющей технической системой одного назначения с одинаковым принципом действия, и о признаках отличий в строении. Об уровне технической системы свидетельствуют максимально достижимые значения ее потребительских качеств (выходных параметров).


Область применения технических систем очень широка и включает в себя все отрасли экономики. В табл. 3.1 приведены примеры технических систем, используемых в важнейших отраслях экономики.

Классификация технических систем по различным определяющим признакам вносит достаточно стройный порядок в их обширное множество и позволяет лучше ориентироваться. Как следствие этого появляется возможность изучения передового опыта, что позволяет подчас обнаружить между довольно далекими техническими системами интересные, доселе скрытые отношения.

Технические системы могут быть классифицированы по следующим признакам:

по функции (рабочему действию) , например, технические системы для фиксации, придания формы, вращения, подъема;

Таблица 3.1

Примеры технических систем в различных отраслях экономики

Отрасль экономики Техническая система
назначение машина
Горное дело Добыча Транспортировка Обогащение Врубовая машина Транспортер Сортировальная машина
Энергетика Выработка пара Выработка электричества Паровой котел, барабан Паровая турбина, гидротурбина, генератор
Металлургия Производство чугуна Производство стали Производство проката Доменная печь Мартеновская печь Прокатный стан
Химическая промышленность Очистка и переработка нефти Производство красителей Производство пластмасс Резервуар Реактор Колонна
Фармацевтическая промышленность Производство медикаментов Пресс, каландр
Металлообрабатывающая промышленность Обработка давлением Обработка резанием Термообработка Литье Сборка Пресс, молот Станок Печь Формовочная машина Конвейер
Строительная промышленность Строительство оснований и фундаментов Строительство надземных сооружений Земляные работы Гидротехническое строительство Производство стройматериалов Экскаватор Подъемный кран Скрепер Бетономешалка Формовочный пресс
Транспорт Железнодорожное сообщение Судоходство Воздушное сообщение Локомотив, вагон Пароход Самолет
Текстильная промышленность Производство текстиля Изготовление готового платья Прядильная машина, ткацкий станок Швейная машина
Пищевая промышленность Производство муки Производство пищевых жиров Переработка молока Мукомольная мельница Пресс Центрифуга
Медицина Диагностика Терапия Рентгеновский аппарат Протез
Типографское и конторское дело Печатание Конторские нужды Печатная машина Пишущая машинка, счетная машина
Сельское и лесное хозяйство Обработка земли Уборка урожая Заготовка древесины Трактор с плугом Комбайн Электропила
Распределение, торговля Самообслуживание Упаковка Контрольная машина Упаковочная машина

по типу преобразования , например, технические системы для преобразования материи, энергии, информации, биологических объектов;



по принципу осуществления рабочего действия , например, технические системы, основанные на механическом, гидравлическом, пневматическом, электронном, химическом, оптическом, акустическом принципе;

по характеру функционирования , например, мощностные, скоростные, импульсные технические системы, системы для различных условий окружающей среды (например, для тропического климата) и т. п.;

по уровню сложности , например, конструктивные элементы, узлы, машины, предприятия в целом;

по способу изготовления , например, технические системы, изготовленные путем литья, ковки, штамповки, обточки;

по степени конструктивной сложности ;

по форме , например технические системы (конструктивные элементы) в виде тела вращения, плоские, сложной формы;

по материалу , например, технические системы из стали, меди, пластмассы;

по степени оригинальности конструкции , например, заимствованные, доработанные, модифицированные, оригинальные технические системы;

по типу производства , например, технические системы, изготовленные в условиях единичного, серийного или массового производства;

по названию фирмы-изготовителя , например, технические системы "Сименс", "Фиат", "ВАЗ", "BOSCH";

по месту в техническом процессе , по эксплуатационным свойствам, внешнему виду, технико-экономическим характеристикам и т. п.

Ясно, что одна и та же техническая система может принадлежать одновременно к нескольким классам. Ниже более подробно будут рассмотрены те принципы классификации технических систем, которые, с точки зрения проектировщика и конструктора, являются особо важными.

Классификация технических систем по функции. Названия технических систем часто выбираются в соответствии с их функцией. Составление номенклатур изделий применительно к требованиям сбыта, планирования, контроля, сравнительной оценки и т. п. также осуществляется, как правило, в соответствии с функцией технических систем. Изделия обозначаются по функции также в тех случаях, когда требуется помочь потенциальному потребителю найти то или иное техническое средство для выполнения определенной функции: этому служат торговые и промышленные каталоги, обзорные таблицы и т.п.

На любом предприятии используется множество элементов и узлов, выполняющих в различных отраслях техники одну определенную функцию, таких, как крепежные детали, редукторы, соединительные муфты, измерительные, регулирующие и сигнальные приборы, гидравлические и пневматические приборы и их части, специализированные электротехнические устройства и т.п. Узлы и детали машин также можно рассматривать как технические системы, поэтому их классификацию целесообразно проводить тоже по функции, так как конструктор, производственник и эксплуатационник применяют различные детали в соответствии с их функциональной пригодностью. Такая классификация называется конструктивно-функциональной , наряду с классификацией по способу изготовления она является основной при заимствовании существующих технических систем, унификации, типизации и стандартизации элементов и групп . Классификация по этим принципам позволяет экономить рабочее время конструктора.

Классификация технических систем по принципу действия. Для конструктора важно, чтобы технические системы, выполняющие одинаковые функции, были далее сгруппированы по еще какому-либо важному признаку. Таким признаком можно считать принцип действия технической системы . Так, например, технические системы "двигатели" можно подразделить по принципу действия: двигатели электрические, внутреннего сгорания, внешнего сгорания. Двигатели внутреннего сгорания в свою очередь можно подразделить по используемому физическому принципу смесеобразования на карбюраторные и дизельные. Такого рода признаки технических систем относятся преимущественно к группе функционально обусловленных свойств, весьма характерных для технических систем и имеющих большое значение для методической работы конструктора.

Классификация технических систем по уровню сложности. Деление технических систем на классы по их структуре - обычное дело в работе конструктора. Основным признаком, по которому образуются классы, должна служить функция системы. Однако, учитывая потребности производства, например, по соображениям монтажа, порой возникает необходимость в проведении иной классификации. Табл. 3.2 дает общее представление о классификации технических систем по уровню сложности.

Таблица 3.2

Классификация технических систем по уровню сложности

Уровень сложности Техническая система Характеристика Примеры
I Конструктивный элемент Деталь машины Элементарная система, изготовленная без монтажных операций Болт, подшипниковая втулка, пружина, шайба
II Подгруппа Группа Узел Механизм Простая система, выполняющая несложную функцию Коробка передач, гидравлический привод, шпиндельная бабка токарного станка
III Машина Прибор Аппарат Система, состоящая из групп и элементов и выполняющая определенную функцию Токарный станок, автомобиль, электромотор
IV Установка Предприятие Промышленный комплекс Сложная система, состоящая из машин, групп и элементов, выполняющая ряд функций и характеризующая упорядоченные совокупности функций и места Технологическая линия, цех термической обработки, нефтехимический комплекс

На более высоких уровнях сложности можно различать еще и промежуточные уровни. Тем не менее, следует помнить, что речь идет об относительной иерархии. Одна и та же система более низкого уровня, например электромотор или коробка передач, в одной системе рассматривается как подгруппа, а в другой системе – как группа или машина (подсистема).

На практике общепризнанно, что нижние уровни технических систем находят более универсальное применение, например, такие элементы как "винт", "болт", "гайка" применяются в машиностроении повсеместно, "электромотор" довольно часто, а "технологическая линия" используется лишь в определенных, специальных процессах.

Классификация технических систем по уровню сложности имеет немаловажное значение для конструктора, поскольку уровень сложности технической системы

а) находится в определенном соотношении со степенью сложности решения поставленной перед конструктором задачи;

б) предполагает установление известных границ для специализации конструктора (например, инженер-проектировщик имеет дело с предприятием, инженер-конструктор - с машиной, конструктор деталей - с элементами машины);

в) помогает конструктору ориентироваться в процессе работы, ибо, если он решает задачу на каком-то определенном уровне сложности, ему важно знать лишь то, как его задача согласована с более высоким уровнем (в отношении более низкого уровня конструктор принимает чаще всего только принципиальные решения).

На основании сборочного чертежа отдельные уровни сложности можно рассматривать так же, как совокупности процессов изготовления и монтажа. Образование соответствующих совокупностей, прежде всего из деталей, подгрупп и групп, является необходимым условием создания модульных конструкций, а также целесообразной организации производственного процесса.

Классификация технических систем по способу изготовления. Для изготовления определенных групп технических систем требуется однотипное технологическое оборудование. Например, на одном и том же оборудовании можно изготовить паровые котлы и химические емкости, на другом - токарные, фрезерные, сверлильные и другие станки. Детали машин можно также свести в технологические группы по принципу сходства технологических операций изготовления, где главным отличительным признаком будет служить форма. Такая классификация позволяет рационально провести технологическую подготовку производства и повысить эффективность производственного процесса, поскольку дает возможность объединить рабочие места для изготовления одинаковых по способу изготовления деталей. Это в свою очередь облегчает осуществление самых различных мер рационализации, например специализацию рабочих цехов, предприятий. Значение такой классификации особенно велико при разработке и осуществлении планов подготовки производства, методов управления и планирования. Она является составной частью, так называемой, групповой технологии обработки.

Классификация технических систем по степени конструктивной сложности. Технические системы можно также классифицировать с точки зрения конструктивной сложности. В качестве примера в табл. 3.3 технические системы третьего уровня сложности (см. табл. 3.2) разделены на 6 категорий по степени их конструктивной сложности. В зависимости от уровня сложности рассматриваемой технической системы для решения связанных с ней проблем выбирается соответствующий специалист или группа специалистов. При планировании конструкторской работы степень конструктивной сложности разрабатываемой технической системы служит критерием для установки определенных временных рамок инженерной работы.

Таблица 3.3

Примеры классификации технических систем III уровня сложности по

степени конструктивной сложности

Детали машин также можно классифицировать в зависимости от степени сложности их конструкции. Соответствующий пример классификации по другому принципу дан в табл. 3.4. Критериями опенки степени конструктивной сложности служат:

а) степень оригинальности конструкции;

б) сложность выполняемых функций, форм, структуры в целом;

в) сложность расчетов;

г) размеры, необходимые точность их выполнения и качество обработки;

д) особые требования, предъявляемые к таким характеристикам, как масса, технологичность конструкции, затраты, требования к внешнему виду и т. п.

Таблица 3.4

Примеры классификации деталей машин по степени конструктивной сложности

Степень конструктивной сложности Характеристика Примеры
Очень простые детали с небольшим количеством контрольных размеров невысокой точности Опорная шайба, простой рычаг, небольшой вал, болт, крепежная скоба
Простые детали с большим количеством контрольных размеров Рычаг, шкив, простое штампованное изделие
Более сложные детали Шестерня, шлицевой вал
Более сложные детали с большим количеством контрольных размеров Довольно сложные отливки, небольшие поковки
Очень сложные детали Сложные отливки кожухов и поковки средних размеров
Очень сложные и большие детали Каркасы, кожухи машин, сварные или литые станины
Особо сложные детали больших размеров и необычной формы с точным выдерживанием большого количества контрольных размеров Лопасти турбины, большие поковки, прецизионные отливки сложной формы

Классификация элементов технических систем по степени стандартизации и происхождению. Такая классификация очень важна для оценки экономичности конструкции. По степени стандартизации технической системы можно судить о целесообразности и возможных масштабах ее производства в рамках данного предприятия. С экономической точки зрения количество оригинальных конструктивных элементов в технической системе должно быть как можно меньшим, поскольку они характеризуют требования, предъявляемые к конструкторской и технологической подготовке производства. Существует правило, которое гласит, что чем меньше количество оригинальных конструктивных элементов в создаваемой системе, тем выше вероятность для организации ее серийного или даже массового производства . Часто, впрочем, в силу каких-либо иных причин эти соображения не являются решающими.

Классификация технических систем по степени оригинальности конструкции. При разработке новой машины конструктор всегда старается использовать в конструкции, оправдавшие себя на практике узлы и детали. По степени оригинальности конструкции технические системы можно разделить на следующие категории.

Заимствованные технические системы . Для выполнения необходимой функции уже существуют какая-либо техническая система или даже несколько систем, из которых могут быть выбраны наиболее подходящие. К ним относятся в первую очередь унифицированные элементы и группы (болты, клинья, вентили, пружины), а также неунифицированные элементы и группы, которые могут быть заимствованы из других конструкций.

Доработанные технические системы . В наличии имеется какая-либо техническая система, выполняющая необходимую функцию, но не отвечающая некоторым требованиям. Возникает потребность, например, изменить габариты, мощность, число оборотов, скорость, установочные размеры, материал или технологию. Структуры системы и важнейшие свойства элементов в этом случае остаются без изменения. Таким образом, доработка технической системы проводится исключительно в целях приспособления ее к особым условиям и требованиям новой задачи, а новые материалы используются только в целях повышения качества, удешевления или модернизации.

Модифицированные технические системы . Существующие системы не отвечают требованиям, предъявляемым к некоторым свойствам групп и элементов конструкции. В модифицированной конструкции обычно не изменяются лишь функция, некоторые параметры и по возможности принцип действия. В элементах могут быть изменены форма, размеры, материал или технология, в сложных технических системах изменяются органоструктура и конструктивная схема, т.е. некоторые элементы и группы, их соединение и размещение в пространстве. Обычно модификация осуществляется путем переделки конструкции.

Новые технические системы . Для выполнения желаемой функции отсутствует техническая система или же существующая имеет недостатки принципиального характера. Необходима система с новым принципом действия и другими техническими свойствами.

Классификация технических систем по типу производства. Тип производства, который определяется количеством изготавливаемых единиц продукции, придает каждому изделию ряд характерных технических и экономических свойств.

Технические системы единичного производства . В этом случае конструкторские и подготовительные работы необходимо приспособить к нуждам поштучного производства, в условиях которого стоимость каждой изготовленной технической системы увеличивается. Не исключено, что в условиях единичного производства необходимая функция технической системы вообще не будет достигнута, поскольку при изготовлении крупных технических систем приходится работать без прототипа. Вот почему эта категория систем предъявляет высокие требования к конструктору.

Технические системы серийного или массового производства . Эти системы в целом лучше проработаны с точки зрения производства. Из-за большого объема партий изделий доля конструкторских затрат по отношению к общим расходам невелика. Однако поскольку контролю подвергается, как правило, лишь небольшая часть изделий, то не исключены различные погрешности и дефекты. Только при осуществлении непрерывного контроля за всеми операциями или выпускаемыми деталями и изделиями в целом можно добиться стабильного качества при серийном и массовом производствах. Специалисту упомянутые категории систем интересны и в том плане, что они формируют основу для определения возможного качества изделий. Прослеживается четкая тенденция ко все большему использованию унифицированных, серийно выпускаемых технических систем, особенно для выполнения различных функций низких уровней, например элементов соединения, измерения, регулирования, привода, распределения. С другой стороны, возрастает количество технических систем специального назначения. Современное производство не может обойтись без целого ряда вспомогательных средств, специализированных машин, автоматов и поточных линий, специального оборудования, т. е. без всего того, что обеспечивает выпуск дешевой унифицированной продукции в массовом количестве. Обе категории изделий предъявляют высокие требования к объему и качеству конструкторской работы.

Классификацию технических систем можно проводить с различных точек зрения; при этом из всего множества технических систем образуются подмножества, связанные общими отличительными признаками. Полученные категории могут служить различным целям, например систематизации, наглядности, оценке, анализу и т. п.

Техническая система - это материальный объект искусственного происхождения, который состоит из элементов (составных частей, различающихся свойствами, проявляющимися при взаимодействии), объединённых связями (линиями передачи единиц или потоков чего-либо) и вступающих в определённые отношения (условия и способы реализации свойств элементов) между собой и с внешней средой, чтобы осуществить процесс (последовательность действий для изменения или поддержания состояния) и выполнить функцию технической системы (ТС) - цель, назначение, роль. ТС имеет структуру (строение, устройство, взаиморасположение элементов и связей, задающее устойчивость и воспроизводимость функции ТС). Каждая составная часть ТС имеет индивидуальное функциональное назначение (цели использования) в системе.

Энциклопедичный YouTube

    1 / 3

    Техническая система инфобизнеса от Евгения Попова Часть 1

    Передача 2. Неразрушающий контроль и техническая диагностика

    Монтажникам санитарно-технических систем и оборудования посвящается

    Субтитры

Функциональный состав и свойства объектов технической системы

В каждой ТС существует функциональная часть - объект управления (ОУ). Функции ОУ в ТС заключаются в восприятии управляющих воздействий (УВ) и в изменении в соответствии с ними своего состояния . ОУ в ТС не выполняет функций принятия решений, то есть не формирует и не выбирает альтернативы своего поведения, а только реагирует на внешние (управляющие и возмущающие) воздействия, изменяя свои состояния предопределенным его конструкцией образом.

В объекте управления всегда могут быть выделены две функциональные части - сенсорная и исполнительная .

Сенсорная часть образована совокупностью технических устройств, непосредственной причиной изменения состояний каждого из которых является соответствующие ему и предназначенные для этого управляющие воздействия. Примеры сенсорных устройств: выключатели, переключатели, задвижки , заслонки , датчики и другие подобные им по функциональному назначению устройства управления техническими системами.

Исполнительная часть образована совокупностью материальных объектов, все или отдельные комбинации состояний которых рассматриваются в качестве целевых состояний технической системы, в которых она способна самостоятельно выполнять предусмотренные её конструкцией потребительские функции. Непосредственной причиной изменения состояний исполнительной части ТС (ОУ в ТС) являются изменения состояний её сенсорной части.

Классификационные признаки объектов

  • представляют собой целостную совокупность конечного множества совзаимодействующих материальных объектов
  • имеют условия штатной эксплуатации, предусмотренные их конструкцией
  • содержат последовательно взаимодействующие друг с другом сенсорные и исполнительные функциональные части
  • имеют модели управляемого предопределенного причинно-следственного поведения в пространстве достижимых равновесных устойчивых состояний
  • имеют целевые состояния, соответствующие состояниям исполнительной части объекта управления в ТС
  • имеют способность, находясь в целевых состояниях, самостоятельно выполнять потребительские функции

Техническая система - это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая последовательно взаимодействующие сенсорную и исполнительную функциональные части, модель их предопределенного поведения в пространстве равновесных устойчивых состояний и способность, при нахождении хотя бы в одном из них (целевом состоянии), самостоятельно выполнять в штатных условиях предусмотренные её конструкцией потребительские функции.

Техническая подсистема - это часть системы, имеющая все признаки объектов таксона «технические системы». Техническая подсистема может быть частью некоторой системы, которая сама может не относиться к классу ТС.

Устройство - это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая модель предопределенного поведения и равновесные устойчивые состояния в штатных условиях эксплуатации.

В определении понятия «устройство» учитывается, что оно как составная часть ТС также должно иметь равновесные устойчивые состояния, определяющие свойства целевых состояний системы в целом.

Деталь - неразделимый на элементы материальный и функциональный объект технической системы или устройства.

В этом определении учитывается, в частности, «функциональное» свойство детали, которое заключается в её способности выполнять отведенную ей конструктором роль в ТС, то есть быть исправной.

Выделим несколько наиболее характерных для техники структур: 1). Корпускулярная. Состоит из одинаковых элементов, слабосвязанных между собой; исчезновение части элементов почти не отражается на функции системы. Примеры: эскадра кораблей, песчаный фильтр. Рис. 3.1. Корпускулярная структура системы 2). "Кирпичная". Состоит из одинаковых жестко связанных между собой элементов. Примеры: стена, арка, мост. Рис. 3.2. «Кирпичная» структура системы. 3). Цепная. Состоит из однотипных шарнирно связанных элементов. Примеры: гусеница, поезд. Рис. 3.3. Цепная структура системы. 4). Сетевая. Состоит из разнотипных элементов, связанных между собой непосредственно, или транзитом через другие, или через центральный (узловой) элемент (звездная структура). Примеры: телефонная сеть, телевидение, библиотека, система теплоснабжения. Рис. 3.4. Сетевая структура системы. 5). Многосвязная. Включает множество перекрестных связей в сетевой модели. Рис. 3.5. Многосвязная структура системы. 6). Иерархическая. Состоит из разнородных элементов, каждый из которых является составным элементом системы более высокого ранга и имеет связи по "горизонтали" (с элементами одного уровня) и по "вертикали" (с элементами разных уровней). Примеры: станок, автомобиль, винтовка. По типу развития во времени структуры бывают:
  1. Развертывающиеся . С течением времени при увеличении ГПФ растет количество элементов.
  2. Свертывающиеся . С течением времени при росте или неизменном значении ГПФ количество элементов уменьшается.
  3. Редуцирующие . В какой-то момент времени начинается уменьшение количества элементов при одновременном уменьшении ГПФ.
  4. Деградирующие . Уменьшение ГПФ при уменьшении связей, мощности, эффективности.
3.2. Особенности развития технических систем Для развития реальных технических систем характерен многостадийный процесс. Статистические данные изменения тех или иных параметров больших технических систем отражают результаты одновременного воздействия факторов, обусловленных действием объективных законов. Графическое представление параметров технических систем может быть представлено семейством S-образных кривых. (Рис. 3.6.).
Рис. 3.6. Изменение во времени технических характеристик систем. Несмотря на индивидуальные особенности конкретных систем (летательные аппарат, двигатели, приборы), эта зависимость имеет характерные участки. На участке 1 идет медленное развитие системы. Участок 2 соответствует массовому применению. Наступает «зрелость» системы. На участке 3 темп развития системы спадает. Происходит старение системы. Затем развитие идет по следующей кривой. Каждая следующая кривая данного графика соответствует новому поколения технической системы. В книге В.И. Муштаева «Основы инженерного творчества» Приведены аналитические выражения, аппроксимирующие такой параметр самолетов, как его скорость. В недрах каждой предыдущей стадии зарождается последующая, жизнеспособность и эффективность которой всегда выше предыдущей. Особенности развития сложных систем заключаются в том, что каждая подсистема, входящая в систему, также проходит все три этапа развития. Поэтому S – образные кривые для сложных систем являются интегральными, состоящими из совокупности S – образных кривых всех входящих подсистем. При этом самая слабая подсистема, ресурсы которой исчерпаны первыми, обычно тормозит развитие всей системы. Поэтому дальнейшее совершенствование технической системы возможно только после ее замены. Пример в области самолетостроения. В 20-е годы исчерпала себя аэродинамическая концепция. Биплан с неубирающимся шасси и открытия кабина летчика. В 40-х годах скорость самолета ограничивалась неэффективностью воздушного винта при скорости около 700 км/час. Это дало развитие реактивной авиации. Приведенные выше кривые могут служить основой для разработки научно-обоснованной методики изучения процессов развития конкретных технических устройств. 3.3. Законы развития техники и ТРИЗ (теория решения изобретательских задач) Первых законы развития технических систем были выявлены К. Марксом в работе «Нищета философии». Он писал: « Простые орудия, накопление орудий, сложные орудия, приведение в действие сложного орудия одним двигателем – руками человека. Приведение этих инструментов в действие силами природы; машины; система машин, имеющая двигатель, - вот ход развития машин». В результате статистического анализа патентного фонда Г.С. Альтшуллер разработал общую схему развития технических систем. В схеме указаны основные проблемы, трудности, конфликты, встречающиеся на разных уровнях и этапах развития, технические ошибки, допускаемые изобретателями при решении задач, а также правильные закономерные пути дальнейшего развития. Было также определено общее направление развития технических систем в направлении повышения уровня идеальности. Такой системный подход к развитию техники позволил разработать теорию решения изобретательских задач (ТРИЗ).В основе ее лежит постулат: техническая система развивается по объективно существующим законам, эти законы познаваемы. Их можно выявить и использовать для сознательного, целенаправленного решения изобретательских задач. Законы развития технических систем классифицируются на 3 группы: статика, кинематика, динамика. Статические законы определяют жизнеспособность новых технических систем. Основными из них являются следующие законы: 1. наличие и хотя бы минимальная работоспособность ее составных частей; 2. сквозной проход энергии через систему к ее рабочему органу; 3. Согласование собственных частот колебаний (или периодичности) всех частей системы. Кинематика объединяет законы, характеризующие развитие систем независимо от конкретных технических и физических механизмов этого развития. 1. Всякая техническая система стремится к увеличению степени идеальности и степени динамичности: 2. Процесс развития неравномерен и проходит через стадии возникновения и преодоления технических противоречий: 3. Техническая система развивается только до определенного предела, становясь затем частью надсистемы; при этом развитие на уровне системы резко замедляется или совсем прекращается, заменяясь развитием на уровне надсистемы. Динамические законы отражают тенденции развития современных технических систем. 1. Развитие идет в направлении увеличения степени управляемости; 2. Развитие современных технических систем идет в направлении увеличения степени дробления, дисперсности рабочих органов. В особенности, типичен переход от рабочих органов на макро уровне к рабочим органам на микро уровне. Другой подход к законам развития технических систем предложили Меерович и Шрагин в книге «Законы развития и прогнозирования технических систем». Выделено 3 группы развития технических систем. Общие законы, законы синтеза систем и законы развития систем. Общие законы: 1. Развитие любой технической системы идет в направлении повышения уровня ее идеальности; 2. Составные части системы развиваются неравномерно – через возникновения и преодоления технических противоречий; 3. Исчерпав возможности своего развития, техническая система может вырождаться, консервироваться на определенном уровне, или ее рабочий орган становится подсистемой новой системы. Законы синтеза системы: 1. Автономная система должна состоять из четырех минимально работающих частей: рабочего органа, двигателя (источника энергии), трансмиссии и органа управления; 2. Связь через части системы и сами ее части должны обеспечивать свободный проход энергии через всю систему; 3. Управление системой может осуществляться воздействием на любую ее часть. Законы развития отражают условия и причины развития системы и формулируются следующим образом: 1. Согласования ритмики технических систем; 2. Динамизация рабочего органа (на макро- и микро уровнях); 3. Повышение числа управляемых связей; 4. Структурирование; 5. Переход в надсистему; 6. увеличение числа дополнительных функций. Постулаты ТРИЗ
  1. Техника развивается по определённым законам.
  2. Для решения изобретательских задач необходимо выявить и разрешить противоречия.
  3. Изобретательские проблемы можно классифицировать и решить соответствующим методом.
Г. С. Альтшуллер пришел к выводу, что фундаментом будущей теории изобретательства должны быть законы развития технических систем. Альтшуллером была разработана система законов развития техники. Изобретательское и рутинное мышление Отличие изобретательского и рутинного (традиционного) мышления. При рутинном мышлении мы ищем компромисс . В изобретательском мышлении мы выявляем противоречие , лежащее в глубине проблемы. Углубляя и обостряя противоречие, мы определяем первопричины, породившие данное противоречие. Разрешая противоречие, получаем результат без недостатков. Структура и функции ТРИЗ Основные функции ТРИЗ
  1. Решение творческих и изобретательских задач любой сложности и направленности без перебора вариантов.
  2. Прогнозирование развития технических систем (ТС) и получение перспективных решений (в том числе и принципиально новых).
  3. Развитие качеств творческой личности.
Вспомогательные функции ТРИЗ
  1. Решение научных и исследовательских задач.
  2. Выявление проблем, трудностей и задач при работе с техническими системами и при их развитии.
  3. Выявление причин брака и аварийных ситуаций.
  4. Максимально эффективное использование ресурсов природы и техники для решения многих проблем.
  5. Объективная оценка решений.
  6. Систематизирование знаний любых областей деятельности, позволяющее значительно эффективнее использовать эти знания и на принципиально новой основе развивать конкретные науки.
  7. Развитие творческого воображения и мышления.
  8. Развитие творческих коллективов.