Таламус где. Что такое таламус и гипоталамус, его влияние на организм человека

И другие образования .

Таламус расположен латеральнее III желудочка. Он занимает дорсальную часть промежуточного мозга и отделяется от нижележащего бороздой. Два таламуса соединены по средней линии у 70% людей посредством межталамической промежуточной ткани серого вещества. От базальных ядер таламус отделяется внутренней капсулой, состоящей из нервных волокон, соединяющих кору со стволовыми структурами и спинным мозгом. Многие волокна внутренней капсулы продолжают ход в каудальном направлении в составе ножек мозга.

Ядра и функции таламуса

В таламусе выделяют до 120 ядер серого вещества . По месту их расположения ядра делят на передние, латеральные и медиальные группы. В задней части латеральной группы ядер таламуса выделяют подушку, медиальное и латеральное коленчатые тела.

анализ, отбор и передача в кору головного мозга сенсорных сигналов , поступающих к нему из большинства сенсорных систем ЦНС. В этой связи таламус называют воротами, через которые в поступают различные сигналы ЦНС. По выполняемым функциям ядра таламуса делятся на специфические, ассоциативные и неспецифические.

Специфические ядра характеризуются несколькими общими особенностями. Все они получают сигналы от вторых нейронов длинных восходящих афферентных путей, проводящих в кору мозга соматосенсорные, зрительные, слуховые сигналы. Эти ядра, иногда называемые сенсорными, передают обработанные сигналы в хорошо очерченные области коры — соматосенсорную, слуховую, зрительную сенсорные области, а также в премоторную и первичную моторные области коры. С нейронами этих областей коры специфические ядра таламуса имеют реципрокные связи. Нейроны ядер дегенерируют при разрушении (удалении) специфических областей коры, в которые они проецируются. При низкочастотной стимуляции специфических таламических ядер регистрируется усиление активности нейронов в тех областях коры, в которые нейроны ядер посылают сигналы.

К специфическим ядрам таламуса подходят волокна проводящих путей от коры, и ядер ствола мозга. По этим путям могут передаваться как возбуждающие, так и тормозные влияния на активность нейронов ядер. Благодаря таким связям кора мозга может регулировать потоки идущей к ней информации и отбирать наиболее значимую в данный момент. При этом кора может блокировать передачу сигналов одной модальности и облегчать передачу другой.

Среди специфических ядер таламуса имеются также несенсорные ядра. Они обеспечивают обработку и переключение сигналов не от чувствительных восходящих путей, а от других областей мозга. К нейронам таких ядер поступают сигналы от красного ядра, базальных ганглиев, лимбической системы, зубчатого ядра мозжечка, которые после их обработки проводятся к нейронам моторной коры.

Ядра передней группы таламуса участвуют в передаче сигналов от мамиллярных тел к лимбической системе, обеспечивая круговую циркуляцию нервных импульсов по кольцу: лимбическая кора — гиппокамп — — миндалевидное тело — таламус — лимбическая кора. Нейронную сеть, сформированную этими структурами, называют кругом (кольцом) Пайпеца. Циркуляция сигналов по структурам этого круга связана с запоминанием новой информации и формированием эмоций — эмоциональное кольцо Пайпеца.

Ассоциативные ядра таламуса расположены преимущественно медиодорсально, латерально и в ядре подушки. Они отличаются от специфических тем, что к их нейронам не поступают сигналы из чувствительных восходящих путей, а поступают сигналы уже обработанные в других нервных центрах и ядрах таламуса. Ассоциативность нейронов этих ядер выражается в том, что на один и тот же нейрон ядра приходят сигналы разных модальностей. Изменение активности нейронов ядер может быть связано (ассоциировано) с поступлением разнородных сигналов из разных источников (например, от центров, обеспечивающих зрительную, тактильную и болевую чувствительность).

Нейроны ассоциативных ядер являются полисенсорными и обеспечивают возможность осуществления интегративных процессов, в результате которых формируются обобщенные сигналы, передающиеся в ассоциативные области коры лобной, теменной и височной долей мозга. Потоки этих сигналов способствуют осуществлению корой таких психических процессов, как узнавание предметов и явлений, согласование речевых, зрительных и двигательных функций, формирование представления о позе тела, трехмерности пространства и положении в нем тела человека.

Неспецифические ядра таламуса представлены преимущественно интраламинарными, центральными и ретикулярными группами ядер таламуса. Они состоят из мелких нейронов, к которым по многочисленным синаптическим связям поступают сигналы от нейронов других ядер таламуса, лимбической системы, базальных ядер, гипоталамуса, ствола мозга. По чувствительным восходящим путям к неспецифическим ядрам поступает сигнализация от болевых и температурных рецепторов, а по сетям нейронов ретикулярной формации — сигнализация практически от всех других сенсорных систем .

Эфферентные пути от неспецифических ядер идут ко всем зонам коры как непосредственно, так и через другие талами- ческие и ретикулярные ядра. От неспецифических ядер таламуса начинаются также нисходящие пути к стволу мозга. При повышении активности неспецифических ядер таламуса (например, при электрической стимуляции в эксперименте) регистрируется диффузное повышение нейронной активности практически во всех областях коры больших полушарий.

Принято считать, что неспецифические ядра таламуса благодаря своим многочисленным нейронным связям обеспечивают взаимодействие, координацию работы различных областей коры и других отделов головного мозга. Они оказывают модулирующее влияние на состояние активности нервных центров, создают условия для их оптимальной настройки на выполнение работы.

Нейроны различных ядер таламуса оказывают эффекты через высвобождение ГАМК из нервных окончаний, формирующих синапсы на нейронах бледного шара, нейронах локальных цепей, нейронах ретикулярного ядра латерального коленчатого тела; возбуждающие глутамат и аспартат в кортикоталамических, мозжечковых терминалях; таламокортикальных проекционных нейронах. Нейронами секретируются несколько нейропептидов преимущественно в окончаниях восходящих трактов (субстанция Р, сомагостатин, нейропептид Y, энкефалин, холецистокинин).

Метаталамус

Метаталамус включает два таламических ядра — медиальное коленчатое тело (MKT) и латеральное коленчатое тело (ЛКТ).

Ядро медиального коленчатого тела является одним из ядер слуховой системы. Его получают афферентные волокна из латерального лемниска прямо или более часто, после их синаптического переключения на нейронах нижних холмиков. Эти слуховые волокна достигают MKT через соединительную ветвь нижних холмиков. MKT получает также волокна обратной связи из первичной слуховой коры височной области. Эфферентный выход ядра MKT формирует слуховую радиацию внутренней капсулы, волокна которой следуют к нейронам первичной слуховой коры (поля 41, 42).

Нейроны MKT вместе с нейронами нижних холмиков среднего мозга формируют нейронную сеть, выполняющую функцию первичного центра слуха. В нем осуществляется недифференцированное восприятие звуков, их первичный анализ и использование для формирования настораживания, повышения внимания и организации рефлекторного поворота глаз и головы в сторону неожиданного источника звука.

Ядро латерального коленчатого тела является одним из ядер зрительной системы. Его нейроны получают афферентные волокна от ганглиозных клеток обоих сетчаток по зрительному тракту. Ядро ЛКТ представлено нейронами, расположенными в нескольких слоях (пластинках). Сигналы из сетчатки поступают в ЛКТ так, что ипсилатеральная сетчатка проецируется к нейронам 2, 3 и 5-го слоев; контралатеральная — к нейронам 1,4 и 6-го слоев. К нейронам ЛКТ поступают также волокна обратной связи из первичной зрительной коры затылочной доли (поле 17). Нейроны ЛКТ, получив и обработав зрительные сигналы сетчатки, посылают сигналы по эфферентным волокнам, формирующим зрительную радиацию внутренней капсулы в первичную зрительную кору затылочной доли. Некоторые волокна проецируются в ядро подушки и вторичную зрительную кору (поля 18 и 19).

Латеральные коленчатые тела вместе с верхними холмиками относят к подкорковым зрительным центрам. В них осуществляется недифференцированное восприятие света, его первичный анализ и использование для формирования настораживания, повышения внимания и организации рефлекторного поворота глаз и головы в сторону неожиданного источника света.

Внутренняя капсула представляет собой широкий плотный пучок афферентных и эфферентных нервных волокон, соединяющих ствол и кору больших полушарий мозга. Волокна внутренней капсулы продолжаются рострально до радиации мозга и каудально до ножек мозга. Во внутренней капсуле проходят волокна таких важнейших нейронных нисходящих путей, как кортикоспинальный, кортикобульбарный, кортикорубральный, кортикоталамический, лобномостовой, кортикотекальный, кортиконигральный, кортикотегментальный и волокна восходящих таламокоркового, слухового и части зрительного путей.

Во внутренней капсуле тесно располагаются кортикоталамические и таламокортикальные волокна, поэтому при кровоизлияниях и заболеваниях этой области мозга возникают нарушения, характеризующиеся большим разнообразием, чем при повреждении какой-либо другой области ЦНС. Они могут проявиться развитием контралагеральной гемиплегии, потерей чувствительности на половине тела, потерей зрения на контралатеральной стороне (гемианопсия) и потерей слуха (гемигипоакузия).

Функции таламуса и последствия их нарушении

Таламус играет центральную роль в обработке сенсорной информации поступающей к . Все сенсорные сигналы соматической и других видов чувствительности, за исключением обоняния, проходят к коре через таламус. Как уже упоминалось, сенсорная информация направляется таламусом в кору по трем каналам : в строго специфичные сенсорные области — от специфических ядер, MKT, ЛKT; в ассоциативные области коры — от ассоциативных ядер и ко всей коре — от неспецифических ядер таламуса.

Таламус участвует в частичном восстановлении таких сенсорных ощущений, как болевые, температурные и грубое осязание, которые исчезают после повреждения сенсорной коры. При этом восстановление ощущения боли, сигналы которого передаются волокнами С-типа, проявляется ноющей, жгучей, нс адресованной к какой-либо части тела болью. Предполагают, что центром таких болевых ощущений является таламус, в то время как ощущение острой, хорошо локализованной боли, передаваемой волокнами А-типа, является соматосенсорная кора. Это болевое ощущение исчезает после повреждения или удаления данной области коры.

У больных с острыми нарушениями кровообращения в области таламуса могут развиться признаки таламического синдрома . Одним из его проявлений является потеря всех видов чувствительности на контралатеральной половине тела по отношению к стороне поврежденного таламуса. Однако через некоторое время грубые ощущения боли, осязания и температуры восстанавливаются.

Одной из важнейших функций таламуса является интеграция сенсорной и моторной деятельности . Ее основой является поступление в таламус не только сенсорных, но и сигналов из моторных областей мозжечка, базальных ганглиев, коры. Предполагается, что в вентральном латеральном ядре таламуса локализован треморогенный центр.

Таламус, в котором находится часть нейронов ретикулярной формации ствола мозга, играет центральную роль в поддержании сознания и внимания. При этом его роль в осуществлении реакций активации и пробуждения реализуется при участии холинергических, серотонинергических, норадренергических и гнетаминергических нейромедиаторных систем, которые начинаются в стволе мозга (ядро шва, голубоватое пятно), основании переднего мозга или гипоталамусе.

Через связи медиального таламуса с прсфронтальной корой таламус участвует в формировании аффективного поведения. Удаление префронтальной коры или ее связей с дорзомедальным ядром таламуса вызывает изменения личности, характеризующиеся потерей инициативы, вялостью аффективной реакции, индифферентностью к боли.

Через связи передних таламических и других ядер таламуса с гипоталамусом и лимбическими структурами мозга обеспечивается их участие в механизмах памяти, контроля висцеральных функций, эмоционального поведения. При заболеваниях таламуса могут развиться различные типы нарушений памяти от мягкой забывчивости с рассеянностью до выраженной амнезии.

Таламус — часть головного мозга, которая относится к промежуточному мозгу.

Зрительный бугор (таламус), функции

Функция таламуса заключается в сборе и передаче чувственных ощущений (за исключением ). В результате синтеза, происходящего в таламусе, изменяется характер этих ощущений.

Сенсорным путем таламус собирает информацию от рецепторов, воспринимающих ощущения от органов чувств, перерабатывает ее на первичном этапе и передает в кору головного мозга к большим полушариям мозга, на дальнейшую обработку.

Ранее считали, что таламус обрабатывает только, зрительные импульсы, в честь чего он получил название «Зрительные бугры». Сейчас это название считается устаревшим, справедливее было бы его называть «Чувствительными буграми», так как, таламус является средоточием чувствительных ощущений.

Слово таламус произошло от греческого языка «внутренняя камера».

Зрительные бугры выглядят, как две яйцевидные камеры. Камеры наполнены нервными клетками, которые объединяются в ядра для отражения принимаемых импульсов, идущих от разных органов чувств. Сейчас насчитывают 40 ядер таламуса. Ядра состоят из «серого вещества», а разделены ядра между собой «белым веществом».

На основании специфики принимаемой информации, ядра можно распределить на 4 основные функциональные группы:

1) Латеральное ядро – принимает и передает импульсы ассоциативной зрительной зоне, расположенной в теменной, затылочной области коры больших полушарий головного мозга.

2) Медиодорсальное ядро или Медиальное ядро — принимает и передает импульсы слуховой ассоциативной зоне, расположенной в коры больших полушарий головного мозга.

3) Ассоциативное ядро — принимает и передает тактильную информацию в кору больших полушарий головного мозга. Это способность ощущать прикосновения, вибрации, давление, возникшее при раздражении в мышцах, на коже, в слизистой оболочке. Г. Гед и другие исследователи считают, что таламус является высшим центром болевой чувствительности.

4) Ретикулярное ядро — предназначенное для налаживания равновесия и баланса в организме.

Кроме того, зрительные бугры содержат неспецифические ядра, в которых идет синтез иной информации. Обмен между зрительными буграми и корой головного мозга закольцован, то есть, осуществляется постоянный обмен информацией между этими двумя областями головного мозга.

Важнейшую роль играет таламус в процессе запоминания информации, образов, чувств, в формировании ощущений, участвует в контроле бодрствования и сна.

Итак, зрительные бугры или таламус – это двух дольная структура промежуточного мозга, предназначенная для сбора афферентной информации, поступающей от зрительных, слуховых, вкусовых рецепторов: реакций на тактильные, вибрационные, температурные импульсы.

Собранная, таким образом, информация сортируется, фильтруется специфическими ядрами таламуса и направляется в специализированные отделы коры головного мозга для дальнейшей переработки.

Получается, что в таламусе происходит формирование ощущений, можно сказать первичное осознание чувств и образов организмом.

Таламус (thalamus opticus - зрительный бугор) - это отдел промежуточного мозга, управляющий потоками сенсорного возбуждения, идущими к нему от всех органов чувств. Его основные функции: трансформация сенсорного возбуждения, афферентное взаимодействие с корой, лимбической системой, стрио-паллидарной системой, гипоталамусом, а также обеспечение внимания.

"Запоминалка"

"Таламический бугор - ощущениям отбор". Таламус - как личный секретарь, который получает всю информацию, но передаёт своему начальнику только самую важную и в сжатом и понятном виде, а затем передаёт распоряжения начальника исполнителям.

Таламус ("зрительный бугор") обеспечивает подготовку сенсорного возбуждения, приходящего от органов чувств, для передачи в определённые зоны коры больших полушарий головного мозга. Таламус фильтрует информацию, поступающую от всех рецепторов, осуществляет её предварительную обработку и после этого направляет её в соответствующие области коры. Кроме того, таламус осуществляет связь между корой, с одной стороны, и мозжечком и базальными ганглиями с другой. Иными словами, через таламус низшие нервные центры отчитываются перед высшими, а высшие корковые нервные центры управляют работой низших нервных центров.

Строение таламуса

Таламус относится к промежуточному мозгу, который расположен между средним мозгом и большими полушариями переднего мозга. Он состоит из 40 ядер. Можно сказать, что таламус занимает центр мозга, и это соответствует его центральной роли в обработке информации, получаемой мозгом.

Таламус собирает сенсорное возбуждение, приходящее по афферентным путям от внешних экстерорецепторов и внутренних интеррецепторов и готовит его для передачи в кору, а затем передаёт его в разные зоны коры по разным афферентным путям: специфическим, неспецифическим и ассоциативным. Только обонятельное сенсорное возбуждение приходит в таламус из обонятельной коры, все остальные сенсорные потоки вначале попадают в таламус, а затем из него - в кору.

При повреждении таламуса кора может лишиться той или иной сенсорной информации и сенсорное восприятие нарушится.

Ядра таламуса делятся на специфические и неспецифические. Соответственно, и пути от них к коре больших полушарий делятся на специфические и неспецифические.
Специфические ядра, в свою очередь, делятся на переключательные и ассоциативные.
Характеристика ядер.
Специфические. Делятся на переключательные и ассоциативные.
Переключательные. Осуществляют переключение потока сенсорного возбуждения от низших нервных центров спинного мозга и ствола в сенсорные зоны коры. Предварительно происходит перекодирование и обработка полученного сенсорного возбуждения.
Вентральное переднее. Регуляция движений.
Вентральное заднее.Переключают соматосенсорную афферентную информацию: тактильную, проприоцептивную, вкусовую, висцеральную, частично температурную, болевую.
Латеральное коленчатое тело.Переключение зрительной информации в затылочную область коры.
Медиальное коленчатое тело.Переключение слуховой информации в височную кору задней части сильвиевой борозды (извилины Гешля).
Ассоциативные. Получают афферентные сигналы от переключающих ядер и направляют в ассоциативные зоны коры. Главная функция - интеграция деятельности таламических ядер и ассоциативных зон коры, т. к. эти зоны посылают сигналы к ассоциативным ядрам.
Неспецифические ядра.
Афферентные сигналыполучают от других ядер таламуса по коллатералям всех сенсорных путей: от моторных центров ствола мозга, ядер мозжечка, базальных ганглиев, гиппокампа, от лобных долей.
Эфферентные выходы - на другие ядра таламуса, кору больших полушарий, к другим структурам мозга.
На кору оказывают модулирующее влияние, активируя ее, обеспечивают внимание.

Развитие психиатрии и неврологии в современных условиях невозможно без глубоких знаний строения и функций мозга. Без понимания процессов, происходящих в этом органе, нельзя эффективно лечить болезни и возвращать людей к полноценной жизни. Нарушения на каком-либо этапе эмбриогенеза - генетические аномалии или расстройства, вследствие тератогенных влияний внешних факторов, - приводят к развитию органических патологий и непоправимым последствиям.

Важный отдел

Головной мозг - сложная структура организма. Он включает в себя различные элементы. Одним из важнейших отделов считается промежуточный. Он включает в себя несколько звеньев: таламус, гипоталамус, эпиталамус и мететаламус. Самыми основными считаются первые два.

Таламус: физиология

Этот элемент представлен как срединное симметричное образование. Оно расположено между средним мозгом и корой. Состоит элемент из 2-х отделов. Таламус - это образование, входящее в лимбическую систему. Он выполняет различные задачи. В период эмбрионального развития этот элемент считается самым крупным. Он фиксируется в так называемом переднем отделе, рядом с центром мозга. От него в кору во всех направлениях отходят нервные волокна. Медиальная поверхность формирует боковую стенку в третьем желудочке.

Ядра

Таламус - это часть сложного комплекса. Он сформирован из четырех частей. К ним относят: гипоталамус, эпиталамус, предталамус, а также дорсальный таламус. Последние два являются производными от промежуточной структуры. Эпиталамус состоит из шишковидного тала, треугольника и поводков. В этом участке располагаются ядра, задействованные в активации обоняния. Онтогенетическая природа эпиталамуса и периталамуса различна. В этой связи они рассматриваются как отдельные образования. В целом,включает в себя более 80 ядер.

Специфика

Таламус головного мозга включает в себя систему ламелей. Она сформирована миелинизированными волокнами и разделяет разные части образования. Прочие области определяются нейронными группами. К примеру, интраламинарными элементами, перивентрикулярным ядром и так далее. Структура элементов существенно отличается от основной таламической части.

Классификация

В каждом центре присутствуют свои ядра. Это обуславливает их значение для человеческого организма. Классификация ядер осуществляется в зависимости от их локализации. Выделяют следующие группы:

  1. Переднюю.
  2. Медиодорсальную.
  3. Средней линии.
  4. Дорсолатеральную.
  5. Вентролатеральную.
  6. Вентральную заднемедиальную.
  7. Заднюю.
  8. Интраламинарную.

Кроме этого, ядра подразделяют в зависимости от направленности действия нейронов на:

  1. Зрительные.
  2. Осуществляющие обработку тактильных сигналов.
  3. Слуховые.
  4. Регулирующие равновесие.

Типы центров

Выделяют релейные, неспецифические и ассоциативные ядра. Последние включают в себя огромное количество срединных и интраламинарных образований. В релейные ядра поступают сигналы, которые впоследствии проецируются в разные участки коры. К ним относят образования, которые передают первичные ощущения (вентрально-заднемедиальное, вентрально-постлатеральное, медиальное и латеральное коленчатые), а также участвующие в обратной связи импульсов мозжечка (боковые вентральные). Ассоциативные ядра большую часть импульсов получают от коры. Они проецируют их обратно для регуляции активности.

Нервные пути

Таламус - это образование, связанное с гиппокампом. Взаимодействие осуществляется через специальный тракт, в котором присутствуют свод и сосцевидные тела. К коре таламус подключается таламокортикальными лучами. Также присутствует путь, по которому передается информация о зуде, прикосновениях, температуре. Он проходит в спинном мозге. Здесь присутствует два отдела: вентральный и латеральный. По первому проходят импульсы о боли и температуре, по второму - о давлении и прикосновениях.

Кровоснабжение

Оно осуществляется от соединительной задней, нижнебоковых, боковой и средней хориоидальных, а также парамедиальных таламическо-гипоталамических артериальных сосудов. У некоторых людей обнаруживается анатомическая аномалия. Она представлена в виде артерии Першерона. В этом случае от отходит один ствол. Он обеспечивает кровью весь таламус. Это явление достаточно редкое.

Функции

За что отвечает таламус ? Это образование исполняет много задач. В целом таламус - это своего рода концентратор информации. Через него происходит ретрансляция между различными подкорковыми участками. Например, каждая чувствительная система, кроме обонятельной, использует таламические ядра, принимающие и передающие сигналы в соответствующие первичные области. Для зрительного участка входящие импульсы от сетчатки посылаются латеральным отделам посредством центра, проецирующего информацию на соответствующую зону коры в затылочном секторе. Особая роль принадлежит таламусу в процессе регуляции бодрствования и сна. Ядра, взаимодействующие с корой, образуют специфические цепи, связаны с сознанием. Активность и возбуждение также регулирует таламус. Повреждения этого образования обычно приводят к коме. Таламус связан с гиппокампом, выполняет определенные задачи при организации памяти. Считается, что его области подключаются к некоторым мезио-височным участкам. За счет этого обеспечивается дифференциация фамильярной и реколлективной памяти. Кроме этого, выдвигаются предположения, что таламус участвует и в нейронных процессах, необходимых при двигательной регуляции.

Патологии

Вследствие инсульта может развиться таламический синдром. Он проявляется односторонним жжением (жаром), ноющими ощущениями. Его часто сопровождают перепады настроения. Двусторонняя ишемия таламической области может спровоцировать достаточно серьезные нарушения. К ним, например, относят глазодвигательные расстройства. При закупорке артерии Першерона может произойти двусторонний инфаркт.

Ретикулярная формация таламуса

В центральном отделе ствола находится скопление клеток. Они переплетаются огромным числом волокон, отходящих во всех направлениях. Если рассматривать это образование под микроскопом, то оно выглядит как сети. Поэтому оно и было названо ретикулярной формацией. Нейронные волокна отходят к коре и формируют неспецифические пути. С их помощью поддерживается активность во всех участках ЦНС. Под воздействием формации усиливаются рефлексы. В этом скоплении происходит отбор сведений. В вышележащие участки поступает только новая и важная информация. Активность формации всегда находится на высоком уровне, поскольку через нее идут сигналы от всех рецепторов.

Нейроны

Они проявляют высокую чувствительность к фармакологическим средствам и гормонам. Такие препараты, как "Резерпин", "Аминазин", "Серпазил" и прочие способны снизить активность формации. В нейронах происходит взаимодействие восходящих и нисходящих сигналов. Импульсы находятся в постоянной циркуляции в цепях. За счет этого поддерживается активность. Она, в свою очередь, необходима для поддержания тонуса нервной системы. В случае разрушения формации, в особенности верхних ее участков, наступает глубокий сон, хотя афферентные сигналы продолжают поступать в кору по другим путям.

Таламус – зрительный бугор

Структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка.

В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламокортикальные пути. Учитывая, что коленчатые тела таламуса являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвуют в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

Зрительный бугор совместно с гипоталамусом принимает участие в формировании и реализации инстинктов, влечений, эмоций. В таламусе около 120 разнофункциональных ядер, которые образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы: передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга; медиальная - в лобную долю коры; латеральная - в теменную, височную, затылочную доли коры. По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, другая - в разные области коры большого мозга.

Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов. От специфических ядер импульсы поступают в строго определенные участки III-IV слоев коры большого мозга (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую организацию. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.

Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т.е. могут выполнять детекторную функцию.

В медиальное коленчатое тело (МТК) поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферетные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры. МКТ имеет четкую тонотопичность, т.е. способность реагировать на определенную частоту звуковых колебаний. Следовательно, уже на уровне таламуса обеспечивается пространственное распределение чувствительности всех сенсорных систем организма, в том числе сенсорных посылок от интерорецепторов сосудов, органов брюшной, грудной полостей.

Ассоциативные ядра таламуса представлены передним медиодорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное - с лобной долей коры, латеральное дорсальное - с теменной, подушка - с ассоциативными зонами, теменной и височной долями коры большого мозга.

На полисенсорных нейронах таламуса происходит конвергенция возбуждений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга. Нейроны подушки связаны главным образом с ассоциативными зонами теменной и височной долей коры большого мозга, нейроны латерального ядра - с теменной, нейроны медиального ядра - с лобной долей коры большого мозга.

Неспецифические ядра таламуса представлены: срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и центральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свидетельствующей о развитии сонного состояния. Нарушение функции неспецифических ядер затрудняет появление веретенообразной активности, т.е. развитие сонного состояния.

Гипоталамус (подбугровая область) – изложение материала будет в разделе «Лимбическая система».

Мозжечок

Мозжечок (cerebellum) -структура головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций. Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка:

1) кора мозжечка построена достаточно однотипно, имеет стереотипные связи, что создает условия для быстрой обработки информации;

2) основной нейронный элемент коры - клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах;

3) на клетки Пуркинье проецируются практически все виды сенсорных раздражений: проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.;

4) выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом.

Мозжечок анатомически и функционально делится на старую, древнюю и новую части.

Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.



Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Клетки ядер мозжечка генерируют импульсы значительно реже - 1-3 импульса в секунду.

В кору мозжечка от кожных рецепторов, мышц, суставных оболочек, надкостницы сигналы поступают по так называемым спиномозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье.

Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Между мозжечком и синим пятном существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбрасывать норадреналин в межклеточное пространство коры мозжечка, тем самым гуморально изменяют состояние возбудимости его клеток.

Аксоны клеток III слоя коры мозжечка вызывают торможение клеток Пуркинье и клеток-зерен своего же слоя.

Клетки Пуркинье в свою очередь тормозят активность нейронов ядер мозжечка. Ядра мозжечка имеют высокую тоническую активность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.

Подкорковая система мозжечка состоит из трех функционально разных ядерных образований: ядра шатра, пробковидного, шаровидного и зубчатого ядра.

Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.

Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути. Второй путь от промежуточного ядра идет к таламусу и далее в двигательную зону коры большого мозга.

Зубчатое ядро, получая информацию от латеральной зоны коры мозжечка, связано с таламусом, а через него - с моторной зоной коры большого мозга.

Контроль двигательной активности мозжечком обеспечивается эфферентными сигналами к спинному мозгу, и регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, совершать адекватные произвольные движения, быстро переходить от сгибания к разгибанию и наоборот.

Мозжечок обеспечивает координированные сокращения разных мышц при сложных движениях. Например, при ходьбе, когда человек делает шаг, то одновременно центр тяжести туловища переносится вперед. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами.

1) астения (astenia - слабость) - снижение силы мышечного сокращения, быстрая утомляемость мышц;

2) астазия (astasia, от греч. а - не, stasia - стояние) - утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение и т.д.;

3) дистония (distonia - нарушение тонуса) - непроизвольное повышение или понижение тонуса мышц;

4) тремор (tremor - дрожание) - дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;

5) дисметрия (dismetria - нарушение меры) - расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);

6) атаксия (ataksia, от греч. а - отрицание, taksia - порядок) - нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в определенной последовательности.

Проявлениями атаксии являются также, асинергия, пьяная шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз-вверх. При асинергии мышц он не способен сесть из положения лежа без помощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от линии ходьбы. Большинство движений человек выучивает в течение жизни, и они становятся автоматическими (ходьба, письмо и т.д.). Когда нарушается функция мозжечка, движения становятся неточными, разбросанными, часто не достигают цели. Данные о том, что повреждение мозжечка ведет к расстройствам приобретенных движений, позволяют сделать вывод, что само обучение шло с участием мозжечковых структур, а, следовательно, мозжечок принимает участие в организации процессов высшей нервной деятельность.