Числа целые действительные рациональные комплексные. Законы сложения натуральных чисел. Множество натуральных чисел

Понятие числа. Виды чисел.

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа – это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Целые числа – это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z . Можно сказать, чтоZ ={1,2,3,....}.

Рациональные числа – это числа, представимые в виде дроби, где m - целое число, а n - натуральное число. Для обозначения рациональных чисел используется латинская буква Q . Все натуральные и целые числа – рациональные.

Действительные (вещественные) числа – это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа – это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными.

1. Системы счисления.

Система счисления – способ наименования и записи чисел. В зависимости от способа изображения чисел разделяется на позиционные-десятичная и непозиционные-римская.

В ПК используют 2ичную, 8ричную и 16ричную системы счисления.

Отличия:запись числа в 16ной системе счисленич по сравнению с другой записью значительно короче, т.е. требует меньшего количества разрядности.

В позиционной системе счисления каждая цифра сохраняет свое постоянное значение независимо от занимаемой позиции в числе. В позиционной системе счисления каждая цифра определяет не только свое значение, но зависит от того положения, которое она занимает в числе. Каждая система счисления характеризуется основанием. Основание- это количество различных цифр, которые используются для записи чисел в данной системе счисления. Основание показывает во сколько раз изменяется значение одной и той же цифры при переходе на соседнюю позицию. В компьютере используется 2-система счисления. Основанием системы может быть любое число. Арифметические дей-ия над числами в любой позиции выполняются по правилам аналогичным 10 системе счисления. Для 2 системы счисления используется двоичная арифметика, которая реализуется в компьютере для выполнения арифметических вычислений.

Сложение двоичных чисел:0+0=1;0+1=1;1+0=1;1+1=10

Вычитание:0-0=0;1-0=1;1-1=0;10-1=1

Умножение:0*0=0;0*1=0;1*0=0;1*1=1

В компьютере широко применяется 8 система счисления и 16 система счисления. Они используются для сокращения записи двоичных чисел

2. Понятие множества.

Понятие «множество» является фундаментальным понятием математики и не имеет определения. Природа порождения любого множества разнообразна, в частности, окружающие предметы, живая природа и др.

Определение 1 : Объекты, из которых образовано множество, называются элементами данного множества . Для обозначения множества используют заглавные буквы латинского алфавита: например X, Y, Z, а в фигурных скобках через запятую выписывают его элементы строчными буквами, например: {x,y,z}.

Пример обозначения множества и его элементов:

X = {x 1 , x 2 ,…, x n } – множество, состоящее из n элементов. Если элемент x принадлежит множеству X, то следует записать: xÎX, иначе элемент x не принадлежит множеству X, что записывается: xÏX. Элементами абстрактного множества могут быть, например, числа, функции, буквы, фигуры и т.д. В математике в любом разделе используется понятие множества. В частности, можно привести некоторые конкретные множества вещественных чисел. Множество вещественных чисел х, удовлетворяющих неравенствам:

· а ≤ x ≤ b называется сегментом и обозначается ;

· а ≤ x < b или а < x ≤ b называется полусегментом и обозначается: ;

· а < x < b называется интервалом и обозначается (a,b).

Определение 2 : Множество, имеющее конечное число элементов, называется конечным. Пример. X = {x 1 , x 2 , x 3 }.

Определение 3 : Множество называется бесконечным , если оно состоит из бесконечного числа элементов. Например, множество всех вещественных чисел бесконечно. Пример записи. X = {x 1 , x 2 , ...}.

Определение 4 : Множество, в котором нет ни одного элемента, называют пустым множеством и обозначают символом Æ.

Характеристикой множества является понятие мощности. Мощность – это количество его элементов. Множество Y={y 1 , y 2 ,...} имеет ту же мощность, что и множество X={x 1 , x 2 ,...}, если существует взаимно однозначное соответствие y= f(x) между элементами этих множеств. Такие множества имеют одинаковую мощность или равномощны. Пустое множество имеет нулевую мощность.

3. Способы задания множеств.

Считают, что множество задано своими элементами, т.е. множество задано, если о любом объекте можно сказать: принадлежит он этому множеству или не принадлежит. Задавать множество можно следующими способами:

1) Если множество конечно, то его можно задать перечислением всех его элементов. Так, если множество А состоит из элементов 2, 5, 7, 12 , то пишут А = {2, 5, 7, 12}. Количество элементовмножества А равно 4 , пишут n(А) = 4.

Но если множество бесконечно, то его элементы нельзя перечислить. Трудно задать множество перечислением и конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множества.

2) Множество можно задать указанием характеристического свойства его элементов. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, не принадлежащий ему. Рассмотрим, например, множество Х двузначных чисел: свойство, которым обладает каждый элемент данного множества, – «быть двузначным числом». Это характеристическое свойство дает возможность решать о том, принадлежит какой-либо объект множеству Х или не принадлежит. Например, число 45 содержится в данном множестве, т.к. оно двузначное, а число 4 множеству Х не принадлежит, т.к. оно однозначное и не является двузначным. Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными сторонами и как множество ромбов с прямым углом.



В тех случаях, когда характеристическое свойство элементов множества можно представить в символической форме, возможна соответствующая запись. Если множество В состоит из всех натуральных чисел, меньших 10, то пишут В = {x N| x <10}.

Второй способ – более общий и позволяет задавать как конечные, так и бесконечные множества.

4. Числовые множества.

Числовое - множество, элементами которых являются числа. Числовые множества задаются на оси действительных чисел R. На этой оси выбирают масштаб и указывают начало отсчета и направление. Наиболее распространенные числовые множества:

· - множество натуральных чисел;

· - множество целых чисел;

· - множество рациональных или дробных чисел;

· - множество действительных чисел.

5. Мощность множества. Приведите примеры конечных и бесконечных множеств.

Множества называются равномощными, эквивалентными, если между ними есть взаимно - однозначное или одно-однозначное соответствие, то есть такое попарное соответствие. когда каждому элементу одного множества сопоставляется один-единственный элемент другого множества и наоборот, при этом различным элементам одного множества сопоставляются различные элементы другого.

Например, возьмём группу студентов из тридцати человек и выдадим экзаменационные билеты по одному билету каждому студенту из стопки, содержащей тридцать билетов, такое попарное соответствие из 30 студентов и 30 билетов будет одно-однозначным.

Два множества, равномощные с одним и тем же третьим множеством, равномощны. Если множества M и N равномощны, то и множества всех подмножеств каждого из этих множеств M и N , также равномощны.

Под подмножеством данного множества понимается такое множество, каждый элемент которого является элементом данного множества. Так множество легковых автомобилей и множество грузовых автомобилей будут подмножествами множества автомобилей.

Мощность множества действительных чисел, называют мощностью континуума и обозначают буквой «алеф» א . Наименьшей бесконечной областью является мощность множества натуральных чисел. Мощность множества всех натуральных чисел принято обозначать (алеф-нуль) .

Часто мощности называют кардинальными числами. Это понятие введено немецким математиком Г. Кантором. Если множества обозначают символическими буквами M, N , то кардинальные числа обозначают через m, n . Г.Кантор доказал, что множество всех подмножеств данного множества М имеет мощность большую, чем само множество М.

Множество, равномощное множеству всех натуральных чисел, называется счетным множеством.

6. Подмножества указанного множества.

Если из нашего множества выбрать несколько элементов и сгруппировать их отдельно – то это будет подмножество нашего множества. Комбинаций, из которых можно получить подмножество много, количество комбинаций лишь зависит от количества элементов в исходном множестве.

Пусть у нас есть два множества А и Б. Если каждый элемент множества Б является элементом множества А, то множество Б называется подмножеством А. Обозначается: Б ⊂ А. Пример.

Сколько существует подмножеств множества А=1;2;3.

Решение. Подмножества состоя из элементов нашего множества. Тогда у нас существует 4 варианта по количеству элементов в подмножестве:

Подмножество может состоять из 1 элемента, из 2, 3 элементов и может быть пустым. Давайте последовательно запишем наши элементы.

Подмножество из 1 элемента: 1,2,3

Подмножество из 2 элементов:1,2,1,3,2,3.

Подмножество из 3 элементов:1;2;3

Не забудем, что пустое множество так же является подмножеством нашего множества. Тогда получаем, что у нас есть 3+3+1+1=8 подмножеств.

7. Операции над множествами.

Над множествами можно выполнять определенные операции, подобные в некотором отношении операциям над действительными числами в алгебре. Поэтому можно говорить об алгебре множеств.

Объединением (соединением) множеств А и В называется множество (символически оно обозначается через ), состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А или В . В форме от х объединение множеств записывается так

Запись читается: «объединение А и В » или «А , объединенное с В ».

Операции над множествами наглядно изображают графически с помощью кругов Эйлера (иногда используют термин «диаграммы Венна-Эйлера»). Если все элементы множества А будут сосредоточены в пределах круга А , а элементы множества В – в пределах круга В , тооперацию объединения с помощью кругов Эйлера можно представить в следующем виде

Пример 1 . Объединением множества А = {0, 2, 4, 6, 8} четных цифр и множества В = {1, 3, 5, 7, 9} нечетных цифр является множество = ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} всех цифр десятичной системы счисления.

8. Графическое изображение множеств. Диаграммы Эйлера-Венна.

Диаграммы Эйлера-Венна – геометрические представления множеств. Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов (или каких-нибудь других замкнутых фигур), представляющих множества. Фигуры должны пересекаться в наиболее общем случае, требуемом в задаче, и должны быть соответствующим образом обозначены. Точки, лежащие внутри различных областей диаграммы, могут рассматриваться как элементы соответствующих множеств. Имея построенную диаграмму, можно заштриховать определенные области для обозначения вновь образованных множеств.

Операции над множествами рассматриваются для получения новых множеств из уже существующих.

Определение. Объединением множеств А и В называется множество, состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А, В (рис. 1):

Определение. Пересечением множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат одновременно как множеству А, так и множеству В (рис. 2):

Определение. Разностью множеств А и В называется множество всех тех и только тех элементов А, которые не содержатся в В (рис. 3):

Определение. Симметрической разностью множеств А и В называется множество элементов этих множеств, которые принадлежат либо только множеству А, либо только множеству В (рис. 4):

Декартовым (или прямым) произведением множеств A и B называется такое результирующее множество пар вида (x ,y ) , построенных таким образом, что первый элемент из множества A , а второй элемент пары - из множества B . Общепринятое обозначение:

A ×B ={(x ,y )|x A ,y B }

Произведения трёх и более множеств можно построить следующим образом:

A ×B ×C ={(x ,y ,z )|x A ,y B ,z C }

Произведения вида A ×A ,A ×A ×A ,A ×A ×A ×A и т.д. принято записывать в виде степени: A 2 ,A 3 ,A 4 (основание степени - множество-множитель, показатель - количество произведений). Читают такую запись как «декартов квадрат» (куб и т.д.). Существуют и другие варианты чтения для основных множеств. К примеру, R n принято читать как «эр энное».

Свойства

Рассмотрим несколько свойств декартова произведения:

1. Если A ,B - конечные множества, то A ×B - конечное. И наоборот, если одно из множеств-сомножителей бесконечное, то и результат их произведения - бесконечное множество.

2. Количество элементов в декартовом произведении равно произведению чисел элементов множеств-сомножителей (в случае их конечности, разумеется): |A ×B |=|A |⋅|B | .

3. A np ≠(A n ) p - в первом случае целесообразно рассмотреть результат декартова произведения как матрицу размеров 1×np , во втором же - как матрицу размеров n ×p .

4. Коммутативный закон не выполняется, т.к. пары элементов результата декартова произведения упорядочены: A ×B B ×A .

5. Ассоциативный закон не выполняется: (A ×B C A ×(B ×C ) .

6. Имеет место дистрибутивность относительно основных операциях на множествах: (A B C =(A ×C )∗(B ×C ),∗∈{∩,∪,∖}

10. Понятие высказывания. Элементарные и составные высказывания.

Высказывание - это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно (И-1) или ложно (Л-0), но не то и другое одновременно.

Например, «Сегодня идет дождь», «Иванов выполнил лабораторную работу №2 по физике».

Если у нас имеется несколько исходных высказываний, то из них при помощи логических союзов или частиц мы можем образовывать новые высказывания, истинностное значение которых зависит только от истинностных значений исходных высказываний и от конкретных союзов и частиц, которые участвуют в построении нового высказывания. Слова и выражения «и», «или», «не», «если... , то», «поэтому», «тогда и только тогда» являются примерами таких союзов. Исходные высказывания называются простыми , а построенные из них с помощью тех или иных логических союзов новые высказывания - составными . Разумеется, слово «простые» никак не связано с сутью или структурой исходных высказываний, которые сами могут быть весьма сложными. В данном контексте слово «простой» является синонимом слова «исход-ный». Важно то, что значения истинности простых высказываний предполагаются известными или заданными; в любом случае они никак не обсуждаются.

Хотя высказывание типа «Сегодня не четверг» не составлено из двух различных простых высказываний, для единообразия конструкции оно также рассматривается как составное, по-скольку его истинностное значение определяется истинностным значением другого высказыва-ния «Сегодня четверг»

Пример 2. Cледующие высказывания рассматриваются как составные:

Я читаю «Московский комсомолец» и я читаю «Коммерсант».

Если он сказал это, значит, это верно.

Солнце не является звездой.

Если будет солнечно и температура превысит 25 0 , я приеду поездом или автомобилем

Простые высказывания, входящие в составные, сами по себе могут быть совершенно произвольными. В частности, они сами могут быть составными. Описываемые ниже базисные типы составных высказываний определяются независимо от образующих их простых высказываний.

11. Операции над высказываниями.

1. Операция отрицания.

Отрицанием высказывания А (читается «не А », «неверно, что А »), которое истинно, когда А ложно и ложно, когда А – истинно.

Отрицающие друг друга высказывания А и называются противоположными.

2. Операция конъюнкции .

Конъюнкцией высказываний А и В называется высказывание, обозначаемое А В (читается «А и В »), истинные значения которого определяются в том и только том случае, когда оба высказывания А и В истинны.

Конъюнкцию высказываний называют логическим произведением и часто обозначают АВ.

Пусть дано высказывание А – «в марте температура воздуха от 0 С до +7 С » и высказывание В – «в Витебске идет дождь». Тогда А В будет следующей: «в марте температура воздуха от 0 С до +7 С и в Витебске идет дождь». Данная конъюнкция будет истинной, если будут высказывания А и В истинными. Если же окажется, что температура была меньше 0 С или в Витебске не было дождя, то А В будет ложной.

3 . Операция дизъюнкции .

Дизъюнкцией высказываний А и В называется высказывание А В (А или В ), которое истинно тогда и только тогда, когда хотя бы одно из высказываний истинно и ложно – когда оба высказывания ложны.

Дизъюнкцию высказываний называют также логической суммой А+В.

Высказывание «4<5 или 4=5 » является истинным. Так как высказывание «4<5 » – истинное, а высказывание «4=5 » – ложное, то А В представляет собой истинное высказывание «4 5 ».

4 . Операция импликации .

Импликацией высказываний А и В называется высказывание А В («если А , то В », «из А следует В »), значение которого ложно тогда и только тогда, когда А истинно, а В ложно.

В импликации А В высказывание А называют основанием, или посылкой, а высказывание В следствием, или заключением.

12. Таблицы истинности высказываний.

Таблица истинности - это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и значениями функции.

Таблицы истинности применяются для:

Вычисления истинности сложных высказываний;

Установления эквивалентности высказываний;

Определения тавтологий.

Натуральные числа

Числа, используемые при счете называются натуральными числами. Например, $1,2,3$ и т.д. Натуральные числа образуют множество натуральных чисел, которое обозначают $N$ .Данное обозначение исходит от латинского слова naturalis- естественный.

Противоположные числа

Определение 1

Если два числа отличаются только знаками, их называют в математике противоположными числами.

Например, числа $5$ и $-5$ противоположные числа, т.к. отличаются только знаками.

Замечание 1

Для любого числа есть противоположное число, и притом только одно.

Замечание 2

Число нуль противоположно самому себе.

Целые числа

Определение 2

Целыми числами называют натуральные, противоположные им числа и нуль.

Множество целых чисел включает в себя множество натуральных и противоположных им.

Обозначают целые числа $Z.$

Дробные числа

Числа вида $\frac{m}{n}$ называют дробями или дробными числами. Так же дробные числа можно записывать десятичной форме записи, т.е. в виде десятичных дробей.

Например:$\ \frac{3}{5}$ , $0,08$ и Т.Д.

Так же, как и целые, дробные числа могут быть как положительными, так и отрицательными.

Рациональные числа

Определение 3

Рациональными числами называется множество чисел, содержащее в себе множество целых и дробных чисел.

Любое рациональное число, как целое, так и дробное можно представить в виде дроби $\frac{a}{b}$, где $a$- целое число, а $b$- натуральное.

Таким образом, одно и то же рациональное число можно записать разными способами.

Например,

Отсюда видно, что любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби.

Множество рациональных чисел обозначается $Q$.

В результате выполнения любого арифметического действия над рациональными числами полученный ответ будет рациональным числом. Это легко доказуемо, в силу того, что при сложении, вычитании, умножении и делении обыкновенных дробей получится обыкновенная дробь

Иррациональные числа

В ходе изучения курса математики часто приходится сталкиваться в решении с числами, которые не являются рациональными.

Например, чтобы убедиться в существовании множества чисел, отличных от рациональных решим уравнение $x^2=6$.Корнями этого уравнения будут числа $\surd 6$ и -$\surd 6$. Данные числа не будут являться рациональными.

Так же при нахождении диагонали квадрата со стороной $3$ мы применив теорему Пифагора получим, что диагональ будет равна $\surd 18$. Это число также не является рациональным.

Такие числа называются иррациональными.

Итак, иррациональным числом называют бесконечную десятичную непериодическую дробь.

Одно из часто встречающихся иррациональных чисел- это число $\pi $

При выполнении арифметических действий с иррациональными числами получаемый результат может оказаться и рациональным, так и иррациональным числом.

Докажем это на примере нахождения произведения иррациональным чисел. Найдем:

    $\ \sqrt{6}\cdot \sqrt{6}$

    $\ \sqrt{2}\cdot \sqrt{3}$

Решениею

    $\ \sqrt{6}\cdot \sqrt{6} = 6$

    $\sqrt{2}\cdot \sqrt{3}=\sqrt{6}$

На этом примере видно, что результат может оказаться как рациональным, так и иррациональным числом.

Если в арифметических действиях участвуют рациональное и иррациональные числа одновременно, то в результате получится иррациональное число (кроме, конечно, умножения на $0$).

Действительные числа

Множеством действительных чисел называется множество содержащее множество рациональных и иррациональных чисел.

Обозначается множество действительных чисел $R$. Символически множество действительных чисел можно обозначить $(-?;+?).$

Мы говорили ранее о том, что иррациональным числом называют бесконечную десятичную непериодическую дробь, а любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби, поэтому действительным числом будет являться любая конечная и бесконечная десятичная дробь.

При выполнении алгебраических действий будут выполняться следующие правила

  1. при умножении и делении положительных чисел полученное число будет положительным
  2. при умножении и делении отрицательных чисел полученное число будет положительным
  3. при умножении и делении отрицательного и положительного чисел полученное число будет отрицательным

Также действительные числа можно сравнивать друг с другом.

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

Число - важнейшее математическое понятие, меняющееся на протяжении веков.

Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4, ...

Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел.

Дробью называется часть (доля) единицы или несколько равных ее частей.

Обозначаются: , где m, n - целые числа;

Дроби со знаменателем 10n , где n - целое число, называются десятичными : .

Среди десятичных дробей особое место занимают периодические дроби : - чистая периодическая дробь, - смешанная периодическая дробь.

Дальнейшее расширение понятия числа вызвано уже развитием самой математики (алгебры). Декарт в XVII в. вводит понятие отрицательного числа .

Числа целые (положительные и отрицательные), дробные (положительные и отрицательные) и нуль получили название рациональных чисел . Всякое рациональное число может быть записано в виде дроби конечной и периодической.

Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - введение действительных (вещественных) чисел - присоединением к рациональным числам иррациональных: иррациональные числа - это бесконечные десятичные непериодические дроби.

Иррациональные числа появились при измерении несоизмеримых отрезков (сторона и диагональ квадрата), в алгебре - при извлечении корней , примером трансцендентного, иррационального числа являются π, e .

Числа натуральные (1, 2, 3,...), целые (..., –3, –2, –1, 0, 1, 2, 3,...), рациональные (представимые в виде дроби) и иррациональные (не представимые в виде дроби) образуют множество действительных (вещественных) чисел.

Отдельно в математике выделяют комплексные числа.

Комплексные числа возникают в связи с задачей решения квадратных для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: z=a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Свойства:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0i или a – 0i . Например 5 + 0i и 5 – 0i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Действия:

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d )i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число (a – c ) + (b – d )i . Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

(ac – bd ) + (ad + bc )i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = –1.

П р и м е р. (a+ bi )(a – bi )= a 2 + b 2 . Следовательно, произведение двух сопряжённых комплексных чисел равно действительному положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi . Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3i и выполнив все преобразования, получим:

Задание 1: Сложите, вычтите, умножьте и разделите z 1 на z 2

Извлечение корня квадратного: Реши уравнение x 2 = -a. Для решения данного уравнения мы вынуждены воспользоваться числами нового типа – мнимые числа . Таким образом, мнимым называется число, вторая степень которого является числом отрицательным . Согласно этому определению мнимых чисел мы можем определить и мнимую единицу :

Тогда для уравнения x 2 = – 25 мы получаем два мнимых корня:

Задание 2: Реши уравнение:

1) x 2 = – 36; 2) x 2 = – 49; 3) x 2 = – 121

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B –число 2, и O –ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b . Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или) буквой r и равен:

Сопряжённые комплексные числа имеют одинаковый модуль.

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат По осям нужно задать размерность, отмечаем:

е
диницу по действительной оси; Re z

мнимую единицу по мнимой оси. Im z

Задание 3. Построить на комплексной плоскости следующие комплексные числа: , , , , , , ,

1. Числа точные и приближенные. Числа, с которыми мы встречаемся на практике, бывают двух родов. Одни дают истинное значение величины, другие - только приблизительное. Первые называют точными, вторые - приближенными. Чаще всего удобно пользоваться приближенным числом вместо точного, тем более, что во многих случаях точное число вообще найти невозможно.

Так, если говорят, что в классе есть 29 учеников, то число 29 - точное. Если же говорят, что расстояние от Москвы до Киева равно 960 км, то здесь число 960 - приближенное, так как, с одной стороны, наши измерительные инструменты не абсолютно точны, с другой стороны, сами города имеют некоторую протяженность.

Результат действий с приближенными числами есть тоже приближенное число. Выполняя некоторые действия над точными числами (деление, извлечение корня), можно также получить приближенные числа.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов;

2) брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата;

3) рационализировать процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точность результата.

2. Округление. Одним из источников получения приближенных чисел является округление. Округляют как приближенные, так и точные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путем отбрасывания всех его цифр, записанных правее цифры этого разряда, или путем замены их нулями. Эти нули обычно подчеркивают или пишут их меньшими. Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такими правилами: чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1) если первая (слева) из отбрасываемых цифр менее 5, то последнюю оставленную цифру не изменяют (округление с недостатком);

2) если первая отбрасываемая цифра больше 5 или равна 5, то последнюю оставленную цифру увеличивают на единицу (округление с избытком).

Покажем это на примерах. Округлить:

а) до десятых 12,34;

б) до сотых 3,2465; 1038,785;

в) до тысячных 3,4335.

г) до тысяч 12375; 320729.

а) 12,34 ≈ 12,3;

б) 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в) 3,4335 ≈ 3,434.

г) 12375 ≈ 12 000; 320729 ≈ 321000.

3. Абсолютная и относительная погрешности. Разность между точным числом и его приближенным значением называется абсолютной погрешностью приближенного числа. Например, если точное число 1,214 округлить до десятых, получим приближенное число 1,2. В данном случае абсолютная погрешность приближенного числа 1,2 равна 1,214 - 1,2, т.е. 0,014.

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу, которую она не превышает. Это число называют граничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность. Например, число 23,71 есть приближенное значение числа 23,7125 с точностью до 0,01, так как абсолютная погрешность приближения равна 0,0025 и меньше 0,01. Здесь граничная абсолютная погрешность равна 0,01 * .

Граничную абсолютную погрешность приближенного числа а обозначают символом Δa . Запись

x a (±Δa )

следует понимать так: точное значение величины x находится в промежутке между числамиа – Δa иа + Δа , которые называют соответственно нижней и верхней границейх и обозначают НГx ВГх .

Например, если x ≈ 2,3 (±0,1), то 2,2<x < 2,4.

Наоборот, если 7,3< х < 7,4, тох ≈ 7,35 (±0,05). Абсолютная или граничная абсолютная погрешность не характеризует качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина. Например если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого изменения в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой. Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называют граничной относительной погрешностью; обозначают ее так: . Относительную и граничную относительную погрешности принято выражать в процентах. Например, если измерения показали, что расстояниех между двумя пунктами больше 12,3 км, но меньше 12,7 км, то за приближенное значение его принимают среднее арифметическое этих двух чисел, т.е. их полусумму, тогда граничная абсолютная погрешность равна полуразности этих чисел. В данном случаех ≈ 12,5 (±0,2). Здесь граничная абсолютная погрешность равна 0,2 км, а граничная относительная


Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.