Интервальные оценки. Доверительные интервалы и доверительные вероятности. Доверительный интервал. Доверительная вероятность

11.1. Доверительные интервалы и доверительная вероятность.

Доверительные интервалы для параметров нормально распреде­ленной

генеральной совокупности.

При статистической обработке результатов наблюдений следует не только найти оценку неизвестного параметра θ , но и охарактеризовать точность этой оценки. С этой целью вводится понятие доверительного интервала.

Доверительным интервалом для параметра θ называется интервал (θ 1 , θ 2 ), содержащий (накрывающий) истинное значение θ с заданной вероятностью р = 1 - α , т.е. Р [θ 1 < θ < θ 2 ] = 1-α .

Число 1 - α называется доверительной вероятностью, а зна­чение α - уровнем значимости. Статистики θ 1 = θ 1 (x 1 ,...,x n ) и θ 2 = θ 2 (x 1 ,...,x n ), определяемые по выборке x 1 ,...,x n из генераль­ной совокупности с неизвестным параметром θ , называются со­ответственно нижней и верхней границами доверительного ин­тервала.

Условие Р [θ 1 < θ < θ 2 ] = 1-α означает, что в большой серии независимых экспериментов, в каждом из которых получена вы­борка объема n , в среднем (1 - α )·100% из общего числа построенных доверительных интервалов содержат истинное значение параметра θ .

Длина доверительного интервала, характеризующая точ­ность интервального оценивания, зависит от объема выборки n и доверительной вероятности 1 - α : при увеличении объема выборки длина доверительного интервала уменьшается, а с приближе­нием доверительной вероятности к единице - увеличивается. Вы­бор доверительной вероятности определяется конкретными усло­виями. Обычно используются значения 1 - α , равные 0,90; 0,95; 0,99.

При решении некоторых задач применяются односторонние доверительные интервалы, границы которых определяют из усло­вий: Р [θ < θ 2 ] = 1-α или Р [θ 1 < θ ] = 1-α .

В этом случае интервалы называются соответственно левосторонними и правосторонними доверительными интервалами.

Чтобы найти доверительный интервал для параметра θ , на­до знать закон распределения статистики = (х 1 ,...,х п) , значе­ние которой является оценкой параметра θ.

Для получения доверительного интервала наименьшей дли­ны при данном объеме выборки п и заданной доверительной веро­ятности 1в качестве оценки параметра θ следует брать эффективную либо асимптотически эффективную оценку.

Рассмотрим один из методов построения доверительных интервалов. Предположим, что существует статистика Y = Y( , θ) такая, что:

а) закон распределения Y известен и не зависит от θ ;

б) функция Y( , θ) непрерывна и строго монотонна по θ.
Пусть (1) - заданная доверительная вероятность, а у а/2 и у 1- a /2 - квантили распределения статистики Y порядков α/2 и 1-α/ 2соответственно. Тогда с вероятностью 1выполняется неравенство у а/2 < Y( , θ) < у 1- a /2 .

Решая это неравенство относительно θ , найдем границы θ i и θ 2 доверительного интервала для θ. Если плотность распреде­ления статистики Y симметрична относительно оси Оу , то доверительный интервал имеет наименьшую длину, а если это распре­деление несимметрично, то длину, близкую к наименьшей.

Пример 46. Пусть х 1 ,х 2 ,...,х n - выборка из нормально рас­пределенной генеральной совокупности. Найти доверительный интервал для математического ожидания т при условии, что дис­персия генеральной совокупности известна и равна σ 2 , а довери­тельная вероятность равна 1-α.

Решение. В качестве оценки математического ожидания т возьмем выборочное среднее . Для нормально распределенной генеральной совокупности выборочное среднее является эффективной оценкой т. Выборочное среднее в данном случае имеет нормальное распределение .

Рассмотрим статистику , имеющую нормальное распределение N (0,1) независимо от значения параметра т. Кро­ме того, U как функция т непрерывна и строго монотонна. Тогда , где и а/2 и и 1- a /2 - квантили нормального распределения N (0,1).

Решая неравенство относительно т, по­лучим, что с вероятностью 1 выполняется условие:

.

Так как квантили нормального распределения связаны со­отношением и а/2 =-u 1- a /2 , полученный доверительный интервал для т можно записать следующим образом:

11.2. Доверительные интервалы для вероятности успеха в схеме Бернулли

и параметра λ распределения Пуассона.

Если распределение генеральной совокупности не является нор­мальным, то в некоторых случаях по выборкам большого объема можно построить доверительные интервалы для неизвестных па­раметров приближенно, используя при этом предельные теоремы теории вероятности и вытекающие из них асимптотические рас­пределения и оценки.

Пример 47. Пусть в n независимых испытаниях успех на­ступил х раз. Найти доверительный интервал для вероятности р успеха в одном испытании.

Решение . Эффективной оценкой вероятности успеха р в од­ном испытании является относительная частота = h = x/h . По теореме Муавра-Лапласа относительная частота h имеет асимпто­тически нормальное распределение , где q = 1 - р.

Рассмотрим статистику , которая имеет асимптотически нормальное распределение N (0,1) независимо от значения р. При больших п тогда имеем

.

Отсюда получим, что с вероятностью ≈1 выполняется неравенство

.

Заменяя значения р и q влевой и правой частях записанно­го выше неравенства их оценками = h и = 1-h, получим до­верительный интервал для вероятности успеха в схеме

Пример 48. При проверке 100 деталей из большой партии обнаружено 10 бракованных деталей.

а) Найти 95 % приближенный доверительный интервал для доли бракованных деталей во всей партии.

б) Какой минимальный объем выборки следует взять для того, чтобы с вероятностью 0,95 можно было утверждать, что до­ля бракованных деталей по всей партии отличается от частоты
появления бракованных деталей в выборке не более чем на 1 %?

Решение .а) Оценка доли бракованных деталей в партии по выборке равна = h = 10/100 = 0,1. По таблице приложений (П1) находим квантиль и 1- a /2 = и 0,975 = 1,96 . Тогда 95% доверительный

интервал для доли бракованных деталей в партии приближенно имеет вид 0,041 < р < 0,159.

б) Представим полученный доверительный интервал в виде неравенства

,

которое выполняется с вероятностью ≈1 - α = 0,95. Так как со­гласно условию задачи , то для определения n полу­чим неравенство

.

Отсюда следует, что и n ≥(0,3·196) 2 =3457,44 . Итак, минимальный объем выборки n = 3458.

11.3. Доверительные интервалы для коэффициента корреляции ρ.

Пусть выборка (х i ,у i), i = 1,2,...,п, получена из генеральной совокупности, имеющей двумерное нормальное распределение, и r - выборочный коэффициент корреляции. При достаточно больших n статистика имеет приближенно нормальное распределение .

Доверительный интервал для Arth ρ имеет вид

Доверительный интервал для ρ вычисляется с помощью таблиц гиперболического тангенса ρ= thz .(смотри таблицу при­ложение П8).

Пример 49. Выборочный коэффициент корреляции, вычис­ленный по выборке объема 10, r = -0,64. Найти 90 % доверительный интервал для коэффициента корреляции р.

Решение. По таблице приложений (П8) находим Arth(-0,64)= -Arth0,64 = -0,76.

Так как и 0, 95 = 1,645, то доверительный интервал для Arthρ имеет вид , т.е. -1,38

Обращаясь к таблице П8, получим 90 % доверительный ин­тервал для коэффициента корреляции: - 0,881 < ρ < -0,139.

11.4. Примеры доверительных интервалов.

1. Доверительный интервал для математического ожидания а нормальной случайной величины при известной дисперсии σ 2 имеет вид .

Здесь величина определяется по заданной доверительной вероятности γ по таблице значений , в которой .

Теоремы 1 и 2 хотя и являются общими, т. е. сформулированы при достаточно широких предположениях, они не дают возможности установить, насколько близки оценки к оцениваемым параметрам. Из факта, что -оценки являются состоятельными, следует только то, что при увеличении объема выборки значение P (|θ * – θ | < δ), δ < 0, приближается к 1.

Возникают следующие вопросы.

1) Каким должен быть объем выборки п, чтобы заданная точность
|θ * – θ | = δ была гарантирована с заранее принятой вероятностью?

2) Какова точность оценки, если объем выборки известен и вероятность безошибочности вывода задана?

3) Какова вероятность того, что при заданном объеме выборки будет обеспечена заданная точность оценки?

Введем несколько новых определений.

Определение. Вероятность γ выполнения неравенства, |θ *– θ | < δ называется доверительной вероятностью или надежностью оценки θ .

Перейдем от неравенства |θ *–θ | < δ к двойному неравенству. Известно, что . Поэтому доверительную вероятность можно записать в виде

Так как θ (оцениваемый параметр) – число постоянное, а θ * – величина случайная, понятие доверительной вероятности сформулировать так: доверительной вероятностью γ называется вероятность того, что интервал (θ *– δ, θ *+ δ) накрывает оцениваемый параметр.

Определение. Случайный интервал (θ *–δ , θ *+δ ), в пределах которого с вероятностью γ находится неизвестный оцениваемый параметр, называется доверительным интервалом İ , соответствующим коэффициенту доверия γ,

İ= (θ*– δ, θ*+ δ ). (3)

Надежность оценки γ может задаваться заранее, тогда, зная закон распределения изучаемой случайной величины, можно найти доверительный интервал İ . Решается и обратная задача, когда по заданному İ находится соответствующая надежность оценки.

Пусть, например, γ = 0,95; тогда число р = 1 – у = 0,05 показывает, с какой вероятностью заключение о надежности оценки ошибочно. Число р=1–γ называется уровнем значимости. Уровень значимости задается заранее в зависимости от конкретного случая. Обычно р принимают равным 0,05; 0,01; 0,001.

Выясним, как построить доверительный интервал для математического ожидания нормально распределенного признака. Было показано, что

Оценим математическое ожидание с помощью выборочной средней учитывая, что также имеет нормальное распределение*. Имеем

(4)

а по формуле (12.9.2) получаем

Принимая во внимание (13.5.12), получим

(5)

Пусть известна вероятность γ . Тогда

Для удобства пользования таблицей функции Лапласа положим тогда а

Интервал

(7)

накрывает параметр а = М (Х ) с вероятностью γ .

В большинстве случаев среднее квадратическое отклонение σ(Х) исследуемого признака неизвестно. Поэтому вместо σ (Х ) при большой выборке (n > 30) применяют исправленное выборочное среднее квадратическое отклонение s , являющееся, в свою очередь оценкой σ (X ), доверительный интервал будет иметь вид

İ =

Пример. С вероятностью γ = 0,95 найти доверительный интервал для М (Х ) – длины колоса ячменя сорта «Московский 121». Распределение задается таблицей, в которой" вместо интервалов изменения (х i , х i + 1) взяты числа , см. Считать, что случайная величина X подчинена нормальному распределению.

Решение. Выборка большая (n = 50). Имеем

Найдем точность оценки

Определим доверительные границы:

Таким образом, с надежностью γ = 0,95 математическое ожидание заключено в доверительном интервале I = (9,5; 10,3).

Итак, в случае большой выборки (n > 30), когда исправленное среднее квадратическое отклонение незначительно отклоняется от среднего квадратического отклонения значения признака в генеральной совокупности, можно найти доверительный интервал. Но делать большую выборку удается не всегда и это не всегда целесообразно. Из (7) видно, что чем меньше п, тем шире доверительный интервал, т. е. I зависит от объема выборки п.

Английский статистик Госсет (псевдоним Стьюдент) доказал, что в случае нормального распределения признака X в генеральной совокупности нормирования случайная величина

(8)

зависит только от объема выборки. Была найдена функция распределения случайной величины Т и вероятность P (T < t γ ), t γ – точность оценки. Функция, определяемая равенством

s (n , t γ ) = P (|T | < t γ ) = γ (9)

названа t-распределением Стьюдента с п – 1 степенями свободы. Формула (9) связывает случайную величину Т, доверительный интервал İ и доверительную вероятность γ . Зная две из них, можно найти третью. Учитывая (8), имеем

(10)

Неравенство в левой части (13.7.10) заменим равносильным ему неравенством . В результате получим

(11)

где t γ =t (γ ,n ). Для функции t γ составлены таблицы (см. Приложение 5). При n >30 числа t γ и t, найденные по таблице функции Лапласа, практически совпадают.

Доверительный интервал для оценки среднего квадратического отклонения σ x в случае нормального распределения.

Теорема. Пусть известно, что случайная величина имеет нормальное распределение. Тогда для оценки параметра σ х этого закона имеет место равенство

(12)

где γ – доверительная вероятность, зависящая от объема выборки п и точности оценки β .

Функция γ = Ψ (n , β ) хорошо изучена. С ее помощью определяют β = β (γ ,п ). Для β = β (γ ,п ) составлены таблицы, по которым по известным п (объему выборки) и γ (доверительной вероятности) определяется β .

Пример. Для оценки параметра нормально распределенной случайной величины была сделана выборка (дневной удой 50 коров) и вычислено s = 1,5. Найти доверительный интервал, накрывающий с вероятностью γ = 0,95.

Решение. По таблице β (γ , п) для n = 50 и γ = 0,95 находим β = 0,21 (см. Приложение 6).

В соответствии с неравенством (13) найдем границы доверительного интервала. Имеем

1,5 – 0,21·1,5 = 1,185; 1,5 + 0,21·1,5 = 1,185;

Точность оценки, доверительная вероятность (надежность)

Доверительный интервал

При выборке малого объема следует пользоваться интервальными оценками т.к. это позволяет избежать грубых ошибок, в отличие от точечных оценок.

Интервальной называют оценку, которая определяется двумя числами - концами интервала, покрывающего оцениваемый параметр. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть найденная по данным выборки статистическая характеристика * служит оценкой неизвестного параметра. Будем считать постоянным числом (может быть и случайной величиной). Ясно, что * тем точнее определяет параметр в, чем меньше абсолютная величина разности | - * |. Другими словами, если >0 и | - * | < , то чем меньше, тем оценка точнее. Таким образом, положительное число характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка * удовлетворяет неравенству | - *|<, можно лишь говорить о вероятности, с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по * называют вероятность, с которой осуществляется неравенство | - *|<. Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.

Пусть вероятность того, что | - *|<, равна т.е.

Заменив неравенство | - *|< равносильным ему двойным неравенством -<| - *|<, или *- <<*+, имеем

Р(*- < <*+)=.

Доверительным называют интервал (*- , *+), который покрывает неизвестный параметр с заданной надежностью.

Доверительные интервалы для оценки математического ожидания нормального распределения при известном.

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t(/n^?) < a < х + t(/n^?),

где t(/n^?)= - точность оценки, n - объем выборки, t - значение аргумента функции Лапласа Ф(t), при котором Ф(t)=/2.

Из равенства t(/n^?)=, можно сделать следующие выводы:

1. при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается;

2. увеличение надежности оценки = 2Ф(t) приводит к увеличению t (Ф(t) -- возрастающая функция), следовательно, и к возрастанию; другими словами, увеличение надежности классической оценки влечет за собой уменьшение ее точности.

Пример. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением =3. Найти доверительные интервалы для оценки неизвестного математического ожидания a по выборочным средним х, если объем выборки n = 36 и задана надежность оценки = 0,95.

Решение. Найдем t. Из соотношения 2Ф(t) = 0,95 получим Ф (t) = 0,475. По таблице находим t=1,96.

Найдем точность оценки:

точность доверительный интервал измерение

T(/n^?)= (1 ,96 . 3)/ /36 = 0,98.

Доверительный интервал таков: (х - 0,98; х + 0,98). Например, если х = 4,1, то доверительный интервал имеет следующие доверительные границы:

х - 0,98 = 4,1 - 0,98 = 3,12; х + 0,98 = 4,1+ 0,98 = 5,08.

Таким образом, значения неизвестного параметра а, согласующиеся с данными выборки, удовлетворяют неравенству 3,12 < а < 5,08. Подчеркнем, что было бы ошибочным написать Р (3,12 < а < 5,08) = 0,95. Действительно, так как а - постоянная величина, то либо она заключена в найденном интервале (тогда событие 3,12 < а < 5,08 достоверно и его вероятность равна единице), либо в нем не заключена (в этом случае событие 3,12 < а < 5,08 невозможно и его вероятность равна нулю). Другими словами, доверительную вероятность не следует связывать с оцениваемым параметром; она связана лишь с границами доверительного интервала, которые, как уже было указано, изменяются от выборки к выборке.

Поясним смысл, который имеет заданная надежность. Надежность = 0,95 указывает, что если произведено достаточно большое число выборок, то 95% из них определяет такие доверительные интервалы, в которых параметр действительно заключен; лишь в 5% случаев он может выйти за границы доверительного интервала.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью, то минимальный объем выборки, который обеспечит эту точность, находят по формуле

Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при неизвестном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t()(s/n^?) < a < х + t()(s/n^?),

где s -«исправленное» выборочное среднее квадратическое отклонение, t() находят по таблице по заданным и n.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены выборочная средняя x = 20,2 и «исправленное» среднее квадратическое отклонение s = 0,8. Оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем t(). Пользуясь таблицей, по = 0,95 и n=16 находим t()=2,13.

Найдем доверительные границы:

х - t()(s/n^?) = 20,2 - 2,13 *. 0 ,8/16^? = 19,774

х + t()(s/n^?) = 20,2 + 2,13 * 0 ,8/16^? = 20,626

Итак, с надежностью 0,95 неизвестный параметр а заключен в доверительном интервале 19,774 < а < 20,626

Оценка истинного значения измеряемой величины

Пусть производится n независимых равноточных измерений некоторой физической величины, истинное значение а которой неизвестно.

Будем рассматривать результаты отдельных измерений как случайные величины Хl, Х2,…Хn. Эти величины независимы (измерения независимы). Имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии ^2 (измерения равноточные) и распределены нормально (такое допущение подтверждается опытом).

Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов, выполняются, и, следовательно, мы вправе использовать формулы. Другими словами, истинное значение измеряемой величины можно оценивать по среднему арифметическому результатов отдельных измерений при помощи доверительных интервалов.

Пример. По данным девяти независимых равноточных измерений физической величины найдены среднее арифметической результатов отдельных измерений х = 42,319 и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение измеряемой величины с надежностью = 0,95.

Решение. Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к. оценке математического ожидания (при неизвестном) при помощи доверительного интервала покрывающего а с заданной надежностью = 0,95.

х - t()(s/n^?) < a < х + t()(s/n^?)

Пользуясь таблицей, по у = 0,95 и л = 9 находим

Найдем точность оценки:

t()(s/n^?) = 2 ,31 * 5/9^?=3.85

Найдем доверительные границы:

х - t()(s/n^?) = 42,319 - 3,85 = 38,469;

х + t()(s/n^?) = 42,319 +3,85 = 46,169.

Итак, с надежностью 0,95 истинное значение измеряемой величины заключено в доверительном интервале 38,469 < а < 46,169.

Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение по «исправленному» выборочному среднему квадратическому отклонению s. Для этого воспользуемся интервальной оценкой.

Интервальной оценкой (с надежностью) среднего квадратического отклонения о нормально распределенного количественного признака X по «исправленному» выборочному среднему квадратическому отклонению s служит доверительный интервал

s (1 -- q) < < s (1 + q) (при q < 1),

0 < < s (1 + q) (при q > 1),

где q находят по таблице по заданным n н.

Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 25 найдено «исправленное» среднее квадратическое отклонение s = 0,8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,95.

Решение. По таблице по данным = 0,95 и n = 25 найдем q = 0,32.

Искомый доверительный интервал s (1 -- q) < < s (1 + q) таков:

0,8(1-- 0,32) < < 0,8(1+0,32), или 0,544 < < 1,056.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,999.

Решение. По таблице приложения по данным = 0,999 и n=10 найдем 17= 1,80 (q > 1). Искомый доверительный интервал таков:

0 < < 0,16(1 + 1,80), или 0 < < 0,448.

Оценка точности измерений

В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения случайных ошибок измерений. Для оценки используют «исправленной» среднее квадратическое отклонение s. Поскольку обычно результаты измерений взаимно независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то теория, изложенная в предыдущем параграфе, применима для оценки точности измерений.

Пример. По 15 равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s = 0,12. Найти точность измерений с надежностью 0,99.

Решение. Точность измерений характеризуется средним квадратическим отклонением случайных ошибок, поэтому задача сводится к отысканию доверительного интервала s (1 -- q) < < s (1 + q) , покрывающего с заданной надежностью 0,99

По таблице приложения по = 0,99 и n=15 найдем q = 0,73.

Искомый доверительный интервал

0,12(1-- 0,73) < < 0,12(1+0,73), или 0.03 < < 0,21.

Оценка вероятности (биномиального распределения) по относительной частоте

Интервальной оценкой (с надежностью) неизвестной вероятности p биномиального распределения по относительной частоте w служит доверительный интервал (с приближенными концами p1 и р2)

p1 < p < p2,

где n - общее число испытаний; m - число появлений события; w - относительная частота, равная отношению m/n; t - значение аргумента функции Лапласа, при котором Ф(t) = /2.

Замечание. При больших значениях n (порядка сотен) можно принять в качестве приближенных границ доверительного интервала

Рассмотрим построение доверительного интервала для оценки математического ожидания.

Пусть - выборка объемаиз генеральной совокупности объема
;- выборочное среднее;- выборочное среднее квадратическое отклонение.

Доверительный интервал уровня надежности для математического ожидания (генеральной средней) имеет вид

,

где -предельная ошибка выборки , которая зависит от объема выборки , доверительной вероятностии равна половине доверительного интервала.

генеральной средней неизвестном служит доверительный интервал:

где - выборочное среднее;-исправленное выборочное среднее квадратическое отклонение; - параметр, который находится по таблице распределения Стьюдента для (
) степеней свободы и доверительной вероятности.

Интервальной оценкой с надежностью генеральной средней в случае нормального распределения генеральной совокупности приизвестном среднем квадратическом отклонении служит доверительный интервал:

где - выборочное среднее;
- выборочное среднее квадратическое отклонение;- значение аргумента функции Лапласа
, при котором
;- объем выборки.

Выводы . Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится "истинное" (неизвестное) среднее значение признака.

Хорошо известно, например, что чем «неопределенней» прогноз погоды (т.е. шире доверительный интервал), тем вероятнее он будет верным.

Пример. Найти доверительный интервал с надежностью 0,95 для оценки математического ожидания нормально распределенной случайной величины, если известны ее среднее квадратическое отклонение
, выборочная средняя
и объем выборки
.

Воспользуемся формулой
. Значениенайдем по таблице значений функции Лапласа
, с учетом того, что
, т.е.
. Находим по таблице для значения функции
значение аргумента
. Получим доверительный интервал:

; или
.

Тестовые задания

1. Длина доверительного интервала уменьшается с увеличением:

1) выборочных значений 2) объема выборки

3) доверительной вероятности 4) выборочного среднего

2. Длина доверительного интервала с увеличением объема выборки:

1) уменьшается; 2) увеличивается;

3) не изменяется; 4) колеблется.

3. Длина доверительного интервала с увеличением доверительной вероятности:

1) изменяется, 2) уменьшается,

3) увеличивается, 4) постоянна.

4. Отметьте два правильных ответа. Символы ив формуле доверительного интервала означают:

1) оценка параметра; 2) доверительный интервал;

3) объем выборки; 4) доверительная вероятность.

Ответы. 1. 2). 2. 1 3. 2). 4. 4) и 3).

Контрольные Вопросы

    Что понимается под термином «интервальная оценка параметра распределения»?

    Дайте определение доверительного интервала.

    Что такое точность оценки и надежность оценки?

    Что называется доверительной вероятностью? Какие значения она принимает?

    Как изменится длина доверительного интервала, если увеличить: 1) объем выборки, 2) доверительную вероятность? Ответ обоснуйте.

    Запишите формулу для нахождения доверительного интервала математического ожидания нормально распределенной случайной величины, если генеральная дисперсия: 1) известна; 2) неизвестна.

1. Введение

2. Основная часть

2.1.1Понятие о доверительных интервалах

2.1.2 Доверительный интервал для математического ожидания нормальной случайной величины при известной дисперсии

2.1.3 Доверительный интервал для математического ожидания нормальной случайной величины при неизвестной дисперсии

2.1.4 Доверительный интервал для дисперсии нормальной случайной величины

2.2 Генеральная совокупность

2.2.1 Построение доверительного интервала для генеральной средней по малой выборке

2.2.2 Построение доверительного интервала для генеральной доли по малой выборке

2.2.3 Построение доверительного интервала для генеральной дисперсии

3. Заключение

Список литературы

1. В ве д е ние

На практике мы всегда имеем дело с ограниченным числом измерений, и задача, которая всегда стоит перед оператором, состоит в том, как оценить точность измерений, т.е. найти его меру приближения к истинному значению на основании группы результатов наблюдения.

В результате отдельных измерений мы получаем некоторые строго фиксированные результаты (точки) измеряемой величины. Их значения являются случайными с некоторым распределением. Случайная погрешность измерения образуется под влиянием большого числа факторов, сопутствующих процессу измерения. Важно зафиксировать отклонения и, при использовании полученных результатов, использовать подход, который будет учитывать такие флуктуации. Подходящим решением является введение понятий доверительного интервала и доверительной вероятности.

2. Основная часть

2.1. 1 Понятие о доверительных интервалах .

После получения точечной оценки и * желательно иметь данные о надежности такой оценки. Особенно важно иметь сведения о точности оценок для небольших выборок (поскольку с возрастанием объема п выборки несмещенность и состоятельность основных оценок гарантируется утверждениями математической статистики). Поэтому точечная оценка может быть дополнена интервальной оценкой -- интервалом (и 1 , и 2), внутри которого с наперед заданной вероятностью г находится точное значение оцениваемого параметра и. Задачу определения такого интервала называют интервальным оцениванием, а сам интервал -- доверительным интервалом. При этом г называют доверительной вероятностью или надежностью, с которой оцениваемый параметр и попадает в интервал (и 1, и 2).

Зачастую для определения доверительного интервала заранее выбирают число б = 1 -- г, 0< б < 1, называемое уровнем значимости, и находят два числа и 1 и и 2 , зависящих от точечной оценки и * , такие, что

Р (и 1 < и < и 2) = 1- б = г. (1)

В этом случае говорят, что интервал (и 1, и 2) накрывает неизвестный параметр и с вероятностью (1 - б), или в 100(1 - б)% случаев. Границы интервала и 1 и и 2 называются доверительными, и они обычно находятся из условия Р (и < и 1) = Р(и > и 2) = б/2 (рис. 1) .

Рисунок 1 - Распределение параметра и

Длина доверительного интервала, характеризующая точность интервальной оценки, зависит от объема выборки п и надежности г (уровня значимости г= 1 - б). При увеличении величины п длина доверительного интервала уменьшается, а с приближением надежности г к единице -- увеличивается. Выбор б (или г = 1 - б) определяется конкретными условиями. Обычно используется б=0,1; 0,05; 0,01, что соответствует 90, 95, 99%-м доверительным интервалам.

Общая схема построения доверительного интервала:

1. Из генеральной совокупности с известным распределением f (x , и) случайной величины X извлекается выборка объема п, по которой находится точечная оценка и * параметра и.

2. Строится случайная величина Y(и), связанная с параметром и и имеющая известную плотность вероятности f (у, и).

3. Задается уровень значимости б.

4. Используя плотность вероятности случайной величины Y, определяют два числа с 1 и с 2 такие, что

Значения с 1 и с 2 выбираются как правило, из условий

Неравенство с 1 < Y (и) < с 2 преобразуется в равносильное и*- д < и < и + д такое, что Р (и*- д < и < и*+ д) = 1 - б .

Полученный интервал (и *- д < и < и *+ д), накрывающий неизвестный параметр и с вероятностью 1 - б, и является интервальной оценкой параметра и.

Интервальная оценка также носит случайный характер, так как она напрямую связана с результатами выборки. Однако она позволяет сделать следующий вывод. Если построен доверительный интервал, который с надежностью г = 1 - б накрывает неизвестный параметр, и его границы рассчитываются по К выборкам одинакового объема п, то в (1- б)К случаях построенные интервалы накроют истинное значение исследуемого параметра.

Поскольку в эконометрических задачах часто приходится находить доверительные интервалы параметров случайных величин, имеющих нормальное распределение, приведем схемы их определения.

2. 1. 2

нормальной случайной величины при известной дисперсии .

Пусть количественный признак X генеральной совокупности имеет нормальное распределение с заданной дисперсией у 2 и неизвестным математическим ожиданием M(Х~N(т , у)). Построим доверительный интервал для т.

1. Пусть для оценки т извлечена выборка х 1 , х 2 , ..., х п объема n . Тогда

2. Составим случайную величину. Нетрудно показать, что случайная величина u имеет стандартизированное нормальное распределение, т.е. u ~ N (0, 1) ().

3. Зададим уровень значимости б.

4. Применяя формулу нахождения вероятности отклонения нормальной величины от математического ожидания, имеем:

Это означает, что доверительный интервал накрывает неизвестный параметр т с надежностью 1- б. Точность оценки определяется величиной .

Отметим, что число определяется по таблице значений функции Лапласа из равенства (рис.2) .

Рисунок 2 - Стандартизированное нормальное распределение случайной величины

Пример 1 . На основе продолжительных наблюдений за весом X пакетов орешков, заполняемых автоматически, установлено, что стандартное отклонение веса пакетов у = 10 г. Взвешено 25 пакетов, при этом их средний вес составил = 244 г. В каком интервале с надежностью 95 % лежит истинное значение среднего веса пакетов?

Логично считать, что случайная величина X имеет нормальный закон распределения: Х~N(m , 10). Для определения 95%-го доверительного интервала найдем критическую точку = u 0,025 из приложения 1 по соотношению

Тогда по формуле (3) построим доверительный интервал:

2.1.3 Доверительный интервал для математического ожидания

нормальной случайной величины при неизвестной дисперсии .

В реальности истинное значение дисперсии исследуемой случайной величины, скорее всего, известно не будет. Это приводит к необходимости использования другой формулы при определении доверительного интервала для математического ожидания случайной величины, имеющей нормальное распределение.

Пусть X ~ N(m , у 2), причем т и у 2 -- неизвестны. Необходимо построить доверительный интервал, накрывающий с надежностью г = 1 - б истинное значение параметра т.

Для этого из генеральной совокупности случайной величины X извлекается выборка объема п: х 1 , х 2 , ..., х п .

1. В качестве точечной оценки математического ожидания т используется выборочное среднее, а в качестве оценки, дисперсии у 2 -- исправленная выборочная дисперсия , которой соответствует стандартное отклонение.

2. Для нахождения доверительного интервала строится статистика , имеющая в этом случае распределение Стьюдента с числом степеней свободы v = п - 1 независимо от значений параметров т и у 2 .

4. Применяется следующая формула расчета вероятности

где -- критическая точка распределения Стьюдента, которая находится по соответствующей таблице . Тогда

Это означает, что интервал накрывает неизвестный параметр m с надежностью 1 - б.

Пример 2 . Найти доверительный интервал для оценки неизвестного математического ожидания нормально распределенного признака, если известны:у = 2; = 5,4; n = 10; г = 0,95.

Решение.

2Ф(t) = 0,95, Ф(t) = 0,5*0,95=0,475.

Найдя t = 1,96, получим.

Доверительный интервал

(- д; + д) = (5,4- 1,24; 5,4+1,24)=(4,16; 6,64).

Пример 3 . Найти минимальный объем выборки, при котором с надежностью 0,95 точность оценки математического ожидания нормально распределенного признака по выборочной средней будет равна 0,2, если среднее квадратическое отклонение равно2.

Решение.

Дано: г = 0,95; д = 0,2; у = 2. Найти n.

Из формулы находим. Из условия2Ф(t) = 0,95 находим t = 1,96. Тогда.

Пример 4 . По заданным значениям характеристик нормально распределенного признака найти доверительный интервал для оценки неизвестного математического ожидания:

г = 0,95, n =12, S = 1,5. = 16,8.

Решение.

По даннымг и n находим t = 2,20, тогда.

Доверительный интервал: (16,8 - 0,95; 16,8 + 0,95) = (15,85; 17,75).

2.1.4 Доверительный интервал для дисперсии нормальной

случайной величины .

Пусть X ~ N(т, у 2), причем т и у 2 -- неизвестны. Пусть для оценки у 2 извлечена выборка объема п: : х 1 , х 2 , ..., х п .

1. В качестве точечной оценки дисперсии D (X ) используется исправленная выборочная дисперсия которой соответствует стандартное отклонение.

2. При нахождении доверительного интервала для дисперсии в этом случае вводится статистика, имеющая -распределение с числом степеней свободы v = п - 1 независимо от значения параметра у 2 .

3. Задается требуемый уровень значимости б.

4. Тогда, используя таблицу критических точек распределения, нетрудно указать критические точки, для которых будет выполняться следующее равенство:

Подставив вместо соответствующее значение, получим

Неравенство может быть преобразовано в следующее:

Таким образом, доверительный интервал () накрывает неизвестный параметр с надежностью 1- б . А доверительный интервал () с надежностью 1 - б накрывает неизвестный параметр .

2.2 Генеральная совокупность .

Генеральной совокупностью называется множество всех возможных значений или реализаций исследуемой случайной величины при данном реальном комплексе условий.

Выборкой называют часть генеральной совокупности, отобранную для изучения.

Изучение всей генеральной совокупности во многих случаях либо невозможно, либо нецелесообразно в силу больших материальных затрат, поэтому на практике часто приходится иметь дело с выборками небольшого объема п <10- 20. В этом случае используемый обычно метод построения интервальной оценки для генеральной средней (среднего арифметического генеральной совокупности) и генеральной доли (доли элементов, обладающих необходимым признаком) неприменим в силу двух обстоятельств:

1) необоснованным становится вывод о нормальном законе распределения выборочных средней и доли w , так как он основан на центральной предельной теореме при больших п;

2) необоснованной становится замена неизвестных генеральной дисперсии у 2 и доли р их точечными оценками (или) или w , так как в силу закона больших чисел (состоятельности оценок) эта замена возможна лишь при больших п .

2.2.1

средней по малой выборке.

Задача построения доверительного интервала для генеральной средней может быть решена, если в генеральной совокупности рассматриваемый признак имеет нормальное распределение.

Теорема. Если признак (случайная величина) X имеет нормальный закон распределения с параметрами, x 2 = 2 , т.е. , то выборочная средняя при любом n имеет нормальный закон распределения

Если в случае больших выборок из любых генеральных совокупностей нормальность распределения обусловливалась суммированием большого числа одинаково распределенных случайных величин / n (теорема Ляпунова), то в случае малых выборок, полученных из нормальной генеральной совокупности, нормальность распределения вытекает из того, что распределение суммы (композиция) любого числа нормально распределенных случайных величин имеет нормальное распределение. Формулы числовых характеристик для получены ранее.

Таким образом, если бы была известна генеральная дисперсия, то доверительный интервал можно было бы построить аналогично изложенному выше и при малых n . Заметим, что в этом случае нормированное отклонение выборочной средней имеет стандартное нормальное распределение N(0; 1), т.е. нормальное распределение с математическим ожиданием, равным нулю, и дисперсией, равной единице.

Действительно, используя свойства математического ожидания и дисперсии, получим, что

Однако на практике почти всегда генеральная дисперсия (как и оцениваемая генеральная средняя) неизвестна. Если заменить ее «наилучшей» оценкой по выборке, а именно «исправленной» выборочной дисперсией, то большой интерес представляет распределение выборочной характеристики (статистики) или с учетом малой выборки, распределение статистики.

Представим статистику t в виде:

Числитель выражения (8) имеет стандартное нормальное распределение N (0; 1). Можно показать, что случайная величина имеет - распределение с н = n - 1 степенями свободы. Следовательно, статистика t имеет t- распределение Стьюдента с н =п - 1 степенями свободы. Указанное распределение не зависит от неизвестных параметров распределения случайной величины X, а зависит лишь от числа н, называемого числом степеней свободы.

Выше отмечено, что t - распределение Стьюдента напоминает нормальное распределение, и действительно при н >? как угодно близко приближается к нему.

Число степеней свободы к определяется как общее число n наблюдений (вариантов) случайной величины X минус число уравнений l, связывающих эти наблюдения, т.е. н = п - l.

Так, например, для распределения статистики число степеней свободы н = п - 1, ибо одна степень свободы «теряется» при определении выборочной средней (и наблюдений связаны одним уравнением).

3ная t - распределение Стьюдента, можно найти такое критическое значение что вероятность того, что статистика не превзойдет величину (по абсолютной величине), равна:

Функция, где - плотность вероятности t - распределения Стьюдента при числе степеней свободы н табулирована. Эта функция аналогична функции Лапласа Ф(t ), но в отличие от нее является функцией двух переменных -- t и н = п - 1. При н >? функция неограниченно приближается к функции Лапласа Ф(t) .

Формула доверительной вероятности для малой выборки может быть представлена в равносильном виде:

- предельная ошибка малой выборки. Доверительный интервал для генеральной средней, как и ранее, находится по формуле:

Пример 5 . Для контроля срока службы электроламп из большой партии было отобрано 17 электроламп. В результате испытаний оказалось, что средний срок службы отобранных ламп равен 980 ч, а среднее квадратическое отклонение их срока службы -- 18 ч. Необходимо определить: а) вероятность того, что средний срок службы ламп во всей партии отличается от среднего срока службы отобранных для испытаний ламп не более чем на 8 ч (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключен средний срок службы ламп во всей партии.

Решение.

Имеем по условию п = 20, = 980(ч), S = 18 ч.

а) Зная предельную ошибку малой выборки = 8 (ч), найдем из соотношения (9):

Теперь искомая доверительная вероятность

А находится по таблице значений при числе степеней свободы = 16.

Итак, вероятность того, что расхождение средних сроков службы электроламп в выборке и во всей партии не превысит 8 ч (по абсолютной величине), равна 0,906.

б) Учитывая, что = 0,95 и t 0,95;16 =2,12, по (11)найдем предельную ошибку малой выборки (ч). Теперь по (12)искомый доверительный интервал или (ч), т.е. с надежностью 0,95 средний срок службы электроламп в партии заключен от 970,5 до 989,5 ч.

2.2.2 Построение доверительного интервала для генеральной доли

по малой выборке.

Если доля признака в генеральной совокупности равна р то вероятность того, что в повторной выборке объема п т элементов обладают этим признаком, определяется по формуле Бернулли: , где q = 1 - р , т.е. распределение повторной выборки описывается биномиальным распределением. Так как при р? 0,5 биномиальное распределение несимметрично, то в качестве доверительного интервала для р берут такой интервал (p 1 , p 2 ), что вероятность попадания левее р 1 и правее p 2 одна и та же и равна (1 - г)/2:

где - фактическое число элементов выборки, обладающих признаком.

Рисунок 3 - Генеральная доля для г=0,9

Решение таких уравнений можно упростить, если использовать специальные графики, позволяющие при данном объеме выборки п и заданной доверительной вероятности г определить границы доверительного интервала для генеральной доли р. В качестве примера на рисунке 3 приведены такие графики для г = 0,9.

Пример 6 . Опрос случайно отобранных 15 жителей города показал, что 6 из них будут поддерживать действующего мэра на предстоящих выборах. Найти границы, в которых с надежностью 0,9 заключена доля граждан города, которые будут поддерживать на предстоящих выборах действующего мэра.

Решение.

Выборочная доля жителей, поддерживающих мэра, w = т/п = 6/15 = 0,4 . По рисунку 3 для г = 0,9 находим при w = 0,4 и для п = 15 по нижнему графику p 1 =0,23, а по верхнему -- р 2 = 0,60, т.е. доля жителей города, поддерживающих мэра, с надежностью 0,9 заключена в границах от 0,23 до 0,60. Очевидно, что более точный ответ на вопрос задачи может быть получен при увеличении объема выборки п.

2.2.3 Построение доверительного интервала для генеральной

дисперсии.

Пусть распределение признака (случайной величины) X в генеральной совокупности является нормальным N (, 2). Предположим, что математическое ожидание М(Х) = (генеральная средняя) известно. Тогда выборочная дисперсия повторной выборки X 1 , X 2 , …, X n :

ее неследует путать с выборочной дисперсией

и «исправленной» выборочной дисперсией

если S характеризует вариацию значений признака относительно генеральной средней, то и -- относительно выборочной средней .

Рассмотрим статистику

Учитывая, M (X i ) = , D (X i )= у 2 , (i = 1, 2, …, n ) нетрудно показать, что М (t ) = 0 и.

Выше отмечено, что распределение суммы квадратов п независимых случайных величин, каждая из которых имеет стандартное нормальное распределение N (0;l), представляет распределение 2 с н = п степенями свободы.

Таким образом, статистика имеет распределение 2 с н = п степенями свободы.

Распределение 2 не зависит от неизвестных параметров случайной величины X , а зависит лишь от числа степеней свободы н .

Плотность вероятности распределения имеет сложный вид и интегрирование ее является весьма трудоемким процессом. Составлены таблицы для вычисления вероятности того, что случайная величина, имеющая 2 - распределение с н степенями свободы, превысит некоторое критическое значение, т.е.

В практике выборочного наблюдения математическое ожидание, как правило, неизвестно, и приходится иметь дело не с, а с S 2 или. Если Х 1 , X 2 ,..., X n -- повторная выборка из нормально распределенной генеральной совокупности, то, как уже сказано выше, случайная величина (или) имеет распределение 2 с н = п --1 степенями свободы. Поэтому для заданной доверительной вероятности г можно записать:

(графически это площадьпод кривой распределения и рис. 4).

Рисунок 4 - Кривая распределения 2

Очевидно, что значения и определяются неоднозначно при одном и том же значении заштрихованной площади. Обычно и выбирают таким образом, чтобы вероятности событий < и > были одинаковы, т. е.

Преобразовавдвойное неравенство в равенстве (13)к равносильному виду, получим формулу доверительной вероятности для генеральной дисперсии:

а для среднеквадратического отклонения:

. (15)

При использовании таблиц вероятностей необходимо учесть, что поэтому условие

равносильно условию.

Таким образом, значения и находим из равенств:

Пример 7. На основании выборочных наблюдений производительности труда 20 работниц было установлено, что среднее квадратическое отклонение суточной выработки составляет 15 м ткани в час. Предполагая, что производительность труда работницы имеет нормальное распределение, найти границы, в которых с надежностью 0,9 заключены генеральные дисперсия и среднее квадратическое отклонение суточной выработки работниц.

Решение.

Имеем г = 0,9; (1 - г)/2 = 0,05; (1 +г)/2 = 0,95.

При числе степеней свободы н = n - 1=20 - 1=19 в соответствии с (16)и (17)определим и для вероятностей 0,95 и 0,05, т.е. = 10,1 и = 30,1. Тогда доверительный интервал для у 2 по (14)можно записать в виде:

или и для у по (15):

или 12,2 < у <21,1(м/ч).

Итак, с надежностью 0,9 дисперсия суточной выработки работниц заключена в границах от 149,5 до 445,6, а ее среднее квадратическое отклонение -- от 12,2 до 21,1 метров ткани в час.

Таблицы составлены при числе степеней свободы н от 1 до 30. При н > 30 можно считать, что случайная величина имеет стандартное нормальное распределение N (0; l). Поэтому для определения и следует записать, что

откуда и, после преобразований,

Таким образом, при расчете доверительного интервала надо полагать, .

Пример 8 . Решить задачу, приведенную в примере 7, при п = 100 работницам.

Решение.

При Ф(t ) = 0,9 t = 1,645, поэтому

3. Заключение

В данной курсовой работе рассмотрено понятие доверительного интервала и его разновидности в метрологии.

Провести бесконечное число измерений для получения верного результата в реальной жизни невозможно, поэтому важно дать объективное представление результатов ограниченного числа измерений, чему и призван помочь изучаемый подход.

Цель любого оценивания состоит в получении наиболее точного значения исследуемой характеристики. Доверительный интервал позволяет с определенной точностью получить распределение параметра, что дает хорошее представление об исследуемом объекте.

Список литературы

1. Беляев Ю.К., Носко В.П. Основные понятия и задачи математической статистики. - М.: Изд- во МГУ, ЧеРо, 1998. С. 114

2. Бородич С.А. Вводный курс эконометрики: Учебное пособие. - Мн.: БГУ, 2000. С. 46-48, 60-70

3. Крамер Г. Математические методы статистики.- М.: Госиноиздат, 1948. С. 118-130

4. Крамер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. - М.: ЮНИТИ- ДАНА, 2002. С. 140-144

5. Мешалкин Л.Д. Сборник задач по теории вероятностей. - М.: Изд- во МГУ, 1963. С. 30-33

6. Тутубалин В.Н. Теория вероятностей и случайных процессов. Основы математического аппарата и прикладные аспекты. - М.: Изд- во МГУ, 1992.

7. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере. - М.: Инфра- М Финансы и статистика, 1995.