Какая структура хромосомы определяет ее форму. Дифференциальная окраска метафазных хромосом. В процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления

ХРОМОСОМА


СТРОЕНИЕ ХРОМОСОМ

  • Схема строения хромосомы в поздней профазе - метафазе митоза:

1-хроматида;

2-центромера;

3-короткое плечо;

4-длинное плечо

ЦЕНТРОМЕРА

  • ЦЕНТРОМЕРА (от центр + греч. meros - часть) - специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две хроматиды, образовавшиеся в результате дупликации хромосомы.


ЗНАЧЕНИЕ ЦЕНТРОМЕРЫ

  • Центромера играет важную роль при расположении хромосом в виде метафазной пластинки

  • В процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления.

  • Каждая центромера разделяет хромосому на два плеча.


ХРОМАТИДА

  • ХРОМАТИДА (от греч. chroma - цвет, краска + eidos - вид) - часть хромосомы от момента ее дупликации до разделения на две дочерние в анафазе, представляет собой нить молекулы ДНК соединенную с белками.

  • Хроматиды образуются в результате дупликации хромосом в процессе деления клетки.


  • Хромосомы имеются в ядрах всех клеток.

  • Каждая хромосома содержит наследственные инструкции - гены.


ГОМОЛОГИЧНЫЕ ХРОМОСОМЫ

  • От греч.Гомос - одинаковый

  • Гомологичные хромосомы - парные хромосомы, одинаковые по форме, размерам и набору генов.


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ

  • В клетках тела двуполых животных и растений каждая хромосома представлена двумя гомологичными хромосомами, происходящими одна от материнского, а другая от отцовского организма. Такой набор хромосом называют диплоидным (двойным )


ГАПЛОИДНЫЙ НАБОР ХРОМОСОМ

  • Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Этот набор хромосом называют гаплоидным (одинарным).


ФУНКЦИИ ХРОМОСОМ

  • Осуществляют координацию и регуляцию процессов в клетке путем синтеза первичной структуры белка, информационной и рибосомальной РНК


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ У РАСТЕНИЙ


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ У ЖИВОТНЫХ

КОМАР – 6

ОКУНЬ – 28

ПЧЕЛА – 32

СВИНЬЯ – 38

МАКАК-РЕЗУС –42

КРОЛИК - 44

24-цветная FISH хромосом человека: a - метафазная пластинка (Рубцов Н. Б., Карамышева Т. В. Вестн. ВОГиС, 2000).


24-цветная FISH хромосом человека: b - pаскладка хромосом. (Рубцов Н. Б., Карамышева Т. В. Вестн. ВОГиС, 2000).


ВСЕ ХРОМОСОМЫ ЧЕЛОВЕКА


История открытия хромосом

Рисунок из книги В. Флемминга, изображающий разные стадии деления клеток эпителия саламандры (W. Flemming. Zellsubstanz, Kern und Zelltheilung. 1882 г.)

В разных статьях и книгах приоритет открытия хромосом отдают разным людям, но чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем - немецкого анатома В. Флеминга . Однако справедливее было бы сказать, что он не открыл хромосомы, а в своей фундаментальной книге "Zellsubstanz, Kern und Zelltheilung" (нем.) собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Генрихом Вальдейером в 1888 году, «хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.

Сейчас сложно сказать, кто сделал первое описание и рисунок хромосом. В 1872 году швейцарский ботаник Карл фон Нэгили опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии (Lilium tigrinum ) и традесканции (Tradescantia ). Однако его рисунки не позволяют однозначно утверждать, что К. Нэгили видел именно хромосомы. В том же 1872 году ботаник Э. Руссов привёл свои изображения деления клеток при образовании спор у папоротника из рода ужовник (Ophioglossum ) и пыльцы лилии (Lilium bulbiferum ). На его иллюстрациях легко узнать отдельные хромосомы и стадии деления. Некоторые же исследователи полагают, что первыми увидел хромосомы немецкий ботаник Вильгельм Гофмайстер задолго до К. Нэгили и Э. Руссова, ещё в 1848-1849 годах. При этом ни К. Нэгили, ни Э. Руссов, ни тем более В. Гофмейстер не осознавали значения того, что видели.

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902-1903 годах У. Сеттон (Walter Sutton ) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом. Т. Бовери обнаружил, что зародыш морского ежа Paracentrotus lividus может нормально развиваться только при наличии хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны по своему составу. У. Сеттон изучал гаметогенез у саранчового Brachystola magna и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций.

Экспериментальное подтверждение этих идей и окончательное формулирование хромосомной теории было сделано в первой четверти XX века основателями классической генетики, работавшими в США с плодовой мушкой (D.melanogaster ): Т. Морганом , К. Бриджесом (C.B.Bridges ), А. Стёртевантом (A.H.Sturtevant ) и Г. Мёллером . На основе своих данных они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Эти выводы были опубликованы в 1915 году в книге «The mechanisms of mendelian heredity» (англ.).

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине .

Хромосомы эукариот

Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков - H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.

Первичная перетяжка

Хромосомная перетяжка (X. п.), в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 9, 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щёток

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Хромосомы человека

В каждой ядросодержащей соматической клетке человека содержится 23 пары линейных хромосом, а также многочисленные копии митохондриальной ДНК . В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Количество генов Всего оснований Секвенированых оснований
4 234 247 199 719 224 999 719
1 491 242 751 149 237 712 649
1 550 199 446 827 194 704 827
446 191 263 063 187 297 063
609 180 837 866 177 702 766
2 281 170 896 993 167 273 993

Хромосомы эукариот

Центромера

Первичная перетяжка

X. п., в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щеток

Бактериальные хромосомы

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Литература

  • Э. де Робертис, В. Новинский, Ф. Саэс Биология клетки. - M.: Мир, 1973. - С. 40-49.

См. также

Wikimedia Foundation . 2010 .

  • Хромченко Матвей Соломонович
  • Хроника

Смотреть что такое "Хромосомы" в других словарях:

    ХРОМОСОМЫ - (от хромо... и сома), органоиды клеточного ядра, являющиеся носителями генов и определяющие наследств, свойства клеток и организмов. Способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду… … Биологический энциклопедический словарь

    ХРОМОСОМЫ - [Словарь иностранных слов русского языка

    ХРОМОСОМЫ - (от хромо... и греч. soma тело) структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. Самоудвоение и закономерное распределение хромосом по… … Большой Энциклопедический словарь

    ХРОМОСОМЫ - ХРОМОСОМЫ, структуры, несущие генетическую информацию об организме, которая содержится только в ядрах клеток ЭУКАРИОТОВ. Хромосомы нитеобразны, они состоят из ДНК и обладают специфическим набором ГЕНОВ. У каждого вида организмов есть характерное… … Научно-технический энциклопедический словарь

    Хромосомы - Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человска присутствует 46 хромосом, разделенных на 23 пары, из которых 22… … Большая психологическая энциклопедия

    Хромосомы - * храмасомы * chromosomes самовоспроизводящиеся элементы клеточного ядра, сохраняющие структурнофункциональную индивидуальность и окрашивающиеся основными красителями. Являются главными материальными носителями наследственной информации: генов… … Генетика. Энциклопедический словарь

Хромосомы - структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10 -4 см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматида построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

Рис. 14. Строение и репликация хромосомы

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом - 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (ХУ), а женщины гомогаметны (XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

1.14. Размножение в органическом мире

Размножение - это воспроизведение генетически сходных особей данного вида, обеспечивающее непрерывность и преемственность жизни.

Бесполое размножение осуществляется следующими путями:

  • простым делением на две или сразу на много клеток (бактерии, простейшие);
  • вегетативно (растения, кишечнополостные);
  • делением многоклеточного тела пополам с последующей регенерацией (морские звезды, гидры);
  • почкованием (бактерии, кишечнополостные);
  • образованием спор.

Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства. Но когда ядра спор образуются в результате мейоза, потомство от бесполого размножения будет генетически разным.

Половое размножение - процесс, в котором объединяется генетическая информация от двух особей.

Особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские - сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. А у некоторых водорослей сливаются две одинаковых половых клетки.

При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы.

Зигота развивается в новую особь.

Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половой процесс, но происходит он по-другому.

Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга.

Один из видов полового размножения - партеногенез, или развитие особей из неоплодотворенной яйцеклетки (тли, трутни пчел и др.).

Строение половых клеток

Яйцеклетки - круглые, сравнительно крупные, неподвижные клетки. Размеры - от 100 мкм до нескольких сантиметров в диаметре. Содержат все органоиды, характерные для эукариотической клетки, а также включения запасных питательных веществ в виде желтка. Яйцеклетка покрыта яйцевой оболочкой, состоящей в основном из гликопротеидов.

Рис. 15. Строение яйцеклетки птицы : 1 - халаза; 2 - скорлупа; 3 - воздушная камера; 4 - наружная подскорлуновая оболочка; 5 - жидкий белок; 6 - плотный белок; 7 - зародышевый диск; 8 - светлый желток; 9 - темный желток.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений - в семяпочках, локализованных в завязи цветка.

Яйцеклетки подразделяют следующим образом:

  • изолецитальные - желток распределен равномерно и его немного (у червей, моллюсков);
  • алецитальные - почти лишены желтка (млекопитающие);
  • телолецитальные - содержат много желтка (рыбы, птицы);
  • полилецитальные - содержат значительное количество желтка.

Овогенез - образование яйцеклеток у самок.

В зоне размножения находятся овогонии - первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут.

Сперматозоиды - мелкие, подвижные клетки. В них выделяют головку, шейку и хвост.

В передней части головки находится акросомальный аппарат - аналог аппарата Гольджи. В нем содержится фермент (гиалуронидаза), растворяющий оболочку яйцеклетки при оплодотворении. В шейке расположены центриоли и митохондрии. Жгутики сформированы из микротрубочек. При оплодотворении в яйцеклетку попадают только ядро и центриоли сперматозоида. Митохондрии и другие органоиды остаются снаружи. Поэтому цитоплазматическая наследственность у людей передается только по женской линии.

Половые клетки животных и растений, размножающихся половым путем, образуются в результате процесса, называемого гаметогенезом.

Важнейшие из органелл клетки представляют собой микроскопические структуры , находящиеся в ядре. Они были открыты одновременно несколькими учёными, в том числе российским биологом Иваном Чистяковым.

Название нового клеточного компонента было придумано не сразу. Его дал немецкий учёный В. Вальдейер, который,окрашивая гистологические препараты, обнаружил некие тельца, хорошо окрашивающиеся фуксином. Тогда ещё не было точно известно какую роль в выполняют хромосомы.

Вконтакте

Значение

Структура

Рассмотрим, какое строение и функции имеют эти уникальные клеточные образования. В состоянии интерфазы их практически не видно. На этой стадии удваивается молекула и образуется две сестринские хроматиды .

Строение хромосомы можно рассмотреть в момент ее подготовки к митозу или мейозу (делению). Подобные хромосомы называются метафазными , потому что образуются на стадии метафазы, подготовки к делению. До этого момента тельца представляют собой невзрачные тонкие нити темного оттенка , которые называют хроматином .

При переходе в метафазную стадию строение хромосомы меняется: ее образуют две хроматиды, соединенные центромерой — так именуется первичная перетяжка . При делении клетки удваивается также количество ДНК . Схематический рисунок напоминает букву Х. Они содержат в составе, кроме ДНК, белки (гистоновые, негистоновые) и рибонуклеиновую кислоту — РНК.

Первичная перетяжка разделяет тело клетки (нуклеопротеидной структуры) на два плеча, немного сгибая их. На основе места расположения перетяжки и длины плеч была разработана следующая классификация типов:

  • метацентрические, они же равноплечие, центромера делит клетку ровно пополам;
  • субметацентрические. Плечи не одинаковы , центромера смещена ближе к одному концу;
  • акроцентрические. Центромера сильно смещена и находится почти скраю;
  • телоцентрическая. Одно плечо полностью отсутствует, у людей не встречается .

У некоторых видов имеется вторичная перетяжка , которая может располагаться в разных точках. Она отделяет часть, которая именуется спутником. От первичной отличается тем, что не имеет видимого угла между сегментами . Ее функция заключается в синтезировании РНК на матрице ДНК. У людей встречается в 13, 14, 21 и 15, 21 и 22 парах хромосом . Появление в другой паре несет угрозу тяжёлого заболевания.

Теперь остановимся на том, какую хромосомы выполняют функцию. Благодаря воспроизводству разных типов и-РНК и белков они осуществляют четкий контроль за всеми процессами жизни клетки и организма в целом. Хромосомы в ядре эукариот выполняют функции синтезирования белков из аминокислот, углеводов из неорганических соединений, расщепляют органические вещества до неорганических, хранят и передают наследственную информацию .

Диплоидный и гаплоидный наборы

Специфика строения хромосом может отличаться, смотря где они образуются. Как называется набор хромосом в соматических клеточных структурах? Он получил наименование диплоидного или двойного.Соматические клетки размножаются простым делением на две дочерние . В обычных клеточных образованиях каждая клеточка имеет свою гомологичную пару. Происходит это потому, что каждая из дочерних клеток должна иметь тот же объем наследственной информации , что и материнская.

Как соотносится число хромосом в соматических и половых клетках. Здесь числовое соотношение составляет два к одному. В процессе образования половых клеток происходит особый тип деле­ния , в итоге набор в зрелых яйцеклетках и сперматозо­идах становится одинарным. Какую функцию выполняют хромосомы можно объяснить, изучая особенности их устройства.

Мужские и женские половые клетки имеют половинчатый набор, называемый гаплоидным , то есть всего их насчитывается 23. Сперматозоид сливается с яйцеклеткой, получается новый организм с полным набором. Генетическая информация мужчины и женщины таким образом объединяется. Если бы половые клетки несли диплоидный набор (46), то при соединении получился бы нежизнеспособный организм .

Разнообразие генома

Число носителей генетической информации у разных классов и видов живых существ отличается.

Они обладают способностью окрашиваться специально подобранными красителями, в их структуре чередуются светлые и тёмные поперечные участки — нуклеотиды . Их последовательность и расположение носят специфический характер. Благодаря этому учёные научились различать клетки и, в случае необходимости, чётко указывать «поломанную».

В настоящее время генетики расшифровали человека и составили генетические карты, что позволяет методом анализа предположить некоторые серьёзные наследственные заболевания ещё до того, как они проявятся.

Появилась возможность подтверждать отцовство, определять этническую принадлежность , выявлять, не является ли человек носителем какой-либо патологии, до времени не проявляющейся либо дремлющей внутри организма, определять особенности негативной реакции на лекарства и многое другое.

Немного о патологии

В процессе передачи генного набора могут происходить сбои и мутации , приводящие к серьёзным последствиям, среди них встречаются

  • делеции — потеря одного участка плеча, вызывающая недоразвитие органов и клеток головного мозга;
  • инверсии – процессы, при которых фрагмент переворачивается на 180 градусов, результатом становится неправильная последовательность расположения генов ;
  • дупликации – раздвоение участка плеча.

Мутации могут возникать и между рядом находящимися тельцами — этот феномен был назван транслокацией. Известные синдромы Дауна, Патау, Эдвардса также являются следствием нарушения работы генного аппарата .

Хромосомные болезни. Примеры и причины

Классификация клеток и хромосом

Заключение

Значение хромосом велико. Без этих мельчайших ультраструктур невозможна передача генной информации , следовательно, организмы не смогут размножаться. Современные технологии могут читать, заложенный в них код и успешно предотвращать возможные болезни , которые раннее считались неизлечимыми.